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Abstract

Equity and credit markets are often treated as independent markets. In this dissertation our objec-
tive is to hedge a position in a credit default swap with either shares or share options. Structural
models enable us to link credit risk to equity risk via the firm’s asset value. With an extended
version of the seminal Merton (1974) structural model, we value credit default swaps, shares and
share options using arbitrage pricing theory. Since we are interested in hedging the change in value
of a credit default swap dynamically, we use a jump-diffusion model for the firm’s asset value in
order to model the short term credit risk dynamics more accurately. Our mathematical model
does not admit an explicit solutions for credit default swaps, shares and share options, thus we use
a Brownian Bridge Monte Carlo procedure to value these financial products and to compute the
delta hedge ratios. These delta hedge ratios measure the sensitivity of the value of a credit default
swap with respect to either share or European share option prices. We apply these delta hedge
ratios to simulated and market data, to test our hedging objective. The hedge performs well for
the simulated data for both cases where the hedging instrument is either shares or share options.
The hedging results with market data suggests that we are able to hedge the value of a credit
default swap with shares, however it is more difficult with share options.
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Chapter 1

Introduction

1.1 Background to the Credit Derivatives Market

The rise in credit related events (i.e. bankruptcy of firms, default and deterioration of the credit
quality of corporate and government bonds) throughout the financial world over the past decade
has been met with a commensurate increase in interest in derivatives which depend in value solely
on credit risk1. Until recently there did not exist risk management products for credit risk. The
market for credit derivatives2 began slowly in the early 1990’s, sparked by the need to keep pace
with the increasing demand for other over-the-counter derivative products. The sheer volume of
business swamping the market meant that financial institutions could no longer rely on taking
collateral or making loss provisions to manage their credit risk. They strived for a way to lay off
illiquid credit exposures and to protect themselves against defaulting clients.

Traditionally, credit was sourced in the new issue market and placed with the end investors,
where it remained irrevocably linked to the asset with which it was originally associated. With the
innovation of credit derivatives it is now possible to separate credit risk from any financial obligation
(i.e. loans, bonds, swaps) and manage it just like any other asset. The credit derivative tool kit has
revolutionized credit risk management and fundamentally modernised the credit market. Before the
advent of credit derivatives, credit risk management meant a strategy of portfolio diversification
backed by credit line limits, with occasional sale of positions in the secondary market. These
strategies are inefficient, largely because they do not separate the management of risk from the
asset with which the credit risk is associated. Credit derivatives are significant as they allow the
risk manager to isolate credit risk and manage it discreetly without interfering with customer
relationships. They also form the first mechanism via which short sales of credit instruments can
be performed with reasonable liquidity. For example, it is impossible to short-sell a bank loan,
however this can be achieved synthetically by buying a credit derivative offering credit protection.
Credit derivatives allow investors to be synthetically exposed to credit assets that were unavailable
before, either because of regulations or because these assets were publicly restricted (e.g. bank
loan).

The credit derivative market has experienced an exponential growth since its inception in the
early 1990’s. The total market notional for 2006 is estimated at $20,207 billion (US dollars) and
is predicted to increase to $33,210 billion by 2008, according to surveys by the British Banker’s
Association (BBA) (see Barret & Ewan (2006)). Figure 1.1 shows estimates, from Barret & Ewan
(2006), of the growth of the credit derivative market. It is not just the size of the market that
has continued to grow, but also the diversity of credit derivative instruments. To highlight, a
few recent products are: index trades, tranched index trades and equity-linked products. Single
name credit default swaps (CDS) represent a substantial section of the market, according to the
BBA 2006 survey, single name CDS represents 32.9% of the credit derivative market. The single
name CDS is considered to be the fundamental instrument in the credit derivatives market, and
is the focus of this dissertation. Since 1992, the International Swaps and Derivatives Association
(ISDA) has standardised CDS contracts and other credit derivatives, allowing the involved parties
to specify the terms of the transaction from a number of defined alternatives. Recently the ISDA has

1Credit risk is the risk of default on an obligatory payment. We give a thorough description of credit risk in
Chapter 3.

2We give a detailed definition of credit derivatives in Chapter 3, for now it can be thought of as a financial
instrument whose value depends on credit risk.

1



1.2. Credit Risk and Equity 2

published the 2003 ISDA Credit Derivatives Definitions, which updates the 1999 version, and offers
the basic framework for the documentation of privately negotiated credit derivative transactions.
This standardisation has been a major development in the credit derivative market, since it has
reduced legal ambiguities that hampered the market’s growth in its early stages. Growth in this
market has also been spurred by banks’ recent endeavours to develop internal credit risk models
to quantify regulatory capital requirements, which has been encouraged by the 1997 revised Basel
Capital Accord and the new 2004 Basel II Capital Accord3. Banks have dominated the market
as the biggest traders of credit derivatives. Other major market participants are securities firms,
insurance companies and hedge funds.
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Figure 1.1: Growth of the credit derivative market according to the British Banker’s Association
2006 survey.

1.2 Credit Risk and Equity

There have been several studies on the relationship between credit risk and equity, and it is widely
agreed that there is a negative relationship between them. Vassalou & Xing (2004) and Charitou
et al. (2004) concluded that there exists a statistically significant negative relationship between
credit risk (as measured by the risk-neutral probability of default4 derived from the Merton (1974)
model) and stock returns, and this relationship is more significant for firms with a high default
probability. Elizalde (2005) assumed a global market credit risk factor inherent in all bond prices.
Using linear regression, he found that this global market credit risk is negatively correlated with
equity indices (S&P 500 and Dow Jones). This negative relationship between credit risk and
equity prices is intuitive. As a firm’s credit risk increases, the firms financial health decreases (its
propensity to default increases) and equity investors will become sceptical of realising a return on
their investment, resulting in share prices decreasing. By construction, credit default swaps are the
financial instruments with the most accurate reflection of a firm’s credit risk5. By regressing CDS
premiums on several equity factors, Zhang et al. (2005) found that equity returns are statistically
significant in explaining the change in CDS premiums. By calculating the daily lead-lag cross-
correlation coefficients, Acharya & Johnson (2005) and Byström (2005) found that share price
changes lead CDS premium changes, that there is an inverse relationship between the two, and
that this inverse relationship is strongest when the lag is zero.

The main objective of this dissertation is to quantify this relationship between CDS premium
changes and stock returns in order to hedge6 a position in a CDS with an equity position. To my
knowledge the closest related studies to this objective are by Yu (2005) and Schefer & Strebulaev

3The set of regulatory banking capital adequacy requirements, compiled by the Bank for International Settlements
(BIS) Basel Committee on Banking Supervision.

4This measure of credit risk will be discussed in detail in Chapter 4.
5In Chapter 4 we discuss credit default swaps in detail. There it is shown why it is value is considered to be the

most accurate reflection of credit risk.
6A hedge is a trading strategy designed to reduce risk, the variability of the value of the position being hedged.

Hedging will be discussed in Chapter 6.
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Figure 1.2: Times series plots of daily 5 years CDS premiums and daily share prices (the natural
logarithm is taken of both time series for visual comparison) for 4 different NYSE listed companies:
Boeing (Plot (a)), Daimler Chrysler (Plot(b)), Ford (Plot(c)) and General Motors (Plot (d)). The
red line represents 5-yr CDS premiums and the blue line represents share prices.

(2004). Yu (2005) investigates how profitable their capital structure arbitrage trading strategy is.
Capital structure arbitrage attempts to profit from temporary relative mispricings between market
CDS spreads and theoretically implied equity CDS spreads. In this strategy they hedge their
trading strategy with an equity position. However, the focus of this paper is the realised trading
profit and not on the ability of their model to hedge their CDS position. Schefer & Strebulaev
(2004) calculated hedge ratios, that measured the sensitivity of bond prices with equity, from the
Merton model, and found that they successfully predict market sensitivities. To further illustrate
the relationship between the CDS market and the equity market, four NYSE (New York Stock
Exchange) listed companies’ daily share prices are plotted in figure 1.2, with their corresponding
daily 5 year CDS premiums. From these plots it can be seen there is a definite negative relationship
between the two. Each of the firm’s cross-correlation7 (between the natural logarithm8 of daily 5yr
CDS premiums and the natural logarithm of daily share price) coefficients ρ also reveal a negative
relationship: Boeing ρ = −0.9662, Daimler ρ = −0.8582, Ford ρ = −0.9005 and General Motors
ρ = −0.9392.

1.3 Credit Risk Models

There exists two classes of credit risk models: structural and reduced form. Structural models
originated with Black & Scholes (1973), and Merton (1974), and reduced form models with Jarrow
& Turnbull (1995). Structural models are built on the premise that there is a fundamental process

7Pearson’s product-moment cross-correlation with zero lag. This correlation coefficient ρ ∈ [−1, 1], measures
the linear dependency between two random variables. The correlation coefficient is 1 in the case of an increasing
linear relationship, -1 in the case of a decreasing linear relationship, and some value in between in all other cases,
indicating the degree of linear dependence between the variables. The closer the correlation coefficient is to either
-1 or 1, the stronger the correlation between the random variables.

8In general, when calculating the correlation between two financial assets, we look at the natural logarithm of
the assets’ price, because a common assumption is that financial asset prices follow a log-normal distribution. Thus
the natural logarithm of financial asset prices follow a normal distribution, which is the natural distribution of the
random variables when calculating the Pearson’s product-moment cross-correlation coefficient.
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Vt, interpreted as the total value of the assets of the firm at time t. The firm’s asset value Vt is
the driving force behind the dynamics of the prices of all the securities issued by the firm (equity
and debt), and all claims on the firm’s value are modelled as derivative securities with the firm’s
value Vt as the underlying. In the structural framework, default is triggered when the asset value
Vt is insufficient to pay back the outstanding debt. This is modelled as Vt crossing some default
threshold barrier bt. From the structural model one can model both credit risk and equity, the
fundamental link being the firms’ asset value Vt. This is the reason why we will focus on structural
models in this dissertation. In a reduced form framework, default is modeled by a default process.
The default process is usually defined as an exogenous one-jump process which can jump from
no-default to default. Reduced form models use market prices of the firms defaultable instruments
(such as bonds or credit default swaps) to extract their default intensity (the jump intensity) which
can be used to calculate default probabilities and prices of other defaultable instruments. The value
of the firm’s assets and its capital structure are not modelled at all. They rely on the market as
the only source of information regarding the firms credit structure (without considering any credit
related information included in balance sheets or equity prices).

1.4 Research Objectives

There are three objectives that will be considered in this dissertation. Firstly, to establish a
theoretical relationship between CDS values and equity prices, via the structural model framework
and calculate the sensitivity of CDS values to equity prices (hedge ratios). The second objective
will be to quantify these sensitivities with market data. The third objective will be to test whether
these sensitivities can be used to hedge exposure to a CDS position, with an equity position, either
using an equity option or the underlying equity.

Since we are using the structural model approach, the theoretical values of credit default swaps,
φt, stocks, St, call stock options9, ϕt, and put stock options ,ϕt, will be dependent on the firm’s
asset value Vt. The sensitivity of credit default swap values, φt, to stock prices, St, call stock
option prices, ϕt, and put stock option prices, ϕt, will be evaluated by using the following partial
derivatives10:

∂φt

∂St
=

∂φt

∂Vt

∂Vt

∂St
, (1.1)

∂φt

∂ϕt
=

∂φt

∂Vt

∂Vt

∂ϕt
, (1.2)

∂φt

∂ϕt

=
∂φt

∂Vt

∂Vt

∂ϕt

. (1.3)

The above partial derivatives give the rate of change of CDS values with respect to stock, call
stock option and put stock option prices, with all the other independent variables in the CDS
pricing formula remaining fixed. These partial derivatives will determine the number of shares,
and options on shares, that are needed to hedge the change in value of a CDS. We will name these
partial derivatives delta hedge ratios. We will apply a simple hedging strategy according to these
delta hedge ratios to determine if it is possible to hedge exposure to a CDS position with an equity
position.

Intuitively, a credit instrument (eg. a corporate bond) should be used to hedge a CDS11. A less
obvious approach would be to use a position in equity, since credit and equity markets are often
considered to be distinct. By means of a structural credit risk model we are able to theoretically
link these two markets. In Chapter 3, we will see that hedging a CDS with a credit instrument can
be problematic or even impossible as there may not be any publicly available credit instruments.
We analyse a novel alternative approach to hedging credit default swaps, by taking a position in
the equity market. From this study we are also able to infer theoretical prices for equity (shares
and share options) and credit default swaps from the credit and equity market, respectively. From
these theoretical prices, it is possible to identify relative mispricings between theoretical (which has

9In this dissertation we only work with European options.
10We show in Chapter 6 that there is one-to-one relationship between CDS values, stock prices, stock option prices

and the firm’s asset value V , under our structural model framework. Since there is this one-to-one relationship,
equations (1.1), (1.2) and (1.3) hold.

11This is intuitive, since a CDS can be seen as insurance policy on a credit instrument, thus a natural hedging
instrument would be the credit instrument. We examine hedging a CDS with credit instruments in Chapter 3.
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been inferred by a different market) and market prices, which is required to perform the capital
structure arbitrage trading strategy.

1.5 Structure of the Dissertation

The three specific aims of this study are: to construct a mathematical model that will enable us
to relate the credit and equity market dynamically, to examine methods of pricing of equity and
credit products under our mathematical model, and finally calculate the delta hedge ratios and
implement them with market data to asses if it is possible to hedge the value of a credit default
swap with stock or stock options.

In the following, we briefly go over the content of each chapter. Chapter 2 outlines the math-
ematical underpinnings of credit risk models. This framework is based on the asset valuation
framework developed by Harrison & Pliska (1981). It is extended to account for assets that have
defaultable payments. Chapter 3 gives a brief overview of credit derivatives and a thorough descrip-
tion of credit default swaps and its intricacies. An approximate hedge-based pricing (replication)
strategy (Schönbucher (2003)) of credit default swaps will be illustrated. A bond based pricing
method (Hull & White (2000)), a popular method to price CDS, will also be explained. A generic
CDS pricing formula will be presented, that is applicable to all credit risk models. Chapter 4
examines structural models. We review the seminal structural model, the Merton (1974) model,
and comment on its strengths and weaknesses. We research extensions to this model, and analyse
the significance of the additional features. We present our model that will be used to price and
calculate the delta hedge ratios. We present several techniques available to estimate the parameters
of a structural model. Chapter 5 we give the valuation formulae for CDS, stock and European
stock options. Since our mathematical model does not admit explicit solutions for theses valuation
formulae, we present Monte Carlo methods to calculate the valuation formulae. We investigate
their computational accuracy and efficiency. We outline the calibration method which we used
to estimate our model’s parameters. In Chapter 6 we examine hedging under different market as-
sumptions. We then present the method to calculate our delta hedge ratios and outline the method
to implement them to hedge a position in a CDS with stock or stock options. We then test this
hedging scheme with simulated and market data. We conclude with an examination of the results
from these tests.



Chapter 2

Mathematical Framework

2.1 Introduction

The purpose of this chapter is to lay down the mathematical framework and describe the arbitrage-
free pricing technique for defaultable securities. This is not a thorough description of arbitrage-
free pricing theory. For a technical account the interest reader is referred to Protter (2005). The
following section highlights some of the main ideas concerning the arbitrage-free pricing technique
for non-defaultable contingent claims. We will extend this arbitrage-free pricing technique to price
defaultable contingent claims. From the general arbitrage-free framework for defaultable claims, we
will characterise two major credit risk models: the structural model and the reduced form model.

2.2 Arbitrage Pricing Theory

An arbitrage opportunity exists if it is possible to make a risk-free profit. The absence of arbitrage
opportunities in the financial market model is the fundamental economic assumption for asset
pricing. By assuming the financial market model is arbitrage-free, portfolios having identical cash
flows must have the same price. By constructing an appropriate portfolio which yields a riskless
return over an infinitesimally small period of time, Black & Scholes (1973) concluded that to avoid
arbitrage opportunities the portfolio’s instantaneous return must equal the prevailing risk-free rate.
This observation led to their celebrated partial differential equation which can be explicitly solved
for European vanilla options. The first mathematically rigorous framework for arbitrage-free pricing
was developed by Harrison & Kreps (1979) and Harrison & Pliska (1981). We now review the main
results of Harrison and Pliska, in order to extend these tools to price defaultable securities. For
now, we assume all securities are non-defaultable and later in the chapter we include defaultable
securities into the mathematical framework. All of the following definitions, propositions and
theorems are taken from Šelić (2006) and Brigo & Mercurio (2006).

2.2.1 Financial Market Model

Consider a financial market with a fixed trading horizon [0, T ]. On this time interval the uncertainty
of the financial market is modelled by a filtered probability space (Ω, FT ,F,P), P ∈ P, where
Ω is the sample space set containing all possible outcomes, F is right continuous filtration, F =
{Ft : 0 ≤ t ≤ T} (a dynamically evolving information structure), P is the real world (or statistical)
probability measure assigned to event sets A ∈ F and P is a class of equivalent probability measures
on (Ω,FT ). The financial interpretation of modelling the uncertainty in a financial market with
a class of equivalent probability measures, is that investors agree on which outcomes are possible,
but their assignment of probability to these outcomes differ (see Musiela & Rutkowski (1997) for
more details).

In the financial market there are K + 1 primary traded securities. These primary securities do
not pay dividends. The price processes of these securities are denoted1 by V = {Vt, 0 ≤ t ≤ T},
where Vt =

(
V 0

t , V 1
t , . . . , V K

t

)′. We model these processes with strictly positive semimartingales

1In the usual Harrison & Pliska (1981) framework, the primary securities are stock, however under the structural
model the primary securities are the firm’s total assets.

6
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(see Protter (2005) for the mathematical definition of a semimartingale stochastic process). Semi-
martingales are conventionally used to model price processes as they are the most general stochastic
process for which a stochastic integral can be reasonably defined. It can be shown (see Delbaen &
Schachermayer (1998), Theorem 7.2) if the price processes are modelled by semimartingales and
the model admits equivalent martingale measures, then our model is arbitrage-free2. The security
indexed by 0 is the bank account process, and its price process evolves according to

dV 0
t = rtV

0
t dt, (2.1)

where V 0
0 = 1 and rt is the instantaneous risk-free short rate at time t. The solution of (2.1) is

V 0
t = exp

(∫ t

0

rs ds

)
.

Let B(0, t) := V 0
t denote the bank account and if s ≤ t then B(s, t) = B(0, t)/B(0, s).

In addition to the primary securities, we have contingent claims3 in the financial market. Let us
denote the price process of the contingent claim by ξt and denote the cash flow process4 generated
from this contingent claim by Ut. The value of the contingent claim is dependent on the underlying
primary securities. The concept of a replicating portfolio is used to price and hedge contingent
claims. Suppose we create a trading strategy, with an initial inflow of cash and thereafter no
additional injection of cash into the strategy, that can match all of the cashflows of the contingent
claim for all ω ∈ Ω. By ensuring that the financial market is arbitrage-free, the contingent claim
and the replicating portfolio have equal values at inception.

Definition 2.2.1. A trading strategy is a (K + 1)−dimensional process ψ = {ψt, 0 ≤ t ≤ T},
where ψt =

(
ψ0

t , ψ1
t , . . . , ψK

t

)
and ψt is locally bounded and predictable.

The k-th component ψk
t of trading strategy ψt at time t, represents the amount of the k-th

primary security held at time t. The financial interpretation of the predictability condition on ψt,
is that an investor knows immediately before time t the number of units held in each security, and
rebalances his portfolio after observing the prices of the securities at time t. The locally bounded
condition is a technical stochastic integrability condition.

Associated with a trading strategy ψ is the value process ϑ(ψ) = {ϑt(ψ), 0 ≤ t ≤ T}, defined
by

ϑt(ψ) = ψt . Vt =
K∑

k=0

ψk
t V k

t ,

and the gains process G(ψ) = {Gt(ψ), 0 ≤ t ≤ T}, defined by

Gt(ψ) =
∫ t

0

ψt . dVt =
K∑

k=0

∫ t

0

ψk
t dV k

t .

The value process ϑ(ψ) represents the market value of a portfolio following trading strategy ψ, and
the gains process G(ψ) represents the cumulative capital gains when applying trading strategy ψ.
A trading strategy ψ is termed self-financing if its value process ϑ(ψ) changes only due to changes
in the values of the primary securities (i.e. a trading strategy that requires no additional financing
after the portfolio has been set up).

Definition 2.2.2. A trading strategy ψ is termed self-financing if the associated value process
satisfies

ϑt(ψ) = ϑ0(ψ) + Gt(ψ). (2.2)

The above relation (2.2) holds when the values of the primary securities are expressed in terms
of a numèraire5 Nt. A popular choice for a numèraire is the bank account process6 B(0, t). Let
us denote the numèraire based value of the primary securities by V̂t = Vt/Nt, and the numèraire
based value process, associated with trading strategy ψ, by ϑ̂t(ψ) = ψt . (Vt/Nt).

2The terms equivalent martingale measure and arbitrage-free will be explained later in the chapter.
3Contingent claims are financial securities whose prices depend on the values of other assets.
4For a European stock option the cash flow process will be a single payment at maturity if the option matures

in-the-money. However, for a swap contract (e.g. an interest rate swap) the cash flow process will have many
periodic payments till expiration of the contract.

5A numèraire is any positive non-dividend paying security.
6It will soon be seen why we choose the bank account process for our numèraire.



2.2. Arbitrage Pricing Theory 8

Proposition 2.2.1. A trading strategy ψ is self-financing if and only if

ϑ̂t(ψ) = ϑ0(ψ)/N0 +
∫ t

0

ψt .dV̂t.

Proof. See Geman et al. (1995) [§2, Prop. 1, p. 445-446].

Lets reiterate our contingent claim pricing problem in terms of our introduced notation. To
determine ξt, the price of a contingent claim at time t, we need to create a self-financing trading
strategy7 ψ such that the value process of our strategy replicates all future cash flows generated
by the contingent claim8. If we can find such a ψ, then by no-arbitrage arguments, ξt = ϑt(ψ).

2.2.2 Equivalent Martingale Measure

At the center of the arbitrage-free pricing concept is the relationship between arbitrage-free market
models and the existence of equivalent martingale measures (EMM).

Definition 2.2.3. A probability measureQ is absolutely continuous with respect to another measure
P (denoted Q ¿ P) if for all A ∈ F where P(A) = 0 we also have Q(A) = 0. If Q ¿ P and
P¿ Q then the two measures are equivalent (denoted by Q ∼ P).

Let us fix P as the real world measure.

Definition 2.2.4. A probability measure QN ∼ P is an equivalent martingale measure with respect
to a chosen numèraire Nt if all the numèraire based price processes of the primary assets in the
financial market satisfy9

Vt

Nt
= EQ

N

(
VT

NT

∣∣∣∣Ft

)
,

for all 0 ≤ t ≤ T ; i.e. all the numèraire based asset price processes V̂t are Ft-martingales under
measure QN .

Definition 2.2.5. There exists an arbitrage opportunity in the financial market if there exists a
self-financing trading strategy ψ such that the value process satisfies the following set of conditions:

ϑt(ψ) = 0, P(ϑt(ψ) ≥ 0) = 1, P(ϑt(ψ) > 0) > 0, for some t > 0

Before we link the existence of an equivalent martingale measure to an arbitrage-free market, we
need to place restrictions on the choice of self-financing strategies. These restrictions will remove
doubling and suicide strategies which are able to generate arbitrage opportunities.

Definition 2.2.6. Given our financial market admits an equivalent martingale measure QN , a
self-financing trading strategy ψ will be defined as being QN -admissable if its associated numèraire
based portfolio price process ϑ̂t(ψ) ≥ 0∀t ∈ [0, T ] and has the Ft-martingale property under QN ;
i.e.

EQ
N
(
ϑ̂T (ψ)

∣∣Ft

)
= ϑ̂t(ψ).

Note that a number of different definitions of admissibility appear in the literature, we will
use the above definition of admissibility. To exclude doubling and suicide strategies we restrict
self-financing strategies to be QN -admissable.

The connection between an arbitrage-free market and the existence of a martingale measure
is known as the Fundamental Theorem of Asset Pricing. This theorem states that for a financial
market with primary securities V , the existence of an equivalent martingale measure is essentially
equivalent to an arbitrage-free market (no arbitrage opportunities exist). Delbaen & Schachermayer
(1998) prove, for certain conditions on the numèraire based asset processes V̂ , an absence of
arbitrage implies the existence of an equivalent martingale measure. We examine the reverse
implication of the existence of an equivalent martingale measure QN implying the absence of
arbitrage opportunities.

7This replication argument does not hold for all self-financing strategies: we must exclude suicide strategies and
doubling strategies. Self-financing strategies must be admissable, see Harrison & Pliska (1981) for more details.

8The replicating portfolio ϑt represents the value of all the future cash flow at time t. By investing in this
replication portfolio it will generate all future cashflows Us, t < s ≤ T almost surely.

9The expression EQ
N
(.) represents the expectation under the measure QN .
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Theorem 2.2.1. The existence of an equivalent martingale measure QN is sufficient to ensure
that the financial model is arbitrage free

Proof. We prove the theorem by contradiction. Let an QN -admissable self-financing strategy ψ
give rise to an arbitrage opportunity. Assuming without loss of generality that

ϑ0(ψ) = 0 ⇒ ϑ̂0(ψ) = 0, (2.3)

then from Definition 2.2.5 P(ϑT (ψ) ≥ 0) = 1 and P(ϑT (ψ) > 0) > 0, which in turn implies that
P(ϑ̂T (ψ) ≥ 0) = 1 and P(ϑ̂T (ψ) > 0) > 0. Since QN ∼ P, we will also have QN (ϑ̂T (ψ) > 0) > 0
and QN (ϑ̂T (ψ) ≥ 0) = 1, which implies that

EQ
N
(
ϑ̂T (ψ)

)
> 0. (2.4)

In contrast note that because ψ, is a QN -admissable strategy, its associated value process will have
the martingale property under QN ; i.e.

EQ
N
(
ϑ̂T (ψ)

)
= ϑ̂0(ψ). (2.5)

From (2.3), this implies that
EQ

N
(
ϑ̂T (ψ)

)
= 0. (2.6)

We therefore have a contradiction between the existence of an arbitrage opportunity which implies
that (2.4) is true and the existence of an equivalent martingale measure QN that implies that (2.5)
is true.

Formation of an Equivalent Martingale Measure

In this section we present the Radon-Nikodým derivative which characterizes an equivalent mar-
tingale measure. When two measures are equivalent, it is possible to express the first in terms of
the second through the Radon-Nikodým derivative.

Definition 2.2.7. A martingale ρt on (Ω, FT ,F,P) which has the following properties:

Q(A) =
∫

A

ρt(ω) dP(ω), A ∈ Ft,

and
EP(ρT ) = 1.

is called the Radon-Nikodým derivative10 of Q with respect to P restricted to Ft. The Radon-
Nikodým derivative can be written in a more concise form as

dQ
dP

∣∣∣∣
Ft

= ρt.

Also dQ
dP refers to dQ

dP

∣∣∣∣
FT

. The Radon-Nikodým derivative is often used to find the expected

value of a random variable X, with respected to a equivalent measure. It can be easily seen that
the following holds:

EQ(X) =
∫

Ω

X(ω) dQ(ω) =
∫

Ω

X(ω)
dQ
dP

dP(ω) = EP
(

X
dQ
dP

)
.

Definition 2.2.8. The Doléans-Dade exponential E (D) is the unique solution of the stochastic
differential equation

dE (D)t = E (D)t− dDt, E (D)0 = 1. (2.7)

The explicit solution to (2.7) is given by

E (D)t = exp
(

Dt − 1
2
[D,D]ct

) ∏

0≤u≤t

(1 + ∆Du)e−∆Du , (2.8)

10Sometimes ρt is called the Radon-Nikodým density process.
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where Dt− is the left continuous version of Dt, ∆Dt = Dt −Dt− and [D, D]c is the path-by-path
continuous part of the quadratic variation process11 [D, D]t

[D, D]ct = [D, D]t −
∑

0≤u≤t

(∆Du)2.

Theorem 2.2.2. Consider Q ∼ P and the Radon-Nikodým derivative process ρt. Suppose that
there exists a P-local martingale D with D0 = D0− = 0 satisfying

∆Dt > −1, 0 ≤ t ≤ T (2.9)

EP[E (D)t] = 1. (2.10)

Then there exists a one-to-one correspondence between ρ and D, given by

ρt = E (D)t, 0 ≤ t ≤ T

Proof. See Musiela & Rutkowski (1997) [§10.1.4, p. 245-246].

From Theorem 2.2.2 it can be seen that the Radon-Nikodým derivative process is the Doléans-
Dade exponential of a local martingale, when conditions (2.9) and (2.10) are satisfied.

The next theorem, will provide us with the semi-martingale decomposition under an equiva-
lent probability measure Q, for a semi-martingale that was initially defined in probability space
(Ω, FT ,F,P). It will also provide us with an equation which can be used to find the explicit form
of the Radon-Nikodým derivative which characterizes an equivalent martingale measure.

Theorem 2.2.3. Girsanov’s Theorem. Let X be a continuous semi-martingale under proba-
bility space (Ω,FT ,F,P) with decomposition

Xt = X0 + Mt + At, 0 ≤ t ≤ T

where M is a continuous local martingale and A is a continuous finite variation process. Let Q ∼ P
and let the Radon-Nikodým derivative dQ

dP = E (D)T be defined by the Doléans-Dade exponential
of a local martingale D, satisfying conditions from Theorem 2.2.2. Then X is a continuous semi-
martingale under Q with decomposition

Xt = X0 + Lt + Ct, 0 ≤ t ≤ T, (2.11)

where L is a Q-local martingale12

Lt = Mt − 〈M, D〉t, 0 ≤ t ≤ T,

and C is a Q finite variation process

Ct = At + 〈M, D〉t, 0 ≤ t ≤ T.

In particular, X is a local martingale under Q if and only if

At + 〈M, D〉t = 0, 0 ≤ t ≤ T. (2.12)

Proof. See Protter (2005) [Thm. 39, p. 135-136].

Relating the above theory to our financial model, Xt represents a single numèraire based price
processes V̂t. From equation (2.12) we can solve for D, after one has specified a stochastic process for
the evolution of the primary asset price process Vt. With the explicit form of D we can determine the
Radon-Nikodým derivative dQN

dP from Theorem 2.2.3, which characterizes an equivalent martingale
measure for our financial model. From equation (2.11) we can determine the form of the numèraire
based price processes under measure QN . For an application of the Girsanov’s Theorem under a
Black & Scholes framework, refer to Šelić (2006). See Øksendal & Sulem (2005) for examples of
Girsanov’s Theorem for different specifications of Xt.

11See Protter (2005) for the definition of a quadratic variation process.
12The expression 〈X, Y 〉 denotes the conditional quadratic covariation of processes X and Y . See Protter (2005)

for the definition of a conditional quadratic covariation process.



2.2. Arbitrage Pricing Theory 11

2.2.3 Arbitrage-Free Pricing of Contingent Claims

The purpose of this section is to calculate an arbitrage-free price at time t, of a contingent claim ξ,
which has a maturity at T and generates stochastic cashflow according to the process Ut, 0 ≤ t ≤ T .
To facilitate the pricing technique we accumulate all future cashflows to time T . Let

Yt, T :=
∫ T

t

B(s, T ) dUs.

The above introduced term Yt, T represents the value at maturity T of all future cash flows, after
time t, generated by contingent claim ξ. Note Yt, T is a stochastic variable, at time t.

Definition 2.2.9. A contingent claim ξ initiated at t = 0, which generates cashflows Us, 0 ≤ s ≤ T
and matures at T , is defined as attainable if there exists a QN -admissable self-financing strategy
ψ that replicates the cashflow Yt, T at maturity T , i.e.

ϑT (ψ) = Yt, T .

The following proposition, proved by Harrison & Pliska (1981), provides the mathematical
characterization of the arbitrage-free price associated with any attainable contingent claim.

Proposition 2.2.2. Assume there exists an equivalent martingale measure QN and let ξ be an
attainable contingent claim with cash flow process Ut. Then, an arbitrage-free price process {ξt, 0 ≤
t ≤ T} at time t, for the contingent claim ξ is given by the following martingale based pricing
formula

ξt

Nt
= EQ

N

(
Yt, T

NT

∣∣∣∣Ft

)

Proof.

ξt = ϑt(ψ)

= Ntϑ̂t(ψ)

= NtEQ
N

(
ϑ̂T (ψ)

∣∣∣∣Ft

)

⇒ ξt

Nt
= EQ

N

(
Yt, T

NT

∣∣∣∣Ft

)

The uniqueness of the arbitrage-free price (2.13) is determined by the uniqueness of the equiv-
alent martingale measure.

Definition 2.2.10. A financial market is complete if and only if every contingent claim is attain-
able.

Harrison & Pliska (1983) proved the following fundamental result linking market completeness
and a unique arbitrage-free price.

Theorem 2.2.4. A financial market model is complete if and only if QN the equivalent martingale
measure associated with numèraire N is unique.

Proof. Harrison & Pliska (1983).

We will often use the bank account process B(0, t) as the numèraire, since this replaces the
problem of estimating the instantaneous rate of return of the primary traded securities13 with
estimating the riskless rate which is observable in the market. When we use the bank account
process B(0, t)) as the numèraire, we will denote the corresponding equivalent martingale measure
by Q := QB(0, t). Throughout the dissertation we will use this equivalent martingale measure for
pricing. This measure Q is named the risk-neutral measure.

13The rate of return on the traded securities differs for each investor’s risk preference depends (see Rosenberg &
Engle (2002)).
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2.3 Financial Securities Dependent on the Default Event

The following section provides a general credit risk model, which can be used to price credit risk
sensitive instruments. This general model will form a basis for both the structural and reduced-form
credit risk models. The following concepts are adapted from Bielecki & Rutkowski (2002).

2.3.1 General Credit Risk Model

We fix a finite horizon date T > 0. The financial market is modelled by a filtered probability
space (Ω, GT ,G,P), P ∈ P, where G is a right continuous filtration, G = {Gt : 0 ≤ t ≤ T}. The
financial model consists of K + 1 primary traded securities, denoted by V = {Vt, 0 ≤ t ≤ T},
where Vt =

(
V 0

t , V 1
t , . . . , V K

t

)′. Let the security V 0
t ≡ B(0, t) be the bank account process. The

bank account process evolves according to (2.1).
In addition to the primary securities, we have a defaultable claim in the financial market14. Let

us denote the price process of the defaultable contingent claim by ξ̃t. The defaultable contingent
claim has a maturity of tn ≤ T . Let us denote the cash flow process generated from this defaultable
claim by Ũt, where t ∈ [0, tn]. Suppose that the filtration G = {Gt : 0 ≤ t ≤ T} is sufficiently rich
to support the following objects:

• the primary traded securities V ,

• the instantaneous risk-free interest rate rt,

• the default time τ∗,

• the promised payment Xtn of contingent claim ξ̃. The promised payment Xtn is to be paid
at time tn ≤ T , if the default event has not occurred, i.e. τ∗ > tn,

• the promised dividend process It of contingent claim ξ̃, i.e. the stream of promised payments
that occur until default or until maturity.

• the recovery claim X̃tn , which represent the recovery payoff of contingent claim ξ̃ paid at
time tn if τ∗ ≤ tn.

• the recovery process Z̃t, which specifies the recovery payment of contingent claim ξ̃ paid at
the time of default τ , if τ∗ ≤ tn.

The cash flow process is defined by the quintuple Ũ =
(
Xtn , I, X̃tn , Z̃, τ∗

)
. We specify the

different constituents of Ũt, since the payments have different recovery payoff schemes. In case of
a defaultable coupon bond, it is often postulated that in case of default the future coupons, are
lost (zero recovery scheme). However a strictly positive fraction of the bond’s face value, Xtn , is
usually received by the bondholder.

There exists a filtration F = {Ft : 0 ≤ t ≤ T} and F ⊆ G. Another filtration is defined to
differentiate between the two major credit risk models: structural models and reduced-form models.
We postulate that the processes Vt, rt, It and Z̃t are progressively measurable with respect to the
filtration F, and that Xtn and X̃tn are Ftn -measurable. We assume without mentioning that all
random objects introduced above satisfy suitable integrability conditions needed to find the explicit
solution to Equation (2.13), the price of the defaultable contingent claim.

Definition 2.3.1. A random time τ is a F-stopping time if and only if

(τ ≤ t) ∈ Ft.

In the general credit risk model, default time τ∗ is a F-stopping time. The distinguishing
factor between the structural model and the reduced-form model is the approach to modelling the
default time. In general, within the structural framework, τ∗ is a F-stopping time and within the
reduced-form framework τ∗ is a G-stopping time. We will later discuss how τ∗ is modelled in these
two different credit risk frameworks.

The payment after default is known as the recovery payment. It is often represented as a
percentage of the promised payment Xtn , which is known as the recovery rate R. If no default

14For notational simplicity we consider one defaultable claim. The framework can be extended to more than one
defaultable claim.
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occurs before the end of the maturity of the defaultable contingent claim (τ∗ > tn), all the promised
payments Xtn and It, ∀t ∈ [0, tn] will be made at the respective payment dates. If default occurs
before maturity tn, depending on the recovery payoff scheme adopted, either the amount Zτ∗

is paid at default time τ∗, or the amount X̃tn is paid at maturity tn. In a general setting we
will consider both recovery schemes, and the cashflow will be described by the quintuple Ũ =(
Xtn

, I, X̃tn
, Z̃, τ∗

)
. In practical situations X̃tn

= 0 or Z̃ = 0 depending if recovery is at default
or at maturity, respectively.

2.3.2 Arbitrage-Free Valuation Formula

Suppose the market is arbitrage-free, in the sense that there exists an equivalent martingale mea-
sure. Let the bank account process be our choice of numèraire: Nt = B(0, t). Let’s introduce the
hazard process Ht := 1{τ∗≤t}, which equals one if default occurs before or at time t, and equals
zero if default occurs after time t. From the introduced constituents of the cashflow process of the
defaultable contingent claim ξ, we can mathematically define Ũt.

Definition 2.3.2. The cashflow process Ũt of defaultable contingent claim ξ̃ which matures at time
tn, equals

Ũt = 1{t≥tn}
(
Xtn1{τ∗>tn} + X̃tn1{τ∗≤tn}

)
+

∫ t

0

(1−Hs) dIs +
∫ t

0

Z̃s dHs, for0 ≤ t ≤ tn

If default occurs at some time t, the promised dividend payment at time t, It − It− , is not
passed on to the holder of the contingent claim, thus

∫ t

0

(1−Hs) dIs =
∫ t

0

1{τ∗>t} dIs = Iτ∗−1{τ∗≤t} + It1{τ∗>t}.

Furthermore, we have ∫ t

0

Z̃s dHs = Z̃τ∗∧t1{τ∗≤t} = Z̃τ∗1{τ∗≤t},

where τ∗ ∧ t = min (τ∗, t).
Let Ỹt, tn represent all the accumulated cashflows of the defaultable contingent claim ξ̃ after

time t, to its maturity tn

Ỹt, tn :=
∫ tn

t

B(s, tn) dŨs

= Xtn1{τ∗>tn} + X̃tn1{τ∗≤tn} + B(τ∗, tn)Iτ∗−1{t≤τ∗≤tn}

+ Itn1{τ∗>tn} + B(τ∗, tn)Z̃τ∗1{τ∗≤tn}.

The price process of the defaultable contingent claim ξ̃t, represents the time-t value of all future
cash flows after time t, associated with the defaultable contingent claim. Thus the value of ξ̃ at its
maturity is 0, since there are no more future cashflows. Using our arbitrage-free pricing theory we
are able to price the defaultable contingent claim at time t.

Definition 2.3.3. The price process of the defaultable contingent claim ξ̃, which settles at time
tn, is given by

ξ̃t = EQ
(

Ỹt, tn

B(t, tn)

∣∣∣∣Gt

)
∀ t ∈ [0, tn]. (2.13)

Remember that Q represents the risk-neutral measure. We will often refer to the risk-neutral
default probability which refers to the probability of default occuring before some maturity T , under
measure Q, i.e. Q(τ∗ ≤ T ). The price process for the defaultable contingent claim in the structural
and reduced-form model differs only by the filtration, which the expectation is conditioned on.

2.3.3 Reduced-Form Model

In the reduced-form framework, default is modelled as an arbitrary jump-process that jumps from a
non-default state to a default state. Thus the hazard process H is determined by this arbitrary de-
fault jump-process. Let H be the filtration generated by the process H i.e., Ht = σ (Hs : s ≤ t) =
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σ ({τ∗ ≤ s}, : s ≤ t). Under the reduced form-framework the enlarged filtration includes market
observable information F and unobservable default related information H, i.e. G = H

∨
F. Thus

the default time τ∗ is not measurable with respect to market observable information F, i.e. τ∗

is not a stopping-time with respect to the filtration F. A reduced-form model does not give any
economic fundamental reason for the arrival of default. A poisson process (jump-process), with
intensity parameter λt is usually used to model default15. The intensity parameter can either be
deterministic or stochastic. Mathematically, we can define the default time in terms of the intensity
parameter by

τ∗ = inf{t ≥ 0 : H(λt, t) ≥ 1}.
Encoded in the market prices of defaultable instruments is the market’s assessment of the

default risk of the obligor. In the reduced-form framework we estimate the intensity parameter in
the jump-process by calibrating the market prices of standard credit instruments (eg. corporate
bonds) to the theoretical prices calculated from the model. Once we have estimated the jump-
process parameters, we can price exotic credit instruments (eg. CDS). See Bielecki & Rutkowski
(2002) and Schönbucher (2003) for more details on the different specifications of the reduced-form
model and for technical details about attainability and hedging of defaultable contingent claims
under the reduced-form framework.

2.3.4 Structural Model

In the structural model framework, default is modelled as the firm’s asset level reaching a critical
default threshold b, which represents the value of the firms liabilities. The primary securities V
of the financial market model will represent the asset value of different firms. Mathematically, we
can define the default time as

τ∗ = inf{t ≥ 0 : Vt ≤ bt}.
The default threshold is assumed to be F-measurable, and the default time τ∗ is a F-stopping
time. Thus with observable16 market information F we can determine if a company has defaulted.

Under the structural model, the value of all securities (shares and bonds) issued by a firm
depends on the value of the firm’s assets V . This is the reason why we focus our attention on
structural models, since it provides us with a link between equity and debt instruments. The
structural model provides economic fundamental reasoning to model default and a more ambitious
aim of providing a link between equity and credit. See Chapter 4 for a more detailed review on
structural models.

2.4 Discussion

In this chapter we have introduced the topic of arbitrage-free pricing for non-defaultable contingent
claims. We introduced a general credit risk model, upon which we utilised arbitrage-free pricing
theory, to price defaultable contingent claims. From the general credit risk model, we have shown
how to distinguish between the two major credit risk models: structural models and reduced-form
models. For a more rigorous technical outlook on general arbitrage-free pricing theory, the interest
reader is referred to Musiela & Rutkowski (1997) and Protter (2005), and for a more specialized
scope on the arbitrage-free pricing theory for defaultable claims see Bielecki & Rutkowski (2002).

15Often the reduced-form models are termed intensity-based models.
16There is an issue of observability, since the asset value of a firm is not a publicly traded security. If the primary

securities V are not observable then we can not replicate contingent claims on these primary securities. Arbitrage-
free pricing theory hinges on the fact that we are able to replicate the value of the contingent claims. However,
Ericsson & Reneby (1999) argue that if just one of the firm’s issued securities is publicly traded then it is possible to
replicate the value of the firm’s asset value, with that publicly traded security and a non-defaultable bond. This is
sufficient to replicate the value contingent claims on the firm’s asset value. Many academics just assume the firm’s
asset value is publicly traded.



Chapter 3

Credit Default Swaps

3.1 Introduction

In this chapter we define exactly the term credit risk, briefly discuss credit ratings, and introduce
credit derivatives, particularly credit default swaps and how credit default swaps operate in the
market. We will explain CDS replicating strategies, where the replication instruments are credit
securities. Besides being a good exercise to become familiar with the common financial instruments
and their payoff peculiarities, the replicating strategies enable us to understand better the link
between the CDS market and the underlying cash (bond) market. The bond based pricing method
(Hull & White (2000)) will be described. It is considered to be the market standard to value a
CDS. Finally, a generic arbitrage-free pricing formula for a CDS will be constructed. The following
description of credit risk and credit default swaps are derived from Schönbucher (2003).

3.2 Credit Risk

The traditional definition of credit risk is the risk that an obligor does not honour his payment
obligations. More generally, credit risk encompasses any kind of credit-linked events, such as:
changes in the credit quality (including downgrades or upgrades in credit ratings), variations of
credit spreads1, and the default event. Credit risk is intrinsically linked to the payment obligations
of an obligor. The obligor is contractually bound to honour all his obligations as long as he is able
to. If not, a workout procedure is entered, the obligor loses control of his assets and an independent
agent attempts to pay off the creditors using the obligor’s assets. The workout procedure involves
significant losses to the obligor. These losses stem from the costs of employing the independent
agent and from the decrease in the firm’s business activity, due to the degradation of the firm’s
credibility. These losses provide an incentive for the obligor to ensure his solvency, and he only
defaults if he really cannot pay his obligations. Thus default almost invariably entails a loss to the
creditors.

The major components of credit risk (according to Schönbucher (2003)) are arrival risk, timing
risk and recovery risk.

• Arrival risk refers to the uncertainty whether a default will occur within a given time horizon.
The measure of arrival risk is the probability of default. The probability of default describes
the distribution of the indicator function 1{τ∗<T} (default before the time horizon). Where
τ∗ is the default time and T is the specified time horizon.

• Timing risk refers to the uncertainty about the precise time of default. The underlying
unknown quantity of timing risk is the time of default τ∗. Knowledge about timing risk
includes knowledge about arrival risk for all T . Timing risk is described by the probability
distribution function (pdf) of the random variable τ∗.

• Recovery risk refers to the uncertainty of the losses if a default has happened. In recovery
risk the uncertain quantity is the payoff that a creditor receives after a default. Market

1A credit spread measures the excess in return on a defaultable asset over an equivalent non-defaultable asset.

15
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convention is to express this payoff as a proportion of the notional value of the claim, this
proportion is known as the recovery rate R. Recovery risk is described by the pdf of the
recovery rate R. The pdf of R is a conditional distribution, conditional upon default.

3.3 Credit Ratings

In corporate finance, the credit rating assesses the credit worthiness of a corporation’s debt issues.
The credit rating is a financial indicator to potential investors of debt securities such as corporate
bonds. Credit ratings are assigned by credit rating agencies and have letter designations to denote
the credit rating. There are three main credit rating agencies Standard & Poor’s, Fitch, and
Moody’s. Moody’s assigns bond credit ratings of Aaa, Aa, A, Baa, Ba, B, Caa, Ca, C . Standard
& Poor’s and Fitch assign bond credit ratings of AAA, AA, A, BBB, BB, B, CCC, CC, C, D.
These ratings are from good to poor credit worthiness. Bonds rated BBB (or Baa) and higher are
called investment grade bonds. Bonds rated lower than investment grade are colloquially referred
to as junk bonds.

3.4 Credit Derivatives

A credit derivative is an over-the-counter (OTC) derivative security whose value depends on the
underlying firm’s (or firms’) creditworthiness. Credit derivatives are categorized into two classes,
the first class consists of credit derivatives that are linked exclusively to the default event. This class
encompasses credit default swaps, default put options and general credit insurance products. The
second class of credit derivatives are instruments whose payoff is primarily determined by changes
in the credit quality of the underlying firm, instead of a default event. This class encompasses
credit spread derivatives and credit ratings based derivatives.

The common features amongst credit derivatives is their ability to transfer credit risk from
one counterparty to another, and their payoff is materially affected by credit risk. The value of a
credit derivative fluctuates according to the market’s perception of the underlying credit risk. The
primary objective of this research is to provide a theoretical relationship between these fluctuations
in credit derivative values (resulting from changes in credit risk) and equity and equity derivative
prices. Specifically, credit default swaps will be examined.

3.5 Credit Default Swap

A credit default swap is a contract between two parties, the protection seller and the protection
buyer. The protection seller agrees to pay the protection buyer a default payment if a credit event
occurs to a third-party reference credit. A reference credit/entity is an entity whose defaults trigger
the credit event. The credit event is a precisely agreed default event, which is defined with respect
to the reference credit and reference credit assets. The 2003 ISDA Credit Derivatives Definitions
include the following as possible definitions for a credit event2:

• bankruptcy, filing for protection

• failure to pay

• obligation default

• obligation acceleration

• repudiation/moratorium

• restructuring

To trigger the last four items of the above list, a certain material threshold must be exceeded and
a grace period must have lapsed, this is to ensure that only genuine defaults trigger the default
payment of the CDS, and not technical errors or minor legal disagreements.

The default payment of a CDS is constructed to mirror the losses incurred by the reference
entity’s creditors. Default payments can be settled by either of the following two methods:

2See http://www.credit-deriv.com/isdadefinitions.htm (24/08/2006) for a description of each default event.
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• Physical delivery (by the protection buyer) of one or several of the reference credit assets
against repayment at par3 (by the protection seller).

• A cash settlement equivalent to par minus post-default market value of the reference credit
assets.

Reference assets are a set of assets issued by the reference credit. Reference assets have two
possible purposes in a CDS contract:

• The determination of the credit event. For example, missed payments on the reference assets.

• The calculation of the value of the default payment :

– In the case where physical settlement is agreed on, reference assets are the set of deliv-
erable assets that are applicable for the default payment.

– In the case where cash settlement is agreed on, reference assets determine a basis for
the price determination mechanism for the default payment.

Any reference credit asset can be chosen, and the purpose of the reference credit asset can also
be specified. Common examples of assets that are used for reference assets are loans and liquidly
traded bonds. Depending on availability, traded credit assets are commonly used to determine the
default payment, since price discovery is more transparent than for non-traded credit assets. Loans
are usually earmarked for determining the credit event. Different sets of reference assets are used
for different purposes. By adjusting the set of reference credit assets that determine the credit
event, the counterparties can agree to focus on the credit risk of an individual credit asset issued
by the reference credit; or they can widen the coverage to any of the reference entity’s obligations,
thus capturing the reference entity’s credit risk completely. Usually, the set of deliverable reference
credit assets is less comprehensive than the set of reference credit assets that determine the credit
event. As liquidity in defaulted assets can be very low, the set of deliverable reference assets usually
includes more than one bond issue, of the same seniority4, by the reference credit. This delivery
option enhances the CDS value for the protection buyer.

For this default protection, the protection buyer pays the protection seller a fixed fee (premium)
at regular time intervals (quarterly or semi-annually) until default or maturity, whichever comes
first. This premium is calculated by multiplying the CDS spread rate by the notional value of the
CDS, adjusted for the day count convention. In the market the CDS spread rate is quoted in basis
points5. The notional value is equal to the sum of the par values of the reference assets that are
used for the default payment. For example, if the CDS notional value is $10 000 000, and the set of
deliverable assets is bonds with $1 000 000 par value, the default payment is settled by delivering
10 of these bonds. If the default payment is settled by a cash settlement then the post-default
market value is calculated using 10 of these bonds. The CDS spread is calculated so the value of
the newly minted CDS contract is zero. This spread is usually called the fair or par CDS spread.
The standard CDS market day count convention is actual/360. The first fee is usually payable
at the end of the first time interval, and if a default occurs between two fee payment dates, the
protection buyer pays at the time of default the fraction of the next fee payment that has accrued
until the time of default.

With regard to cash settlement, since liquidity and manipulation of distressed assets is a real
concern a robust procedure is needed to calculate the post-default market value of the reference
assets. Therefore in a CDS contract, several dealers are agreed upon to provide quotes for the
reference assets, and an average is taken after eliminating the highest and lowest quotes. This is
repeated, sometimes several times, in order to eliminate the influence of temporary liquidity holes.
Most CDS are settled by physical delivery, since cash settlement is so complex. Cash settlement
is only chosen when there may not be any physical assets to deliver, for example if the reference
credit may have not issued enough bonds, or the reference assets are not tradeable, such as loans.
A physical delivery settlement is not entirely without problems either. If many investors speculated
on the default of a particular firm by buying a CDS (buying default protection), they would have
to buy the reference assets in the event of a default, in order to sell them to the CDS sellers at their
par value. This demand for the reference assets may push their prices artificially high, corroding
the value of the CDS for the buyer.

3The par value is the principal value of the reference credit asset, also sometimes called the notional value.
4Seniority refers to the order of repayment in the event of bankruptcy. Senior debt must be repaid before

subordinated debt is repaid.
5A basis point is one hundredth of a percentage.
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Let us introduce notation for a CDS. Suppose a CDS contract, with maturity at time tn = T , is
initiated at time t0 = 0, and that the premiums are paid at time points 0 < t1, t2, . . . , tn = T . Let
us denote the notional value of the CDS by N and the par CDS spread is denoted by p̃0, tn

. Note
that the par CDS spread is dependent on the CDS initiation time t0 and the CDS maturity tn.
Sometimes we will denote p̃0, tn

with the shorthand notation p̃, if it is obvious what the initiation
at maturity times are. Mathematically, the CDS premium payments paid by the CDS buyer at
some general time ti, is represented by

Np̃0, tn
(ti − ti−1).

Recall that τ∗ represents the time of default. If default occurs before time ti, the premium payment
made by the CDS buyer at default is expressed as

Np̃0, tn
(τ∗ − ti−1).

Recall that R represents the recovery rate of a bond. Mathematically, we represent the default
payment paid by the CDS seller, as

N(1−R).

Let us denote the value of the CDS contract at some future time tf > t0 by

φ(t0, tf , T ).

By construction the value of a CDS contract at initiation is equal to zero, i.e φ(t0, t0, T ) = 0.
However as the credit risk of the reference credit changes, the CDS contract will posses some value.

3.6 Replication-Based CDS Pricing

The principle of replication-based pricing, is that if two portfolios have equivalent future payoffs
(occurring at the same time), then the current value of both of these portfolios must be equal, else
an arbitrage (risk-free profit) opportunity exists. For a CDS there exist several simple approximate
replication strategies (see Schönbucher (2003)). In this section we will highlight two approximate
CDS replicating strategies. Replicating strategies are important and popular in practice since they
provide estimates and bounds for pricing. They are useful to spot mispricings in the market because
they only rely on payoff comparisons, and the results are robust because they are independent of
any assumed pricing model. This section is based Section 2.7 of Schönbucher (2003).

3.6.1 Replication Instruments

The following two financial instruments will be used in the CDS replicating strategies. Note that
all listed credit instruments below mature at time T and have a principal of 1:

1. Default-free bonds: Default-free6 coupon bonds either have fixed or floating coupons. The
fixed-coupon bond carries a coupon of c. The price of a default-free fixed-coupon bond at
time t < T is denoted by Dc(t, T ). If the last coupon was paid at time ti−1 < T , the
floating-coupon bond carries a coupon of c′ = L(ti−1, ti) at time ti ≤ T . The price of a
default-free floating-coupon bond7 at time t < T is denoted by Dc′(t, T ). The notation
L(ti−1, ti) denotes the LIBOR interest rate for time interval [ti−1, ti]. LIBOR (London
Interbank Offered Rate) is the interest rate offered by banks on deposits from other banks
in Eurocurrency markets. LIBOR represents the interest rate at which banks lend money
amongst each other. Technically it is not a default-free rate, but it is common practice to use
it as a floating8 default free interest rate, since the default risk amongst banks is negligible
compared to companies in other sectors. We will use the LIBOR rate to represent a generic
floating default-free interest rate. We also denote D(t, T ), as the time t value of a default-free
zero-coupon bond. Note that D(t, T ) = EQ

[
B(t, T )−1

]
, where B(t, T ) is the bank account

process.
6Treasury bonds are often regarded as default-free bonds, since their default risk is negligible compared to

corporate bonds. However, treasury bonds can and have defaulted (eg. Russia’s, August 1998, default on its
Ruble-denominated GKO short-term debt obligations.)

7The notation for the price of a fixed and floating coupon bond differs by the superscript, if it is c it is a fixed
coupon and if it is c′ it is a floating coupon bond.

8The interest rate is not necessarily constant.
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2. Defaultable bonds: Defaultable coupon bonds issued by the reference credit could either have
fixed or floating coupons. The fixed-coupon bond carries a coupon of c̃. The price of a
defaultable fixed-coupon bond at time t < T is denoted D̃c̃(t, T ). If the last coupon was
paid at time ti−1 < T , the floating-coupon bond carries a coupon9 of c̃′ = L(ti−1, ti) + ppar

at time ti ≤ T . The price of a defaultable floating-coupon bond at time t < T is denoted by
D̃c̃′(t, T ). We also denote D̃(t, T ), as the time t value of a defaultable zero-coupon bond.

Note that some of these replication instruments might not be available. Most reference credits
only issue fixed-coupon bonds, if they issue any bonds at all. In some cases these bonds will contain
call provisions or an equity convertibility option, which makes them unsuitable as CDS replication
instruments.

3.6.2 Short Positions in Bonds

A trading strategy that yields a positive payoff in the case of a default is critical for the hedging
of credit risk. This can be done by taking a short position in a defaultable bond. In the literature,
a short position is treated as a negative portfolio position without considering the complicated
underlying trading strategies that have to be implemented in reality. We will outline two possible
methods to create a short position in a defaultable bond.

Repo Transaction

Repo (Repurchase) transactions are commonly used for short sales and refinancing of Treasury
(government) bonds and corporate (defaultable) bonds. We will focus on the short sale of a
defaultable bond. For the following explanation we will use a defaultable fixed-coupon bond D̃c̃.
A repo transaction is between two counterparties A and B. Counterparty A owns the defaultable
bond. A repurchase transaction consists of a sales component and a repurchase component:

• Sale: At current time t = 0 A sells the defaultable bond to B for D̃c̃(0, T ).

• Repurchase: Also at time t = 0, A and B enter into a repurchase agreement. Counterparty
A agrees to buy back the defaultable bond from B, at a specified time t1 > 0 for the forward
price K. This agreement is binding on both counterparties.

The forward price is the current (spot) price, adjusted for any accrued coupon payments,
accumulated by the repo rate rrepo:

K = D̃c̃(0, T ) [1 + rrepo]t1

where the repo rate is an annual rate. For B to create a short position on the defaultable bond, B
must further:

• Sell the defaultable bond in the market at t = 0 for the spot price D̃c̃(0, T ).

• Buy back the defaultable bond at t = t1 at the prevailing market price D̃c̃(t1, T ), in order to
deliver the bond back to A in exchange for payment K.

Counterparty B’s profit (or loss) is determined by how much D̃c̃(t1, T ) falls below (or rises above)
the forward price K. A repo transaction is an effective method to speculate on falling bond prices.
From counterparty B’s perspective, the repo transaction has achieved creating a short position in
the defaultable bond. If B is unable to deliver the bond to A, due to financial stresses, A will
remain with the cash he received for the bond. If A is unable to repurchase the bond from B,
due to financial stresses, B will remain with the bond. From counterparty A’s perspective, A has
refinanced his position at the repo rate. The principal determinant of the price to implement this
short position is the repo rate that B must pay A.

Forward Contracts

A short position could also be made by selling the defaultable bond in a forward transaction.
This requires a counterparty that is willing to buy a defaultable bond. A forward contract is an
agreement between two parties to buy or sell an asset for a pre-agreed price, at a specified future
point in time. It is generally easier to find an owner of an defaultable bond that would like to
refinance his position through a repo transaction than creating a new position in the bond.

9The spread above the LIBOR, ppar, will be explained later, for now consider it to be an arbitrary constant.
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3.6.3 CDS Replicating Strategies

Before we demonstrate the CDS replicating strategies, we need to make some simplifying assump-
tions about the default payment of a CDS:

• We consider a defaultable bond issued by the reference credit to be the only deliverable asset
of the CDS.

• We assume that the default payment takes place at the time of the credit event10. The time
delay through grace periods, dealer polls, etc. is ignored.

• We assume that coupon payments of coupon bearing bonds and the CDS premium payments,
occur on the same dates which are denoted by t1, t2, . . . , tn = T. We also abstract from the
bond and CDS market day count conventions.

A CDS is constructed such that the credit risk of a defaultable bond issued by the reference
credit is hedged. Thus a portfolio of a combined position in a defaultable bond and a CDS (written
on the same reference credit that issued the defaultable bond), should trade close to the price of
an equivalent default-free bond. This is the intuition behind the CDS replicating strategy.

Replicating Strategy with Fixed-Coupon Bonds

Consider the two portfolios that are constructed at t = 0 and unwound at t = T or at time of the
default11 τ∗ whichever comes first. Note that the principal values for the bond and the notional
value of the CDS are assumed to be 1 for notational brevity.

Portfolio I

• A long position in one defaultable coupon bond, which pays a coupon of c̃ at increasing dates
0 < t1, t2, . . . , tn = T . The principal is paid at maturity T .

• A long position in one CDS on this defaultable coupon bond. The CDS premium is p̃.

• If the reference entity defaults before T , the portfolio is unwound at time of default, t = τ∗.

Portfolio II

• A long position in one default-free coupon bond with corresponding coupon and maturity
payment dates as the defaultable coupon bond and with a coupon value of c = c̃− p̃.

• If the reference entity defaults before T , the default-free bond is sold at time of default,
t = τ∗.

The concept of Portfolio I is that it can be considered a synthetic default-free bond, because
it is protected from default risk by the CDS. From Table 3.1, it can be seen that in the event of
no default, the survival cash flows (cash flows at times t1, t2, . . . , tn) of Portfolio I and Portfolio
II are equivalent. Assuming the payoffs at time of default (t = τ∗) are also equivalent, the initial
values of Portfolio I and Portfolio II will be the equal. Provided the payoffs at default are the
same, we have

D̃c̃(0, T ) = Dc(0, T ) = B(0, T ) + (c̃− p̃)
n∑

i=1

B(0, ti). (3.1)

From the above equation (3.1), the fair CDS premium p̃ for a newly minted CDS contract can be
solved. To uniquely determine p̃ we need the term structure of default-free interest rates and the
initial price price of the defaultable fixed coupon bond, D̃c(0, T ).

However, the payoffs of Portfolio I and Portfolio II at the time of default are not equivalent.
In the event of default, the payoff of the CDS is equal to notional value less the recovery of the
reference defaultable bond. The value of the reference defaultable bond at default is equal to its
recovery value, thus the value of Portfolio I would be equal to the notional value of the defaultable
bond. However, at the time of default, the value of Portfolio II will depend on the then prevailing
term structure of default-free interest rates. The value of the default-free bond will almost certainly

10This assumption is applied throughout the dissertation.
11We use the term default and credit event interchangeably.
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Portfolio I Portfolio II
Time Defaultable Bond CDS Default-Free Bond

t = 0 −D̃c̃(0, T ) 0 −Dc(0, T )
t = t1, . . . , tn−1 c̃ −p̃ c̃− p̃

t = T 1 + c̃ −p̃ 1 + c̃− p̃

t = τ∗ Recovery 1-Recovery Dc(τ∗, T )

Table 3.1: Payoff of the two portfolios of the fixed-coupon bond replication strategy.

differ from the par (notional) value. At t = τ∗ the difference in value between Portfolio I and
Portfolio II will be 1−Dc(τ∗, T ).

For the two portfolios to have equivalent payoffs at default, Dc(τ∗, T ) must be equal to its
notional value. There are several reasons why Dc(τ∗, T ) will differ from 1. Firstly, the initial value
of the default-free bond may have already been off par, i.e. Dc(0, T ) 6= 1. Secondly, the term
structure of interest rates are dynamic, even if the default-free bond was trading at par initially,
there is no reason to believe it will trade near par at some random future time point, except at
maturity T . Finally, there is the matter of accrued interest. At the coupon dates ti, the price of
the bond will drop by the coupon payment amount c̃− p̃, then it will tend to increase again until
the next coupon payment date. All these reasons make this replication strategy an approximate
not an exact arbitrage relationship. The unknown future value of the default-free coupon bond at
a random future time point, is the reason why this is not an exact arbitrage relationship.

Replication Strategy with Floating-Coupon Bonds

We can eliminate at least two of these sources of default payoff uncertainty. This can be achieved by
replacing the default-free bond from the previous replication strategy with a default-free floating-
rate bond. A default-free floater pays a coupon of L(ti−1, ti) at time ti and pays its principal value
1 at maturity T . Since all the payoffs of a default-free floater can be replicated by investing 1 at the
time of issue and then rolling over this investment at the default-free short-term interest (Libor)
rate, each of the ex-coupon date12, t+i , values of a default-free floating bond, Dc′(t+i , T ), will be
equal to 1. In order to achieve matching payoffs in survival we must have a defaultable bond that
pays a floating coupon. Furthermore, we would like the defaultable bond to trade at par (value
equal to 1) from the outset, to match the initial value of the default-free floater. Defaultable bonds
with this feature are called par floaters. Let D̃c̃′(0, T ) denote the value of a par floater at t = 0,
with a maturity of T and a floating-rate coupon of c̃′i = L(ti−1, ti) + ppar, where the par spread
ppar is chosen such that the value of the par floater is par (equal to 1) at time of issue t = 0.

Portfolio I

• A long position in one defaultable par floater, which pays a coupon of c̃′i = L(ti−1, ti)+ ppar,
at dates 0 < t1, t2, . . . , tn = T . The principal is paid at maturity T .

• A long position in one CDS on this defaultable par floater. The CDS premium is p̃ and the
notional value is 1.

• If the reference entity defaults before T , the portfolio is unwound at the time of default,
t = τ∗.

Portfolio II

• A long position in one default-free floating-coupon bond with corresponding maturity and
payment dates as the defaultable par floater and with a coupon value of c′ = L(ti−1, ti).

• If the reference entity defaults before T , the default-free floating-coupon bond is sold at time
of default, t = τ∗.

12The notation t+i denotes the time immediately after the coupon, due at time ti, has been paid.
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Unlike the previous replication strategy, the initial values of Portfolio I and Portfolio II are
identical. However, at time of default the cash flows differ. This difference will only be the accrued
interest on the default-free floater, if default occurs between coupon payment dates. If the time
of default τ∗ occurs in the interval [ti−1, ti], the value of the default-free par floater including the
accrued interest is

Dc′(τ) = 1 + L(ti−1, ti) (τ∗ − ti−1) .

Portfolio I on the other hand pays out the notional 1 at default. The difference in default payoff is
L(ti−1, ti) (τ∗ − ti−1). Adjustments can be made to the notional value of the CDS to compensate
for this13. The difference in the default payoff is small.

Portfolio I Portfolio II
Time Par Floater CDS Default-Free Bond

t = 0 −1 0 −1
t = t1, . . . , tn L(ti−1, ti) + ppar −p̃ L(ti−1, ti)

t = T 1 + L(ti−1, ti) + ppar −p̃ 1 + L(ti−1, ti)
t = τ∗ Recovery 1-Recovery Dc′(τ∗, T )

Table 3.2: Payoff of the two portfolios of the floating-coupon bond replication strategy.

To summarise: the initial cash flow has been exactly matched, while the cash flow at default
has been approximately matched. The survival payoffs differ by the difference between the credit
default spread p̃ and the par spread ppar. However, these payoffs must coincide, in order to avoid
any arbitrage opportunities14. Thus the par spread must equal the CDS premium

ppar = p̃.

We can rearrange the portfolios of the par floater replication strategy, to replicate a short and
a long position in a CDS. To create a synthetic long position in a CDS, one needs to short sell the
defaultable par floater and buy the default-free floater. To create a synthetic short position in a
CDS, one needs to short sell the default-free floater and buy the defaultable floater. Thus a long
position in the CDS can be roughly hedged by short selling the default-free floater and buying the
defaultable floater.

Problems with the Replicating Strategy

There are several problems with the CDS replicating strategy15. It is difficult to implement a short
position on a defaultable bond, since there may be a shortage of supply of these bonds. Repo rates
change with the supply and demand of corporate bonds, thus the replication strategy is exposed to
changing repo rates. At default a par floater will differ from par, making the replication strategy
an approximation. The only available default-free and defaultable bonds may not have the same
payment structure as the CDS. Finally, it is impossible to apply this method if the reference entity
does not issue any defaultable bonds.

3.7 Bond Price-Based CDS Pricing

From the market prices of defaultable securities, one can extract the market’s assessment of the
issuer’s (issuer of the defaultable securities) default risk. By comparing the prices of an obligor’s
defaultable asset and a similar default-free asset, one can infer measurements (for example prob-
ability of default) of the obligor’s credit risk. Using this comparison method a simple credit risk
model can be constructed, to price many vanilla credit derivatives, without any further modelling
effort. This comparison method is also the basis for reduced form modelling. We will now overview
the Hull & White (2000) comparison method, since it is viewed as the market standard to price
credit default swaps. We will use similar notation as used in Hull & White (2000).

13See Schönbucher (2003) for a rule of thumb for this adjustment.
14We assume the payoff at default is negligibly different.
15We focussed on two CDS replication instruments, defaultable bonds and default-free bonds; there are other CDS

replication instruments that can be used and the interested reader is referred to Schönbucher (2003). However, note
that none of these replicating strategies are exact.
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3.7.1 Bond Price-Based Framework

To price a CDS we need the risk-neutral default probability16 of the reference entity, for different
time intervals. This method infers the risk-neutral default probability from the prices of bonds
issued by the reference entity. If we assume that the only reason a defaultable bond sells for less
than a similar default-free bond is the possibility of default17, it follows that:

Value of Default-Free Bond −Value of Defaultable Bond = Value of Cost of Default.

We can infer the risk-neutral probability of the reference entity defaulting at different future times,
by calculating the value of the cost of defaults on a range of different maturing bonds issued by
the reference entity.

Here is an example given in Hull & White (2000), to clarify how to estimate the risk-neutral
default probability: Suppose that a 5-year zero-coupon default-free bond with a face (notional)
value of 100, and a similar 5-year zero-coupon bond issued by a firm yields 5% and 5.5% respectively
(rates are expressed with continuous compounding). The value of the default-free bond is

100B(0, 5) = 100e−0.05×5 = 77.8801,

and the value of the corporate bond is

100B̃(0, 5) = 100e−0.055×5 = 75.9572.

Thus, the value of the cost of default is the difference between the two

100B(0, 5)− 100B̃(0, 5) = 77.8801− 75.9572 = 1.9229.

Let q(0, 5) denote the risk-neutral probability of default during the 5-year life of the defaultable
bond, i.e. Q(τ∗ ≤ 5). An assumption on the recovery rate must also be made to determine the
risk-neutral default probability. For this example we assume the recovery rate is 0, this means the
holder of the bond receives nothing after default. The value of the loss in the event of a default,
in the risk-neutral world is

EQ
(

100
B(0, 5)

1{τ∗≤5}

)
= 100q(0, 5)e−0.05×5.

By comparing the bond values we have calculated the value of the loss of default to be 1.9229.
Thus it follows that

100q(0, 5)e−0.05×5 = 1.9229,

so the risk-neutral probability of the bond defaulting before maturity is q(0, 5) = 0.0247. In
practice, extracting risk-neutral default probabilities from bond prices is more complicated than
this, because recovery rates are non-zero and random, and most corporate bonds yield coupons.

In their paper Hull and White assume that there exists a set of n fixed coupon bonds that
are issued by the reference entity. It is also assumed that default can only happen on any of the
bond maturity dates, interest rates are deterministic, and recovery rates are known. It is possible
to generalise the analysis to allow defaults to occur on any date, and to allow stochastic interest
and recovery rates. Suppose the maturity of the jth bond is tj with 0 < t1 < t2 < t3 < . . . < tn.
Define:

• D̃c(0, tj): Value of the jth (defaultable) bond at present time.

• Dc(0, tj): Value of the jth default-free bond today, promising the same cash flows as the jth
defaultable bond.

• Fj(0, t): Forward price of the jth default-free bond for a forward contract maturing at time
t, where t < tj .

16Remember that this is the default probability under measure Q.
17However there are studies that have noticed that market credit spreads are influenced by non-default factors,

such as tax differentials, liquidity, and other market risk factors (see Delianedis & Geske (2001)).
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• v(0, t): Present value of 1$ received at time t (present time being t0 = 0).

• Cj(t): Claim made by the holders of the jth defaultable bond if there is a default at time t,
t ≤ tj .

• Rj(t): Recovery rate for holders of the jth defaultable bond in the event of a default at time
t, t ≤ tj .

• αij : Present value of the loss, relative to a default-free bond, from a default on the jth bond
at time ti.

• qi: The risk-neutral default probability at ti.

Hull & White assume the value of the reference asset (bond) just after default is equal to the
recovery rate times the sum of its face value and the accrued interest up to the default time (this
sum is known as the claim amount)

RN [1 + A(τ∗)],

where A(τ∗) is the accrued interest on the reference asset at the time of default τ∗, as a percent
of its face value. Thus the default payoff of the CDS is

N −RN [1 + A(τ∗)] = N [1−R−A(τ∗)].

Since interest rates are deterministic, the no-default value at time t of the jth bond is Fj(0, t).
If there is a default at time τ∗ = t, the bondholder makes a recovery at Rj(t) on a claim Cj(t). It
follows that

αij = v(0, ti)[Fj(0, ti)−Rj(ti)Cj(ti)]

The risk-neutral default probability of the loss αij being incurred is qi. The total present value of
the losses on the jth bond is therefore given by:

Dc(0, tj)− D̃c(0, tj) =
j∑

i=1

qiαij

This equation allows the risk-neutral probabilities of default to be determined inductively:

qj =
Dc(0, tj)− D̃c(0, tj)−

∑j−1
i=1 qiαij

αjj
.

3.7.2 Extensions to Situation where Defaults can happen at any Time

In the event of default by the reference entity, we will assume, for ease of exposition, that all the
bonds have the same seniority18 and the recovery rate is independent of time. We will denote this
constant recovery rate by R. The previous analysis to derive the risk-neutral default probability,
assumed that default can only occur on bond maturity dates. We can extend this analysis to allow
the default event to occur any time. We will refer to q(t) as the risk-neutral default probability
density function. We assume that q(t) is equal to a constant q(ti−1, ti) for ti−1 < t < ti. Thus q(t)
is a step function. The notation q(ti−1, ti) represents the risk-neutral default probability density
function in the time interval [ti−1, ti]. Setting

βij =
∫ ti

ti−1

v(0, t)[Fj(0, t)−RCj(t)] dt,

where βij is the present value of the loss, relative to a default-free bond, from a default on the jth
bond in the time interval [ti−1, ti]. A similar analysis used in the discrete case19, gives:

q(tj−1, tj) =
Dc(0, tj)− D̃c(0, tj)−

∑j−1
i=1 q(ti−1, ti)βij

βjj
.

18If all bonds have the same seniority, they all default at the same time and the recovery rates are the same for
all the bonds.

19See Hull & White (2000) for more details.
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3.7.3 CDS Pricing

We can now consider the valuation of a credit default swap. We assume that default events, risk-
free rates, and recovery rates are mutually independent. The notional principal of the CDS equals
N , and the CDS premiums are paid annually. Define:

• T : Life of the credit default swap.

• q(t): The risk-neutral default probability density function at time t.

• u(t): Present value of payments at the rate of $1 per year on payment dates between time
zero and time t.

• e(t): Present value of an accrual payment at time t equal to t − t∗ where t∗ is the CDS
premium payment date immediately preceding time t (this is needed to value the CDS if a
default occurs between payment dates).

• w: Total payments paid per year, by the CDS buyer.

• p̃0, T : Value of w that causes the CDS to have a value of zero at t = 0.

• π: The risk-neutral probability of no credit event occurring during the life of the swap.

• A(t): Accrued interest on the reference asset at time t as a percent of face value.

The value of π is one minus the risk-neutral probability that a credit event will occur by time T .
It can be calculated from the probability density function q(t):

π = 1−
∫ T

0

q(s) ds.

The CDS buyer’s premium payments last until a credit event (default) occurs or until maturity
of the CDS T , whichever comes first. The risk-neutral expected present value of the CDS buyer’s
payments is ∫ T

0

w[u(s) + e(s)]q(s) ds + πwu(T ). (3.2)

The first term of expression (3.2), represents the expected present value of the premium payments
if a default occurs during the life of the swap. The second term of expression (3.2), represents the
expected present value of the premium payments if a default does not occur during the life of the
swap. Given the assumption of the claim amount, the risk-neutral expected present value of the
default payoff of the CDS is

∫ T

0

[1−R(1 + A(s))]q(s)v(0, s) ds.

The value of the CDS to the buyer is equal to the expected present value of the default payoff
minus the expected payoff of the CDS payments made by the buyer

∫ T

0

[1−R(1 + A(s))]q(s)v(0, s) ds− w

∫ T

0

[u(s) + e(s)]q(s) ds + πwu(T )

The CDS spread p̃0, T is the value of w that makes the above expression equal to zero:

p̃0, T =

∫ T

0
[1−R(1 + A(s))]q(s)v(0, s) ds

∫ T

0
[u(s) + e(s)]q(s) ds + πwu(T )

This CDS spread p̃0, T is the total of the payments per year, as a percent of the notional principal,
for a newly minted CDS contract.
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3.8 Generic CDS Pricing Model

The CDS is initiated at time t > 0. The notional value of the credit default swap is N . The
CDS buyer makes periodic premium payments until default or maturity T . The premium dates
are t1, t2, . . . , tn = T , where t < t1 < t2 < . . . < tn. Provided that a credit event has not occurred
until time ti, the ith premium the CDS buyer pays at time ti is equal to p̃t, T (ti − ti−1)N . This
provides protection for the period [ti−1, ti]. The value p̃t, T is known as the annualised credit
default swap spread. If a credit event occurs before time ti, the CDS buyer does not pay the ith

premium payment or any of the following scheduled premium payments. The payment made by
the CDS buyer at time ti can be written mathematically as

p̃t, T (ti − ti−1)N1{τ∗>ti},

where τ∗ is the default time. An additional accrued premium payment must be paid at time of
default, to pay for the protection from the last premium payment date till time of default. Thus
if default occurs between payment dates [ti−1, ti], then the accrued premium payment paid at τ∗

is equal to p̃t, T (τ∗ − ti−1)N. The time–t value of the total payment made by the CDS buyer is
therefore given by

Np̃t, TEQ
[

n∑

i=1

1{ti≥t}
(
e−r(ti−t)(ti − ti−1)1{τ∗>ti} + e−r(τ∗−t)(τ∗ − ti−1)1{ti−1<τ∗<ti}

)]
. (3.3)

The default payoff of a credit default swap depends upon the level of the recovery rate of the
reference assets upon default. For this general case we consider the recovery rate to be stochastic.
If a credit event occurs before maturity T , the seller of the CDS makes a payment of N(1−Rτ∗),
where Rτ∗ is the recovery rate at the time of default. The time–t value of the default payoff of the
CDS is

NEQ
[
e−r(τ∗−t)(1−Rτ∗)1{τ∗≤T}

]
. (3.4)

The time–t value of the CDS for the CDS buyer is given by the value of the default payoff (3.4) of
the CDS minus the value of the total payments (3.3) made by the CDS buyer

NEQ
[
e−r(τ∗−t)(1−Rτ∗)1{τ∗≤T}

]
−Np̃t, TEQ

[
n∑

i=1

1{ti≥t}

(
e−r(ti−t)(ti − ti−1)1{τ∗>ti}

+ e−r(τ∗−t)(τ∗ − ti−1)1{ti−1<τ∗<ti}

)] (3.5)

The CDS spread p̃t, T is chosen such that the value of a T–maturity CDS contract at time t, when
it was initiated, is equal to 0. The CDS spread is also referred to as the fair or par spread, since
this premium makes the value of the payments from the CDS buyer and seller equal (fair). Thus
p̃t, T denote the CDS premium that makes the value of a CDS, with maturity T , equal to zero at
time t. We can calculate p̃t, T by equating (3.5) to 0 and solving for p̃t, T :

p̃t, T =
EQ

[
e−r(τ∗−t)(1−Rτ∗)1{τ∗≤T}

]

EQ
[∑n

i=1 1{ti≥t}
(
e−r(ti−t)(ti − ti−1)1{τ∗>ti} + e−r(τ∗−t)(τ∗ − ti−1)1{ti−1<τ∗<ti}

)] .

(3.6)
Let φ(t, tf , T ) denote the time tf–value of a CDS contract, which was issued at t and has a
maturity of T . At time of issue t the CDS spread is chosen such that the value of the CDS contract
is equal to 0. At a future time point tf > t, the credit risk of the reference entity may have
changed. Thus the CDS spread for providing protection from the future time point tf until the
same maturity T , will change if the market’s perception of the reference entity’s credit risk has
also changed. If the spread for time interval [tf , T ] is higher than the spread for the time interval
[t, T ], i.e. p̃t, T < p̃tf , T , then the original contract issued at t, has a positive value for the CDS
buyer and a negative value for the CDS seller, at time tf . This is because the spread that the
CDS buyer is paying for default protection is cheaper than the spread being offered at time tf .
The CDS seller has a negative value since he is receiving a spread lower than the time tf market
spread. The value of CDS contract, with maturity T , at some time tf ≥ t, after it was initially
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issued at time t, is equal to

φ(t, tf , T ) =N
(
p̃tf , T − p̃t, T

)
EQ

[
n∑

i=1

1{ti≥tf}

(
e−r(ti−tf )(ti − ti−1)1{τ∗>ti}

+ e−r(τ∗−tf )(τ∗ − ti−1)1{ti−1<τ∗<ti}

)]
.

(3.7)

We have not specified a model for the default time, so the above general valuation formulae
(3.7) is applicable to both structural and reduced form models.

3.9 Discussion

In this chapter we have defined credit risk, and credit derivatives. In particular we discussed
credit default swaps in detail. We attempted to replicate the cashflows of a CDS with credit
instruments (defaultable and default-free bonds). However, even with simplifying assumptions on
the credit default swaps and the replication instrument’s cashflows, we found that we can not
replicate the CDS cashflows exactly. However, from this replicating strategy we are able to obtain
approximations for the market CDS spread and observe the risk which a CDS is insuring. We
reviewed the Hull & White (2000) method to determine the CDS spread. This reduced-form type
method is considered to be the market standard to calculate CDS spreads. Finally, we presented
a generic CDS pricing formula, which is applicable to any credit risk model. We will apply this
pricing formula in our assumed structural model.



Chapter 4

Structural Models

4.1 Introduction

The principal objectives of structural models are to model credit risk and price securities of a
specific firm. Under the structural model framework, credit risk is modelled by the movement
of the firm’s asset value Vt relative to a default-triggering threshold bt called the default barrier.
Default occurs when the firm’s asset value hits this default barrier. The structural model provides
economic reasoning behind a firm’s default. Also under the structural model framework, the firm’s
asset value V is the driving force behind the dynamics of the prices of all the securities issued by
the firm (equity and debt). Thus a major issue in this framework is to model the capital structure
(the mixture of equity and debt) of the firm. From the structural model one can model both credit
risk and equity, the fundamental link being the firms’ asset value V . This is the reason why we
will focus on structural models.

In this chapter we analyse the seminal structural model established by Merton (1974). We then
examine extensions of the Merton model, and study what value these extensions provide to security
pricing and credit risk modelling. Different methods of estimating structural model parameters
are reviewed. Finally, we develop a suitable structural model to hedge credit default swaps with
equity and equity derivatives.

4.2 The Merton Model

Merton (1974) was the first to model credit risk by modelling the evolution of the firm’s asset
value Vt relative to some default barrier bt. Merton’s paper focused on the effects that the risk-
neutral probability (probability measure Q) of default has on the yield and price of corporate
bonds and the validity of credit spread as a measure of credit risk. The Merton model assumes
a very simplistic capital structure for the firm, with equity only consisting of ordinary shares and
liabilities consisting of only one zero-coupon bond. Equity and debt issued by the firm are claims
against the assets of the firm. Debt has priority over all other claims on the firm, and equity is a
residual claim, after the debt has been paid off.

Along with the standard Black & Scholes (1973) assumptions Merton made the following fun-
damental assumptions:

• The asset value process Vt, follows an one dimensional standard geometric Brownian motion
under measure P (real world measure)

dVt = µV Vt dt + σVt dWt,

which has a solution

Vt = V0 exp
[(

µV − σ2

2

)
t + σWt

]
. (4.1)

The constants µV and σ are the instantaneous expected rate of return and the instanta-
neous standard deviation1 of the return (also known as the volatility) of the firm’s assets,
respectively and Wt is a standard Brownian motion under measure P.

1We omit the subscript for σ, to simplify our notation, since σ will appear many times in the dissertation, and
to conform with academic literature.

28
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• The value of the firm’s equity (Et) is a function of the firm’s asset value and time, Et =
g(Vt, t). It is essentially implied that the dynamics of the equity markets are fully induced by
the stochastic behaviour of the asset values and that there is no further source of uncertainty
in the equity markets, as for instance speculation or imperfect aggregation of information.

• The default-free (risk-free) instantaneous interest rate is constant, rt = r.

• The firm has a simple capital structure. The firm’s only outstanding debt is a zero-coupon
bond (ZCB). Let D̃(t, T ) denote the value at time t of a defaultable zero-coupon bond ma-
turing at time T . The principal2 on this bond is equal to P and is payable at maturity T .
The firm will not issue any new debt before this ZCB matures. In addition no intermediate
payments (such as cash dividends or share repurchases) to equity holders are allowed prior
to the maturity of the debt.

• Bankruptcy and reorganisation costs are negligible. This is to ensure the Modigliani-Miller
theorem holds. The Modigliani-Miller theorem states that in the absence of bankruptcy,
reorganisation costs and taxes, the value of the firm Vt is invariant to its capital structure.
If this theorem did not hold then, for example, the value of equity would require a nonlinear
solution for Et = g[V (Et), t].

Using Girsanov’s Theorem 2.2.3, under the risk-neutral measure Q the stochastic process for the
firm’s asset value is

Vt = V0 exp
[(

r − σ2

2

)
t + σWQ

t

]
, (4.2)

where WQ is a Brownian motion process under the measure Q. We focus on the above dynamics
(4.2) for V , since pricing is done under measure Q.

Let our ZCB mature at some time point in the future T . At this time point if our assets are
greater than the principal amount P due on the ZCB, then the bondholders (owners of the ZCB)
receive the promised payment P . If the firm’s assets are less than or equal to the principal amount
P at time T , the firm is incapable of honouring the debt payment, and the firm has defaulted. The
default barrier in this model is a point with value P at time T , i.e.

bt =

{
P if t = T

0 otherwise.

The bondholders take over the firm and the value of their bond will be the value of the remaining
assets, VT ≤ P . In mathematical notation the ZCB payoff can be written as

D̃(T, T ) = min(VT , P ). (4.3)

Note that the ZCB payoff (4.3) is equivalent to VT −max(VT −P, 0). From this we can see that a
defaultable ZCB is equivalent to a portfolio that consists of a long position on the firm’s assets and
a short position on a call written on the firm’s assets with strike P . It can also be interpreted that
the bondholders are essentially the primarily holders of the firm’s assets, and when the promised
principal payment P is due at time T , the assets remaining after this payment (if any) are sold to
the equityholders. Equity is a residual claim on the firm’s assets once debt has been paid, thus if
VT > P the equity is worth VT − P , if VT ≤ P default has occurred and equity is worthless i.e.

ET = max (VT − P, 0) .

Equity can also be interpreted as a call option to buy the firm’s asset’s back from the bondholders,
at an exercise price of P . The limited liability property of equity holds, since the value of equity
is never negative, meaning equityholders are not liable for more than what they have invested.

The payoff of the ZCB (4.3) is also equivalent to P − max(P − VT , 0). Since this payoff is
always less than or equal to the payoff of a corresponding non-defaultable bond D(T, T ) = P

(since max(P − VT , 0) is non-negative), the value of D̃(t, T ) must always be below or equal the

2Note in Chapter 3 the expression eD(t, T ) represented a zero-coupon bond with principal 1, however for this
chapter the bond has a principal of P .
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price of a non-defaultable bond D(t, T ), to avoid arbitrage opportunities. Using the risk-neutral
pricing methodology, the value of the firm’s ZCB and equity are given by the following equations:

D̃(t, T ) = EQ
[
e−r(T−t) min(VT , P )

∣∣Ft

]

= Pe−r(T−t)Φ(d2) + VtΦ(−d1), (4.4)

Et = EQ
[
e−r(T−t) max(VT − P, 0)

∣∣Ft

]

= VtΦ(d1)− Pe−r(T−t)Φ(d2). (4.5)

Where

d1,2 =
ln

(
Vt

P

)
+ (r ± 1

2σ2)(T − t)
σ
√

T − t
,

and Φ(·) is the standard normal cumulative distribution function.
Note this valuation method preserves the balance sheet equation that states that the total

assets V of the firm is equal to the sum of the firm’s total equity E and total liabilities L, i.e.

Vt = Et + Lt.

In the Merton model, the arrival risk, which is described by the risk-neutral probability3 of default,
is given by Q(VT ≤ P ) = Φ(−d2). The recovery rate is determined by how low VT falls below P .
Timing risk is neglected as default can only happen at the time horizon T .

Under the structural model framework, an option on equity is a compound option (an option
on an option). An equity option is an option on equity, and equity is an option on the firm’s asset
value. Let us consider a call option, maturing at time T ∗ written on a firm with η shares. The
value of the share price at time t is given by

St =
Et

η
.

The value of a call option written on share S at maturity T ∗ is

cT∗ = max(ST∗ −K, 0),

where K is the strike price of the equity option. Note, that the stochastic behavior of S is driven
by the dynamics of V , since S is a function of V , i.e. St = Et(Vt)/η. Let V ∗ denote the value of
the firm’s assets that makes the option-holder indifferent between exercising and not exercising the
option, V ∗ is the solution to the integral equation ST∗(V )−K = 0. Using the risk-neutral pricing
methodology, the value of the call option at a time t ≤ T ∗ is

ct = EQ
[
e−r(T∗−t) max(ST∗ −K, 0)

∣∣Ft

]
(4.6)

= EQ
[
e−r(T∗−t)(ST∗(V )−K)1{VT∗>V ∗}

∣∣Ft

]
.

In order to evaluate (4.6), we need to express the expectation in terms of V , since it contains all
the stochastic behaviour of the call option. The closed form solution for (4.6) can be found in
Geske (1979).

The structural model perspective incorporates the firm’s leverage into equity option pricing
and consequently the instantaneous variance of the rate of return on the stock is not constant as
Black & Scholes assumed, but rather it is a function of the firm’s leverage. This can be seen by
comparing the Black & Scholes dynamics for the share price with the share price dynamics implied
by the Merton model. Black & Scholes assumed that the stock price follows a geometric Brownian
motion4

dSt = StµS dt + StσS dWt, (4.7)

3This probability does not give the actual probability of default, however it is useful as it can be compared to
others to distinguish which firm is more likely to default.

4Note that the Brownian motion process Wt is equivalent as in the dynamics of Vt, since under the Merton model
the dynamics of the share price are fully induced by the stochastic behaviour of the asset value V .
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where µS , σS are constants. Under the Merton model, securities issued by a firm are thought of as
derivatives on the firm’s asset value. It is assumed firm’s asset value follows a standard geometric
Brownian motion process

dVt = VtµV dt + Vtσ dWt. (4.8)

Using Itô’s formula (see Appendix A.1) on the explicit expression of equity (4.5) and substituting
the firm’s asset value dynamics (4.8), we can write the share dynamics under Merton’s model as

dSt =
∂St

∂t
dt +

∂St

∂Vt
dVt +

1
2
× ∂2St

∂V 2
t

d[V, V ]t

=
(

∂St

∂t
+

σ2V 2
t

2
× ∂2St

∂V 2
t

)
dt +

Φ(d1)
η

dVt

=
(

∂St

∂t
+

σ2V 2
t

2
× ∂2St

∂V 2
t

+
Φ(d1)

η
VtµV

)
dt +

Φ(d1)
η

Vtσ dWt. (4.9)

Let σ
(M)
S denote the stock’s proportional volatility, under the Merton model. By comparing the

last term (diffusion component) of (4.7) and (4.9), we realise that under the Merton framework
the stock’s proportional volatility, σ

(M)
S is not a constant but a function of the Vt and t,

Φ(d1)
η

Vtσ = σ
(M)
S St

σ
(M)
S =

Φ(d1)Vt

ηSt
σ. (4.10)

The leverage of a firm is defined as the ratio of the firm’s liabilities to the firm’s assets:

lev =
Lt

Vt
= 1− ηSt

Vt
,

where Lt is the total value of the firm’s liabilities a time t. Under the Merton model Lt = D̃(t, T ).
Writing Equation (4.10) in terms of the leverage ratio lev we obtain

σ
(M)
S =

Φ(d1)
(1− lev)

σ. (4.11)

It can be seen from (4.11) that the firm’s financial leverage ratio alters the stock’s riskiness (volatil-
ity), σ

(M)
S . If the firm’s financial leverage rises (resp. lowers), stock volatility increases (resp.

decreases)5.
Black & Scholes assumed that equity volatility is not a function of the firm’s stock price, however

in the Merton structural model, stock price volatility is inversely related to the stock price. Thus
equity volatility will be larger when stock prices have fallen, than when they have risen. Since
the value of an equity option is monotonic increasing with respect to equity volatility, if the stock
price has fallen (resp. risen), the increased (resp. decreased) equity volatility will act to raise
(resp. lower) the equity option value. In the market, it is observed that the Black-Scholes formula
underprices deep-out-the-money stock options and overprices deep-in-the-money stock options6.
Options are commonly issued near-the-money, thus the stock prices must undergo considerable
movement before stock options are either deep-in or deep-out-of-the-money. In the Merton model
the stock price movement will cause the equity volatility to change in the direction necessary to
reduce this mispricing (see Geske (1979)).

Yield-to-maturity (YTM) is the continuous rate of return anticipated on a bond if it is held
until the maturity date. We denote the YTM at time t of a default-free and a defaultable bond
with maturity T by Y (t, T ) and Ỹ (t, T ), respectively. Mathematically, the YTM on a default-free
ZCB with a principal of P , can be defined as

Y (t, T ) =
ln[P/D(t, T )]

T − t
,

5See Geske (1979) for the result
∂ σ

(M)
S

∂ lev
> 0.

6Black (1975) discusses some of the discrepancies between the Black & Scholes (1973) stock option prices and
market prices.
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and the YTM on a defaultable ZCB with a principal of P , can be defined as

Ỹ (t, T ) =
ln[P/D̃(t, T )]

T − t
.

The credit spread of a defaultable bond is defined as the difference between its YTM and the YTM
of a default-free bond with an equivalent cashflow. We denote the credit spread at time t until the
maturity of the bond T by

s̃(t, T ) := Ỹ (t, T )− Y (t, T ).

The dynamics of the firm’s asset value and the simple capital structure assumed in the Merton
model leads to undesirable credit spread properties. Under the Merton model the YTM at time t
of a defaultable zero-coupon bond, with maturity T and a principal P , is

Ỹ (t, T ) = − ln
[
(Vt/P )Φ(−d1) + e−r(T−t)Φ(d2)

]

T − t
.

and the YTM on an equivalent default free ZCB is Y (t, T ) = r (the riskless rate). Thus under the
Merton model, the credit spread at time t of a defaultable ZCB with maturity T and principal P ,
is

s̃(t, T ) = − ln
[
(Vt/P )er(T−t)Φ(−d1) + Φ(d2)

]

T − t
.

As time converges to the debt’s maturity the credit spread under the Merton model tends to zero7,
i.e. limt↑T s̃(t, T ) = 0. In Figure 4.1 we plot credit spreads and risk-neutral default probabilities,
which were calculated under the Merton model8. Figure 4.1 illustrates that credit spreads and
risk-neutral default probabilities tend to zero for short maturities. This qualitative behaviour for
credit spreads does not hold in the market. The credit spreads in the market are significantly
higher than yields implied from the Merton model (see Jones et al. (1984)), especially for shorter
term bonds (see Gemmill (2003)). If we assume that the difference between the yield of a corporate
bond and a Treasury bond (credit spread) is driven by the probability of default, then the Merton
model underestimates the probability of default. This is considered as a major shortcoming of the
the Merton model.
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Figure 4.1: Credit spreads and default probabilities implied by the Merton (1974) model, for
different leverage ratios. This leverage ratio is not the true firm leverage ratio; this ratio is the
ratio of the principal value of the firm’s debt P to the initial firm asset value V0.

The Merton model assumes that the firm has a very simplistic capital structure (a single ZCB
constitutes the firm’s total liabilities). It is therefore difficult to implement this model for firms
which have numerous bonds and loans with different indentures, maturing at different times. A
possible ad-hoc method to overcome this, is to value all debt to a single time point, but it is
unclear what time point and discount rate to use to discount all the scheduled debt payments.

7This can be calculated by using l’Hôpital’s rule.
8The values of the parameters used to plot Figure 4.1 are: V0 = 100, σ = 0.2 and r = 0.05.
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Timing risk is not taken into account in this model, since default can only occur at one time point.
Timing risk is essential when pricing credit default swaps, since at the time of default the CDS
premium payments become void and the default payment becomes payable. The cash-flows of a
CDS are influenced by the time of default. Another major drawback of the Merton model, and
of all structural models in general, is the non-observability of the firm’s asset value which causes
difficulty in the estimation of the model’s parameters. Estimation of parameters will be discussed
in Section 4.4.

4.3 Extensions to the Merton Model

The Merton (1974) model was the first structural model and after this seminal model there have
been many extensions. Merton’s model assumed a simplistic capital structure of the firm, which
lead to default only being possible at a single point in time9. This is unrealistic as a firm can default
before its debt is paid off, and so the Merton model does not model timing10 risk accurately. The
time of default is important to this research as it has a great influence on the price of a CDS.
Another major shortcoming of the Merton model is that is underpredicts credit spreads, which
implies it underpredicts default probabilities, especially for short term maturities. The Merton
model also does not take into account other factors that could have a significant influence on credit
risk, such as interest rate risk. We now present a number of extensions of the Merton model that
attempt to address these problems.

4.3.1 Capital Structure

Geske (1977) was the first to relax the simplistic capital structure assumption made in Merton
(1974), he allowed the firm to be financed with several coupon-bearing bonds, of different priorities.
This allows for a more realistic model of capital structure and timing risk, since the firm can now
default on any of the bond payment dates, principal or coupon payments, and not just on one
aggregate payment 11. In Geske’s paper equity is also priced as a compound option. Lets assume
that there are n different debt payment dates, and at each of these payment dates t1, t2, ..., tn
a respective payment of P1, P2, ..., Pn

12 is due. Geske assumed that these debt payments are
financed by issuing new equity, and not by selling the firm’s assets, this ensures our firm’s asset
value dynamics are continuous across debt payment dates 13. At all debt payment dates ti for
t1, t2, ..., tn shareholders have the choice of buying the next option, which matures at ti+1, by
paying the debt payment Pi or forfeiting the firm to the bondholders. The final option maturing
at tn is to repurchase the assets of the firm, from the bondholders by paying the last debt payment
Pn.

Let V ∗
ti

be the root of Et+i
(V ) = Pi, where Et+i

denotes the value of equity immediately after debt
payment Pi. The declaration of bankruptcy will occur if the value of the firm’s assets immediately
before the ith debt payment, Vti

14, is less than V ∗
ti

. The value of equity immediately before debt
payment Pi is

Et−i
=

{
Et+i

− Pi , if Vti > V ∗
ti

0 , if Vti ≤ V ∗
ti

.

This can be interpreted as saying that the shareholders will not commit any additional capital to
finance the debt payment if the value of the equity after the debt payment is less than the debt
payment. The value of the equity at time tn is

Etn =

{
Vtn − Pn , if Vtn > Pn

0 , if Vtn ≤ Pn.

9The maturity of the firms debt, which consists of a single ZCB.
10Default time.
11When implementing the Merton (1974) model to a firm financed by several bonds maturing at different times,

the following arbitrary approach is used: all debt payments are discounted to a critical time point, usually calculated
by the duration (see Hull (2003) for a definition of duration) of the debt.

12Note that Pi (for i = 1, ..., n) could represent either one coupon/principal payment or a combination of
coupon/principal payments.

13However, the equity process Et will be discontinuous across the debt payment dates.
14This should technically be V

t−i
, however since Vt is continuous we can simply use Vti .
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At time tn the shareholders will buy the firm’s assets from the bondholders if the value of the
firm’s assets are above the last debt payment i.e. Vtn > Pn. If Vtn ≤ Pn, shareholders will forfeit
the firm’s assets to the bondholders.

The value of equity15 at t can be calculated using a recursive procedure starting at time tn,
and working backwards to t. Lets assume that ti−1 ≤ t ≤ ti. Using the risk neutral expectation
pricing methodology the value of equity is16

Et = EQ
[
e−r(tn−t) max (Vtn

− Pn, 0)1{Vtj
>V ∗tj

for j=i, i+1, ..., n−1}

∣∣∣Ft

]
(4.12)

Using the tower property of conditional expectations, (4.12) can be written as

e−r(tn−t)EQ
[
1{Vti

>V ∗ti
}EQ

[
1{Vti+1>V ∗ti+1

} ... EQ
[
1{Vtn−1>V ∗tn−1

}

× EQ
[
max (Vtn

− Pn, 0)
∣∣∣Ftn−1

] ∣∣∣Ftn−2

]
...

∣∣∣Fti

] ∣∣∣Ft

]
. (4.13)

The above expression (4.13) can be evaluated, by first calculating the inner-most conditional ex-
pectation and working towards the outer-most conditional expectation. European equity options
can be considered as a further option on the compound options, since equity under this framework
is considered to be a compound option.

The credit spread implied by this model also has the same problem as the Merton model: the
credit spread and default probability tend to zero as you get closer to the final payment. Under the
Geske’s framework, timing risk is modelled more accurately as it includes all debt payment dates
as possible default times. However, default can occur on any financial obligation the firm has i.e.
tax, wages, creditor’s payments. Default can also occur due to the breaching of a bond covenant,
which can stipulate that if the firm’s asset value drops below a specified value, the bondholders
must be paid immediately. Debt payments are not the only default triggering payments. A credit
risk model that models the timing of default (timing risk) accurately is needed in order to price
a CDS efficiently. We now introduce models that attempt to include all payment obligations and
debt covenants into the default barrier.

4.3.2 Default Barrier

Default in the Merton model only occurs at maturity of the bond; it does not allow for premature
default. The Merton and Geske models only allow for stock-based insolvency17 and do not allow for
flow-based insolvency18. Under the Merton model the firm’s assets can dwindle to almost nothing
without triggering a default. Several academics have put forward a structural model that relaxes
this unrealistic credit risk feature. They have proposed modelling default as the first time the
firm’s assets value Vt crosses a default triggering barrier bt, which is defined over a time interval
and not a single point in time as in the Merton model. Thus default time can be mathematically
expressed as

τ∗ = inf{s ≥ 0 : Vs ≤ bs}. (4.14)

Default can now occur prior to debt maturity. The barrier bt, is the critical firm asset value (at
time t) at which the firm becomes insolvent because the firm’s assets at this value can not generate
sufficient cash flow to meet the firm’s current obligations, or because the firm’s asset value is below
the outstanding debt value. Brockman & Turtle (2003) set up an hypothesis test to investigate
whether the default barrier is different from zero. If it is equal to zero then the model becomes
equivalent to the Merton model. Their results imply that the default barrier implied by market
securities prices are statistically different from zero, i.e. default barriers are significant.

There are two types of barriers: exogenous and endogenous. An exogenous barrier is a barrier
that is defined outside the model; it is a parameter in the model. An endogenous barrier is a barrier
that is calculated within the structure of the model. The default barrier is chosen to maximise
the equity value. Since equity holders are the owners of the firm they will decide when to default.
Equity holders will choose the barrier level optimally to maximise their equity value.

15We focus in the value of equity and how default is modelled and not the value of a bond, since we aim to hedge
a CDS with equity/options. Geske (1977) provides the price of the firm’s debt for the interested reader.

16Note that Geske also assumed a constant risk-free rate r.
17When the total assets of the firm are less then the total value of the liabilities.
18When a firm’s current operating cash flow is unable to satisfy current obligations i.e. taxes, wages, expenses,

interest payments and invoices from suppliers.
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Exogenous Default Barrier

Black & Cox (1976) were the first to add a continuous barrier to a structural model. They were
interested in bond indentures, specifically the effect of bond safety covenants. Safety covenants are
contractual provisions which entitle the bondholders to force bankruptcy or impose reorganisation
of the firm, if it is underperforming according to some standard. A natural standard is the value
of the firm’s assets. If the value of the firm’s assets falls below a specified level, then bondholders
are entitled to force bankruptcy on the firm, and obtain the ownership of the firm’s assets while
shareholders receive nothing. Black & Cox specified the barrier as

bt =





γPe−r(T−t) if t < T

P t = T

0 otherwise
(4.15)

with 0 ≤ γ ≤ 1. The parameter γ can be interpreted as the recovery rate of the firm’s bond.
Thus the value of a defaultable ZCB19, at time t, with a principal value of P , maturing at time T ,
expressed as a discounted risk-neutral expectation is given by:

D̃(t, T ) = EQ
[
e−r(T−t)P1{τ∗>T} + e−r(τ∗−t)Vτ∗1{τ∗≤T}

∣∣∣Ft

]
.

Since the assumed dynamics of the firm’s asset value are continuous, the firm’s asset value at
default will be equal to the barrier level, i.e. Vτ∗ = γPe−r(T−τ∗). Note that if γ = 1, the value of
the defaultable ZCB will be equivalent to a non-defaultable ZCB, since at all possible payoff times
t ≤ T the payoff is equivalent to a non-defaultable bond. The value of equity at time t, expressed
as a discounted risk-neutral expectation is given by

Et = EQ
[
e−r(T−t) max(VT − P, 0)1{τ∗>T}

∣∣∣Ft

]
.

Under this framework, equity is a down-and-out barrier option. The effect of adding this barrier
in the structural model to equity prices, is that the value of equity decreases compared to the
Merton model equity price. This can be seen by comparing the Black and Cox equity payoff
max(VT − P, 0)1{τ∗>T} to the Merton equity payoff max(VT − P, 0). It can be readily seen that
the Merton equity payoff dominates the Black and Cox equity payoff. By using the balance sheet
equation (4.2) we notice that the Black & Cox value of the firm’s debt is greater than the Merton
value of debt.

Black and Cox’s intention of including a continuous barrier into a structural model, was to
incorporate the effect of bond indentures on the price of corporate securities. Subsequent research
interpreted the barrier as an arbitrary critical asset value at which the firm enters into financial
distress. When financial distress occurs the firm defaults on all its obligations and the bondholders
take over the firm’s assets, and decide whether to liquidate or reorganise the firm. Note that these
models assume the firm’s liability is made up of several debt instruments and not one bond. There
are many different specifications of the default barrier. Let us mention the following: Kim et al.
(1993) and Ericsson & Reneby (1998) assume the barrier is a function of the debt coupon rate
(default will be more prevalent if the coupon rate is high). Longstaff & Schwartz (1995) and Briys
& de Varenne (1997) assume the barrier is a proportion of the face value of debt (the barrier is the
recovery value of the firm’s debt). Collin-Dufrense & Goldstein (2001) and Nielsen et al. (1993)
model the barrier as a stochastic process. This takes into account varying leverage ratios as time
passes, which could be a result of assets being sold, the firm taking on new debt, settling debt or
the market value of debt changing. Collin-Dufrense & Goldstein (2001) model the default barrier
process as a mean reverting process that reverts to some target leverage ratio. Finger (2002)
incorporated a stochastic barrier to model the uncertainty of the exact level at which the firm will
default. It also represents the stochastic behaviour of the recovery rates for bonds.

Endogenous Default Barrier

Debt interest payments reduce the amount a firm is taxed. This is an incentive for firms to take on
more debt. However, bankruptcy costs are an incentive for firms to raise capital through equity.
Under endogenous barrier structural models, bankruptcy costs and tax rates influence the value

19As in the Merton model, Black & Cox assume the firm has one zero-coupon bond. They also extend their
analysis by including discrete interest payments, and dividend payments.
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of equity, debt and the level of the default barrier. Shareholders are the owners of the firm and
they will ultimately decide when it is unfavourable to service their payment obligations. The
shareholders choose the default point such that it will maximise their value. This is the viewpoint
of endogenous barrier structural models. Under endogenous barrier models the default barrier b is
calculated to maximise the equity value. Leland (1994) concluded that the value of equity increases
as corporate taxes increase and the default barrier decreases as the corporate taxes increase. The
equity value and barrier level is independent of bankruptcy costs which decrease the value of
debt. For more details on endogenous barrier models see Leland (1994), Leland & Toft (1996),
Mella-Barral & Perraudin (1997) and Anderson & Sundaresan (1996).

In the presence of bankruptcy costs and taxes the value of the firm is not equivalent to the value
of the firm’s assets; the value of the firm is equal to the value of the firms assets minus potential
bankruptcy costs plus the benefits of tax on debt payments. A key objective of endogenous barrier
models (especially in the papers by Leland (1994) and Leland & Toft (1996)), is to find an optimal
capital structure that maximises the value of the firm.

4.3.3 Stochastic Interest Rates

The focus of structural models, and in general of credit risk models, in academic literature is
to attempt to price fixed income securities that are subject to credit risk i.e. corporate bonds.
These instruments are subject to both interest rate and credit risk. This is especially true of
floating coupon corporate bonds, whose coupons are strongly linked to the prevailing risk-free rate.
Longstaff & Schwartz (1995) and Briys & de Varenne (1997) assume the Vasicek (1977) model to
govern the risk-neutral (under measure Q) dynamics of the risk-free interest rates20

d rt = a (b− rt) d t + σrdW rQ
t ,

where W rQ
t is a Brownian motion process for the interest rate process rt. Since the Vasicek model

allows for negative interest rates, Kim et al. (1993) assume the risk-free interest rate under measure
Q is governed by the CIR model of Cox et al. (1985):

d rt = a (b− rt) d t + σr
√

rtdW rQ
t .

Under suitable restrictions for a, b and σr, the CIR model does not allow negative interest rates.
Longstaff & Schwartz (1995) and Kim et al. (1993) assume that the Brownian motion for the
firm’s asset value WQ

t , and W rQ
t are correlated, with instantaneous correlation coefficient ρ. Briys

& de Varenne (1997) assume these Brownian motions are independent but a correlation factor ρ
is incorporated into their assumed risk-neutral firm asset value dynamics. Briys & de Varenne
(1997) found that an increase in instantaneous correlation coefficient ρ will increase credit spreads.
The intuitive reason why this occurs is because the distribution of future values for Vt depend on
ρ. Thus if ρ is positive the covariance term will add to the variance of the changes in the value
of the firm, making it more probable that Vt will reach the barrier (default probability becomes
higher) thus widening (increasing) the credit spread. An important implication of the addition
of stochastic interest rates into structural models, is that credit spreads can vary among firms
with similar default risk21, depending on the correlation of the firm’s assets Vt with the risk-free
rate rt. This is a possible explanation why firms with similar credit ratings but from different
market sectors have significantly different credit spreads22. By incorporating stochastic interest
rates we are able to model the influences on interest rate risk on credit risk. Ericsson et al. (2004)
found that interest rate changes have a statistically significant effect on CDS premium changes.
By linearly regressing the change in market credit spreads on the change of the risk free rate and
of stock prices, Longstaff & Schwartz (1995) found that the change of the risk-free interest rate
accounts for the majority of the variation in market credit spreads. This is expected since credit
spread is defined as the difference between the yield on a defaultable bond and the risk free rate.
However, the addition of stochastic interest rates does not resolve near zero credit spreads and
default probabilities for short maturities.

20Briys & de Varenne (1997) assumed the Vasicek Model, while Longstaff & Schwartz (1995) assumed the gener-
alised Vasicek model where the parameters a, b and σr are functions of time.

21Longstaff & Schwartz (1995) measure a firm’s default risk by the ratio of the initial asset value V0 over a constant
endogenous default barrier b.

22See Longstaff & Schwartz (1995) for empirical evidence of this.
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4.3.4 Unpredictable Default Time

A stopping time23 τ is predictable if there exists a sequence of stopping times {τn}n≥1 that has
the the following three properties: τn is an increasing sequence, τn ≤ τ on {τ > 0} ∀ n and
limn↑∞ τn = τ . Thus, a predictable stopping time τ is known prior to time τ , since it is announced
by an increasing sequence of stopping times. A drawback of the pre-mentioned structural models, is
that in general defaults are predictable24. Default in a structural model is defined as the first time
the firm’s asset value hits the default barrier. Time of default can be mathematically represented
as (4.14). In the preceding structural models, the firm’s asset value is modelled by a continuous
process and the barrier by a deterministic function. This causes the time of default τ∗ to be a
predictable stopping time. The predictability of the default time τ∗ causes low short term credit
spreads and default probabilities.

Default is an uncertain event and thus technically should be a surprise (unpredictable). The
time a firm defaults is uncertain since the market has incomplete information on the ability of
the firm to pay its obligations. Market participants receive periodic and sometimes imperfect
accounting reports on the firm and thus cannot be certain when a default is going to occur.
The implication of predictable default times in structural models, is that the models produce
credit spreads and default probabilities that tend to zero for short maturities (see Giesecke (2005)
[Prop. 3.2, p.7-8] for proof of this). Eom et al. (2004) find that extended structural models (such
as Geske (1977), Leland & Toft (1996), Longstaff & Schwartz (1995), and Collin-Dufrense &
Goldstein (2001)) are able to generate higher credit spreads than the Merton (1974) model, but
still underpredict the market spread on short-term and high credit quality bonds. The term
structure of market credit spreads can take on a variety of shapes: upward sloping, hump-backed
shaped, flat and downward sloping25. However if we assume a structural model with a continuous
firm asset value process and a deterministic barrier process, the model is unable to account for flat
or downward sloping credit spread term structures since it cannot predict non zero credit spreads
for the short term.

There exist essentially three ways to resolve this issue of predictable defaults. The first method,
developed by Duffie & Lando (2001), focuses on the incomplete and inaccurate information avail-
able to the investor about the precise value of the firm’s assets. Duffie & Lando (2001) infers a
distribution for the firm’s asset value conditional on survivorship and inaccurate accounting re-
ports26. The second method assumes the default barrier is stochastic. This is to account for the
incomplete knowledge of all the firm’s payment obligations (see Nielsen et al. (1993) and Finger
(2002)). The third method incorporates randomly occurring jumps into the firm’s asset value
process. Zhou (1997) assumes that the firm’s asset value process follows a jump-diffusion process.
Under this jump-diffusion process a default can happen expectedly from steady declines in the
firm’s value. Default can also occur unexpectedly from a sudden drop in the firm’s value. These
jumps are due to new information causing non-marginal changes in the firm’s asset value i.e. the
release of unexpected financial results, the detection of fraud, or a market crash. All of these ex-
tensions cause the default time to be unpredictable, consequently generating non-zero short term
credit spreads.

4.3.5 Discontinuous Firm’s Asset Value Process

As previously mentioned one of the major shortcomings of structural models (with a continuous
process for Vt and a deterministic barrier) is that they generate zero instantaneous default prob-
abilities for healthy firms, which causes the models to underpredict market credit spreads and
CDS premiums, (Ericsson et al. (2006)27). To remedy this Zhou (1997) (exogenous barrier) and
Hilberink & Rogers (2002) (endogenous barrier) included jumps into their assumed firm’s asset
value process.

23See Definition 2.3.1
24Excluding structural models with a stochastic default barrier.
25Upward sloping, humpbacked and flat term structures are predominate in investment- grade bonds and downward

sloping term structures appear in the junk bond rating (see Sarig & Warga (1989)).
26Duffie & Lando (2001) incorporate an extra stochastic variable to the assumed distribution for firm asset value

observations. This is to account for the accounting noise in reported firm asset values.
27Ericsson et al. (2006) compare both model credit spreads and CDS premiums to market observations, to assess

the performance of structural models. The reason why CDS premiums are also compared is because credit spreads
are influenced by non-default factors that are not captured in structural models, such as tax differentials, liquidity,
and other market risk factors (see Delianedis & Geske (2001)). Credit default swaps are commonly thought to
capture credit risk most efficiently, making them an interesting source of data for evaluating models of credit risk.
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If the firm’s asset value process Vt, is modelled with a jump-diffusion process, then default
could occur with the marginal fluctuations (the diffusion part of Vt) or with sudden shocks (the
jump part of Vt). If default is caused by the diffusion part, the value of the firm’s asset at default
will equal the barrier. However, if default occurs by a jump, it could fall below the default barrier.
The usual assumption for the recovery rate is that it is a proportion of the remaining assets after
default (see Black & Cox (1976) and Longstaff & Schwartz (1995)). Thus using a jump-diffusion
process for Vt one can naturally incorporate the randomness of recovery rates.

The following points summarise the advantages of including jumps into V :

• Higher credit spreads and CDS premiums (see Zhou (1997) and Eom et al. (2004)).

• Flexible credit spread term structures that can take on shapes observed in the market (upward
sloping, hump-backed shaped, flat and downward sloping, see Sarig & Warga (1989)).

• Non-zero short-term default probabilities and credit spreads of healthy firms (see figure 4.2
below).

• Stochastic recovery rates, that are naturally defined as a percentage of the value of the firm
after default.
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Figure 4.2: Credit spreads and default probabilities implied by the Zhou (1997) jump-diffusion
credit risk model, for different initial distance to default ratios b

V0
.

Figure 4.2 illustrates that, by including a jump component for Vt we are able to produce
significantly higher credit spreads, non-zero short-term default probabilities and credit spreads
and flexible credit spread term structure shapes. The values of the parameters28 used to plot
Figure 4.2 are: σ = 0.2, r = 0.05, λ = 1, µA = −0.05, σA = 0.1, w0 = 0.4 and w1 = 1.

4.4 Parameter estimation

A major drawback of structural models is that the firm’s asset value V is not a publicly traded
asset, thus V is only partially unobservable29. As a result of the non-observability of Vt, the
parameters30 that characterise V are difficult to estimate; we do not have a rich empirical time
series of the firm’s asset values to estimate its associated parameters. The default barrier b of
structural models are commonly estimated using the liability data of a firm. Most firms have
complex debt structures, which consist of publicly traded debt and private debt (loans). Thus
we come across the same problem of partial non-observability when estimating b too. Depending
on the accounting system used by a firm, the firm’s asset and liability value is revealed annually,
biannually, or quarterly in the firm’s financial statements. The firm’s asset and liability value would

28See Section 4.5 for the interpretation of all the parameters.
29It is not totally unobservable. The firm’s asset value is observable in financial statements only at large intervals

(quarterly or semi annually). In the rest of the dissertation, we omit the word ’partially’ and just describe it as
unobservable.

30Depending on the stochastic process chosen to model V , the number of parameters will differ.
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be found in the balance sheet section of the financial statements. However these figures could be
unreliable due to questionable accounting methods31.

Academic literature offers at least four methods to estimate the unobservable parameters32 of
a structural model. We name them as: the simple method, the system of equations method, the
maximum likelihood method, and the calibration method.

Simple Method

The simple method involves estimating the parameters that characterise V directly from balance
sheet data. For example if we assumed V follows the geometric Brownian motion process as in
Equation (4.1), the parameters that characterise V are the initial asset value V0, µV and σ. We
do not consider µV since we price under the risk-neutral measure Q, where µV does not appear in
the dynamics of V . Thus we only consider the initial asset value and the firm’s asset volatility33.
The initial asset value V0 is estimated with the most recent total asset value figure in the balance
sheet. The asset volatility σ is estimated by calculating the standard deviation of the percentage
changes in the firm’s asset value Vt, observed from periodic balance sheet data (see Brockman &
Turtle (2003) for an example of this method).

The default barrier is estimated as a proportion of the present liability value of the firm34. The
present liability value is estimated by the total liability value observed from periodic balance sheet
data. The total liability value is not a very accurate estimate for the present liability value, since it
is the sum of all the principal values of debt and not the current value of all debt. The proportion
of the present liability value is estimated by the recovery rate of other firms with similar credit
ratings as the firm under consideration. The simple method is easy to implement, but has the
drawback of only having a few data points for V and the liability value to estimate with. Thus
parameters can only be updated when the next financial statements are released, which is not
suitable for our purposes since we intend to hedge regularly.

System of Equations Method

The most popular stochastic process assumed for V , under measure Q, is the geometric Brown-
ian motion (GBM) process, given by Equation (4.2). This GBM process has two characterising
parameters of V than need to be estimated: V0, and σ. A common method to estimate these
two unobservable parameters involves setting up a system of two equations, that relate equity Et

with the firm asset value Vt and equity volatility to asset volatility (see for example Jones et al.
(1984) and Hull (2003)). This method enables one to relate the two unobservable parameters to
observable parameters. The first equation is (4.5) and the other is similar to (4.10), except that
we are working with total equity and not just a single share,

VtΦ(d1)− Pe−r(T−t)Φ(d2) = Et (4.16)
Φ(d1)Vtσ = σEEt. (4.17)

Equity is publicly traded and observable. Equity volatility σE can be estimated by calculating the
standard deviation of the percentage changes in E. The estimate of the equity volatility and the
observed market price for equity will be represented respectively by σ̂E and Eobs

t . Substituting the
observed market value for equity and the estimated equity volatility into (4.16) and (4.17) we get

Φ(d1)Vtσ = σ̂EEobs
t (4.18)

Eobs
t = VtΦ(d1)− Pe−r(T−t)Φ(d2). (4.19)

Note that Φ(d1) and Φ(d2) are both functions of Vt and σ. Since these equations cannot be explicitly
written for σ and Vt, this system of equations must be solved numerically to attain estimates for
σ and Vt.

Duan (1994) pointed out that there are several theoretical inconsistencies with this method.
The equity volatility is estimated assuming that it is constant. However (4.18) implies that it

31In this dissertation we assume that these figures are accurate.
32We focus on the major structural model parameters: the parameters that characterise V and the default barrier.

These parameters encompass a majority of the parameters of a general structural model. Some structural models do
have other parameters, for example in the paper written by Briys & de Varenne (1997), they introduce a correlation
coefficient ρ between V and r.

33We do not discuss the risk-free rate r, since this can be relatively easily estimated by the prevailing observable
risk-free rate in the country, e.g we would estimate r with the LIBOR in the United Kingdom.

34For an example see Black & Cox (1976) and Finger (2002).
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is function of Vt and t. Furthermore equation (4.19) is redundant since it is used to derive the
equity volatility equation (4.18). Note that if the estimate of the equity volatility were correct
(meaning that if we were to substitute our estimate for σ, derived from σ̂E , into the equity formula
(4.5) it would result in the market price for equity), then one equation from the above system of
equations would be redundant. Thus the first theoretical inconsistency (constant equity volatility)
is needed to provide a unique solution for the parameters we are solving for. The default barrier
b is estimated with the same method used in the above simple method. This estimation method
is restricted to structural models that only have V0 and σ to estimate, such as the Merton model.
These methods do not account for estimating other parameters that feature in more stylised models
(such as the model proposed by Zhou (1997), which has three more parameters characterising the
jump component of V ). The following two methods we present, are able estimate all parameters
that feature in more stylised models.

Transformed-Data Maximum Likelihood Estimation

Duan (1994) was the first to use the transformed-data maximum likelihood estimation method to
estimate structural model parameters. The aim of maximum likelihood estimation (MLE) is to
find the parameter value that makes the observed data most likely. Let θ denote the vector of
parameters we need to estimate. For example in the Merton (1974) model θ = (µV , σ) and in
the Black & Cox (1976) model θ = (µV , σ, b). The reason why we need to estimate µV in this
method, is that we are using the observed firm asset values which are realisations under the real
world measure P. Under the measure P, V is assumed to follow Equation 4.1, which includes
the parameter µV . The initial asset value V0 is implied from equity prices. The MLE method
involves finding the parameter set that maximises the joint probability density function (pdf) of
the observed data, X = (Xobs

0 , Xobs
1 , Xobs

2 , ..., Xobs
n ), given the parameter set, θ. We denote the

joint pdf of X given the parameter set θ with

f(X|θ). (4.20)

The above expression (4.20) is also called the likelihood function of the observed data set X. It
is usually easier to maximise the logarithm of the likelihood function. Thus we will often use the
logarithm of the likelihood function (log-likelihood function), L(θ;X). Note that the parameters
that maximise the likelihood function will also maximise the log-likelihood function.

For structural models we are dealing with unobservable data, thus Duan (1994) proposed a
transformed-data maximum likelihood estimation method. For illustrative purposes we assume
the Merton model, however this estimating method is applicable to more complex models. We
assume the Merton model and for now the firm’s asset values are directly observable. Let the set
{V obs

0 , V obs
h , V obs

2h , ..., V obs
nh } denote observed asset values at equally spaced time intervals of h. Then

the likelihood function for the observed asset values is

f(V obs
0 , V obs

h , V obs
2h , ..., V obs

nh |µV , σ) =
n∏

k=1

f(V obs
kh |µV , σ)

=
n∏

k=1

1
V obs

kh

√
2πσ2h

× exp



−

(
ln V obs

kh − (µV − σ2

2 )h− ln V obs
(k−1)h

)2

2σ2h


 .(4.21)

The above likelihood function (4.21) is obtained from the dynamics of the firm’s asset value (4.1)
and the property of independent increments of Vt. The log-likelihood function is given by

L(σ, µV ; V obs
0 , V obs

h , V obs
2h , ..., V obs

nh ) = −
n∑

k=1

ln V obs
kh − n

2
ln(2πσ2h)

−1
2

n∑

k=1

((
lnV obs

kh

/
ln V obs

(k−1)h

)
−

(
µV − σ2

2

)
h
)2

σ2h
.

See Theorem C.0.1, in Appendix C. This theorem (which is adapted from Bain & Engelhardt
(1991)) shows that if there exists a one-to-one relationship between two variables then one can
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write the probability distribution function (pdf) of one variable in terms of the other. This is
needed to find the transformed log-likelihood function.

Using the above Theorem (C.0.1), the monotonic relationship between E and V (given by
(4.5)), and the log-normal properties of Vt (seen from (4.1)), one can obtain the marginal pdf of
equity f(Et), in terms of Vt, µV and σ:

f(Et) = f(Vt)
/ ∣∣∣∣

∂E(Vt; σ)
∂Vt

∣∣∣∣

=
1

Vt

√
2πσ2t

exp



−

(
ln Vt − (µV − σ2

2 )h− lnV0

)2

2σ2t


 Φ(d1) (4.22)

Let us denote the market observed equity data by Eobs
0 , Eobs

h , Eobs
2h , ... , Eobs

nh . Using Equation (4.22),
the log-likelihood function for the observed equity data is given by

LE(σ, µV ; Eobs
0 , Eobs

h , Eobs
2h , ..., Eobs

nh ) = L(σ, µV ; V̂0(σ), V̂h(σ), V̂2h(σ), ..., V̂nh(σ))

−
n∑

k=1

ln
(
Φ

(
d̂1(σ, kh)

))
, (4.23)

where

d̂1(σ, kh) =
ln

(
V̂kh(σ)

P

)
+ (r + 1

2σ2)(T − kh)

σ
√

T − kh

and V̂kh(σ) = g−1(Eobs
kh ; σ). Now it is possible to find maximum likelihood estimates for µV and

σ, respectively denoted by µ̂V and σ̂. This is achieved by maximising Equation (4.23) numerically
for µV and σ. One can obtain an estimate for the initial asset value V0 by applying the inversion
V̂0 = g−1(E0; σ̂).

The maximum likelihood approach provides a consistent approach to parameter estimation
problems. Maximum likelihood estimates can be obtained for a large variety of estimation situa-
tions, thus this approach is suited for estimating more technical structural models. This approach
allows for the straightforward derivation of the distributions of the estimates which could be used
to generate confidence bounds and hypothesis tests for the parameters or for default probabilities
which can be useful in risk management applications. The disadvantages of the transformed likeli-
hood approach are that in some cases it is not straight forward to find the likelihood function, and
also if a closed-form solution does not exist for the transformation, then it presents the difficulty
of numerically maximising a likelihood function which consists of a non-analytical derivative term.

Calibration

Another possible method to estimate parameters is by calibrating the model to market prices. The
estimation method implies estimates for the model’s parameters from market instrument prices.
These calibrated estimates, once substituted into the model’s theoretical valuation formulae for
securities, produce prices roughly equal to the market prices of these securities. To calibrate para-
meters, a measure must be chosen to distinguish how well our calibration procedure is calibrating
our parameters to market prices. A popular calibration measure is

n∑

i=1

(
Ui(θ)− Uobs

i

)2
(4.24)

where Uobs
i is the observed theoretical market price of the ith calibrating instrument and Ui(θ) is

the theoretical price given by the model for this instrument. Our aim is to find estimates θ̂ for our
parameters θ that minimise this calibration measure (4.24) i.e.

θ̂ = arg inf
θ

n∑

i=1

(
Ui(θ)− Uobs

i

)2
(4.25)

Examples of financial instruments that can be used in the structural model case are: shares, share
options, corporate bonds and credit default swaps.
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The benefits of this approach are that the minimisation procedure is simple to set up and
our calibrated model parameters produce market prices. There are a few disadvantages using
this method. If we calibrate the parameters we exclude any chance of relative trading between
model prices and market prices. Due to the non-convex nature of (4.24), there may be several
combinations of parameters that achieve the same precision. It is difficult to find the global
minimum of (4.24). Often the problem with calibration is that estimates achieved from calibration
of θ̂ are unstable. When a small change in the market prices occur, the estimated parameters
oscillate excessively. This may indicate that the global minimum has not been identified and only
a local minimum has been reached (see Cont & Tankov (2004b)). One must consider this before
opting for the estimates from a calibration process. If the estimates do oscillate excessively one
should consider a different estimation procedure.

4.5 Our Model

This section lays down the framework for our credit risk model, which will be used in the rest
of this dissertation to obtain our research objectives. After stating our assumptions we explain
and justify these assumptions. Our assumptions parallel those of Black & Scholes (1973), Merton
(1974), Longstaff & Schwartz (1995) and Zhou (1997).

Consider a continuous time financial market setting with time period [0, T ]. Given on this
time interval is a filtered probability space (Ω,FT ,F,P), P ∈ P, where Ω is the sample space
set containing all possible outcomes, F is a right continuous filtration F = {Ft : 0 ≤ t ≤ T} (a
dynamically evolving information structure), P is the real world (or statistical) probability measure
assigned to event sets A ∈ F, and P is a class of equivalent probability measures on (Ω, FT ). There
exists an equivalent martingale measure Q ∈ P. This implies our market is arbitrage-free (from
Theorem 2.2.1). The information set is generated by the sample path realizations of the firm’s
asset value, denoted by Vt, over a subinterval [0, t] ≤ [0, T ]; viz.

Ft = σ(Vs, 0 ≤ s ≤ t)

The following assumptions characterise our credit risk model:

Assumption 1. The firm’s asset value process Vt, follows a jump-diffusion process under the
real-world measure P, i.e.

dVt/Vt− = µV dt + σ dWt + Yt dNt, (4.26)

where Nt is a time homogeneous Poisson process with intensity parameter λ, and Wt is a Brownian
motion process. The Poisson process Nt represents how many jumps occur in the interval [0, t]. The
constants µV and σ are the instantaneous expected rate of return and the instantaneous standard
deviation of the return of the firm’s assets, conditional that no jumps occur. The stochastic process
Yt represents the percentage changes in the firm’s asset value at time t, (i.e. Yt = (Vt+−Vt−)/Vt−).
If a jump occurs at time t then Yt < 0 or Yt > 0, otherwise Yt = 0. The processes Wt, Nt and Yt

are assumed to be jointly independent. Let τ1, τ2, ..., denote the arrival times of the jumps, and Ai

the logarithm of the ratio of the firm’s asset value after and before the ith jump, i.e.

Ai = ln
Vτ+

i

Vτ−i

= ln(Yτi + 1).

We assume all Ai’s to be independent and identically distributed with the following normal distri-
bution Ai ∼ N(µA, σ2

A).

Assumption 2. There exists a threshold value b 0, T (constant in the time interval [0, T ]) for the
value of the firm, at which the firm enters financial distress. When Vt > b 0, T the firm is able
to honour all its payment obligations, and when Vt ≤ b 0, T financial distress occurs and the firm
defaults on all of its immediate and future payment obligations.

Assumption 3. The value of all securities issued by the firm are functions of the firm’s asset
value and time (i.e. equity can be expressed as Et = f(Vt, t)).

Assumption 4. The riskless rate is constant, i.e. rt = r.
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Assumption 5. The market is frictionless, i.e. there are no transaction or bankruptcy costs or
taxes, borrowing and lending can be done at the same rate of interest, short sales of assets are
allowed. Arbitrage opportunities do not exist. The firm’s securities are traded continuously in this
market.

Assumption 6. The firm issues both debt and non-dividend paying equity. If it defaults, equi-
tyholders receive nothing and bondholders receive 1 − w(Vτ∗/b) times the face value of the debt
security. The notation τ∗ represents the time of default and the function w represents the per-
centage writedown on the bonds. The function w has the following linear form linear form of
w = w0 − (Vτ∗/b). The recovery rate R equals 1− w.

The usual assumption that the dynamics of the firm’s asset value follow a geometric Brownian
motion (Black & Scholes (1973) and Merton (1974)), is not sufficient to account for outliers that
exist in financial security prices. Fama (1965) investigated the behaviour of stock prices and found
considerable non-marginal movements in stock prices that could not be captured by a geometric
Brownian motion process. The logarithm of the returns of an asset that follows a geometric
Brownian motion process has a normal (Gaussian) distribution35. However, Fama (1965) and Hull
(2003) found that the market implied distribution for stock returns display leptokurtosis36. Note
that under the structural model, securities issued by the firm are assumed to have values which
are a function of the firm’s asset value. In order to capture this evidence of outliers in securities,
we have assumed a jump-diffusion process, similar to the stochastic process proposed by Merton
(1976). Pan (2002) found that assuming jumps in their asset distribution, plays an important role in
explaining the time-series behaviour of option prices. Cremers et al. (2005) found that a structural
model with jumps improves the fit of the equity distribution and option prices considerably, and
predicts market credit spreads more accurately too. Zhang et al. (2005) found that the jump effect
is a significant factor in explaining the variation in CDS premiums. In order to hedge the value
of a CDS with equity and equity options, we need a model that can capture the changes in these
security values accurately. The aforementioned papers provide evidence showing that by assuming
a jump-diffusion model for the firm’s asset value, improvement in the accuracy of prediction of
price changes in these securities occurs.

The notation b t, T represents the default triggering barrier. The default barrier b t, T can be
financially interpreted as the value of all future payment obligations, averaged over the time interval
[t, T ]. If we let Ct denote the time-t value of all the future payment obligations, then b t, T =∫ T

t
Ct dt/(T − t). Note as t and the choice of T changes, bt,T will differ. We will choose T to be

the maturity of the CDS we are trying to hedge. In this way we only need to estimate one barrier.
For notational brevity, we will denote bt,T by b; it will be clear from the pricing function it appears
in, what the values of t and T are.

By calculating equity values from a structural model with a barrier and without (the Merton
(1974) model) and comparing them to market equity prices, Brockman & Turtle (2003) found
that barriers in structural models are statistically significant. The barrier is defined as the value
of the firm’s assets at which the firm is unable to meet its payment obligations. Debt payments
are a major constituent of these payments. If the default barrier is presumed to be a monotonic
function of the outstanding debt, then by assuming the default barrier to be constant we predict
expected leverage ratios to decline exponentially over time37. However, in practice, firms have
target leverage ratios that they attempt to keep (see Liu (2005)) and thus expected leverage ratios
in practice are stationary (see Collin-Dufrense & Goldstein (2001)). Collin-Dufrense & Goldstein
(2001) model the default barrier as a mean-reverting38 stochastic process to capture temporary
fluctuations in leverage ratios and stationary expected leverage ratios. It is the ratio of the firm’s
assets and the default barrier rather than the actual value of barrier, that is critical in our analysis
of credit risk. We choose a constant barrier for simplicity. Our analysis can easily be extended
to accommodate more complicated default barriers. The assumption that when the firm defaults,

35If the asset follows a GBM, for example (4.1), then the logarithm of the asset’s returns follow a normal distrib-
ution, i.e. ln[(Vt − V0)/V0] ∼ N([r − σ2/2]t, σ2t).

36Leptokurtosis is the property of a probability density function having fatter tails and a higher peak at the mean
than a Gaussian distribution. This implies that there are more values at the extreme tails and at the mean than a
Gaussian distribution.

37By assuming the firm’s asset value dynamics follows (4.26), the expected value of the firm’s asset value increases
exponentially over time. Thus if the barrier is assumed to be constant, the expected leverage ratios will decline.
Additionally, the debt level will remain constant since we presume the level of debt to be a monotonic function of
the default barrier.

38The mean is the target leverage ratio.
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it defaults on all its payments simultaneously, is realistic since there exist cross-default provisions
and injunctions to service coupons on debt.

Securities issued by a firm are claims against the firm’s assets. For example bondholders will
receive their promised payments from the firm’s assets, which is either financed by the firm’s
cashflows, or proceeds of sold assets, or issuing equity or debt, all of which are constituents of the
firm’s asset value. If the payments are not honoured, the remaining assets are handed over to the
bondholders. Shareholders are the owners of the firm’s assets once all debt payments have been
made. Thus equity is a residual claim on the firm’s assets. Intuitively, it is evident that the firm’s
securities are functions of the firm’s asset value. We use a similar equity pricing formula as was
used in Finger (2002)

Et = EQ
[
e−r(T−t) max(VT − b t, T , 0)1{τ∗>T}|Ft

]
. (4.27)

Commonly, the focal point of credit risk models in academic literature, is to price defaultable
fixed income securities. These instruments are subject to both interest rate and credit risk. This
is the argument for introducing stochastic interest rates into structural models. However, pricing
defaultable fixed income securities is not the primary concern in this dissertation. Our focus is to
hedge a CDS with equity and equity options. Ericsson et al. (2004) regressed levels and changes in
CDS prices with theoretical determinants, the firm’s leverage, volatility, and the riskless rate. They
found that all have statistically significant explanatory power in the changes and levels of CDS
premia. However, the riskless rate has the least explanatory power. We have ignored interest rate
risk in our model by assuming the riskless rate to be constant. Our model can easily be adjusted
to include stochastic interest rates.

The assumptions in Assumption 5 are the usual Black & Scholes (1973) assumptions that allow
us to calculate arbitrage-free prices. We exclude bankruptcy costs and taxes since our barrier
is exogenous, thus bankruptcy costs and taxes are less influential than for endogenous barrier
models. Special mention must be made of the assumption that the firm’s securities must be traded
continuously. This assumption is necessary, since arbitrage-free prices are obtained on the principle
that the value of the security we are pricing can be replicated with tradeable assets. A common
assumption in structural models is that the firm’s assets are tradeable. Although convenient, such
an assumption is difficult to uphold from a practical viewpoint, since in practice the assets are
often not tradeable and the value of the firm is not observable. To circumvent, at least on the
theoretical level, the issue of non-tradeability of the firm’s assets, Ericsson & Reneby (1999) argue
that if at least one of the firm’s securities (e.g. shares) is traded, it is sufficient to postulate that
the firm’s asset value can be replicated by dynamic trading in the firm’s tradeable securities. To
understand the intuition of this argument consider an analogy with an ordinary stock option model.
Fundamentally, the stock option can be priced because we can replicate its payoff using the stock
and risk free bonds. However, we can just as well value the stock by replicating its payoff using
the traded option and risk-free bonds. In the same fashion we can value the firm’s asset using any
of the firm’s traded securities (e.g. shares, corporate bonds) and risk free bonds.

In practice the recovery rates, R = 1 − w, vary among firms, seniority of issue and even time
(see Altman (1992), Franks & Torous (1994) and Altman & Bencivenga (1995)). By adding jumps
to our model we can include the randomness of recovery rates in a natural way, that depends on
the remaining assets of the firm after default. Since our firm’s asset value follows a jump-diffusion
process, the value of the firm’s assets at default (i.e. Vτ ) is stochastic. The writedown percentage
function is a decreasing function of (Vτ∗/b) and is bond specific, thus a senior bond will have a
distinct w function from a junior bond. The recovery rate, 1 − w can also be thought of as the
result of a bargaining process among the claimants. Similar to Zhou (1997), we make the simple
assumption that the writedown function has the linear form of w = w0− (Vτ∗/b). We will estimate
w0, by equating EQ (1− [w0 − (Vτ∗/b)]) with the average market recovery rate, and then solving
for w0. This market estimation is done by calculating the average recovery rate of defaulted firms
with the same credit rating at issuance.

The absolute priority rule is the rule used in bankruptcy proceedings which states that creditors’
claims take priority over shareholders’ claims in the event of liquidation. Thus in the event of a
default on a bond payment, shareholders receive nothing. In practice this does not always occur,
and there are often violations of the absolute priority rule, especially in U.S.. However, such
violations are not common in Europe (see Franks & Torous (1989)). We assume shareholders
receive nothing once the firm defaults.
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4.6 Discussion

In this chapter we reviewed structural models in detail. We firstly looked at the seminal Merton
(1974) model. The Merton model has simplistic assumptions which results in the model underpre-
dicting market credit spreads and default probabilities. This is considered as a major drawback of
the Merton model. We then reviewed extensions to the Merton model, and analysed their effect
on equity and credit risk. We established that predictable default times are the cause of low short
term credit spreads and default probabilities. By assuming the firm’s asset value process Vt follows
a discontinuous process, the issue of predictable default times is resolved. Estimating the structural
model parameters are difficult since a firm’s asset value is not traded and unobservable. We discuss
four approaches to estimate these unobservable parameters. Lastly, the mathematical framework
and assumptions of our structural model are stated, with justification. We now use our proposed
model to price equity, equity options and credit default swaps.



Chapter 5

Pricing and Estimation

5.1 Introduction

Since our model does not admit closed form expressions for equity, equity options and credit default
swaps we apply Monte Carlo simulation to price theses securities. In this chapter we introduce
Monte Carlo simulation. We use a modified Monte Carlo simulation procedure to calculate our
prices: the Brownian bridge Monte Carlo hybrid method (Metwally & Atiya (2002)). We use this
procedure since it is computationally faster and more accurate than the standard Monte Carlo
method. We will discuss the convergence rate of our calculated Brownian bridge Monte Carlo
prices. Since our model produces non-analytical solutions for the prices of the securities under
investigation, we will use a calibration procedure to estimate our parameters. We discuss calibra-
tion and the Nelder & Mead (1965) minimising algorithm which will be used in our calibration
procedure. The following explanation of Monte Carlo methods and Brownian bridge is adapted
from Šelić (2006).

5.2 Principles of Monte Carlo Methods

Some mathematical models do not admit closed-form solutions for financial product prices, and we
have to resort to numerical or Monte Carlo methods. Monte Carlo methods are popular methods
that easily enable us to calculate estimates for these non-analytical prices. The topic of Monte Carlo
methods is a field of experimental mathematics, in which random numbers are used to perform
experiments. Typically these experiments are carried out on a computer using anywhere from
hundreds to billions of random numbers. By performing simulated experiments with computers,
complex mathematical models can rapidly be studied in a manner which is relatively simple and
inexpensive.

To calculate the no arbitrage prices for market instruments, we need to evaluate the discounted
payoff of the instrument, under the risk-neutral measure Q. By using Monte Carlo methods we can
compute estimates for these expectations. Suppose we need to find the expectation of a function
g, of a stochastic process1 Xt, ξ = E [g(Xt)], where Xt has pdf fXt(x). The Monte Carlo method
for estimating ξ is done by randomly sampling n points X

(1)
t , X

(2)
t , ..., X

(n)
t from the distribution2

of Xt, and then computing the mean of the function values of these sampled points,

ξ̂n =
g

(
X

(1)
t

)
+ g

(
X

(2)
t

)
+ ... + g

(
X

(n)
t

)

n
.

According to the Law of Large Numbers (LLN), if g is integrable over the domain of Xt then the
sample mean ξ̂n converges almost surely to the distribution mean ξ:

ξ̂n → ξ almost surely as n →∞.

1Note that we introduce this topic by estimating a financial contract whose value only depends on the underlying
asset at one particular time point. This can easily be extended to a contract whose value depends on the underlying
asset at various time points and for a contract whose value is dependent on more than one underlying asset.

2See Glasserman (2004) for methods to randomly sample points from specific distributions. Note that we sample
from the distribution for the measure under which the expectation is taken.

46



5.2. Principles of Monte Carlo Methods 47

Theorem 5.2.1. Central Limit Theorem (CLT). If X1, X2, ..., Xn is a random sample from
a distribution with mean µ and variance σ2 < ∞ then the limiting distribution of

Zn =
∑n

i=1 (Xi/n)− µ

σ/
√

n

is the standard normal distribution, i.e. Zn → Z in distribution as n →∞, where Z ∼ N(0, 1)

Proof. See Bain & Engelhardt (1991) [Thm. 7.3.2, p. 238-240].

Our sampled points are independent and identically distributed. Thus by the Central Limit
Theorem 5.2.1 (

ξ̂n − ξ
)
→ σg√

n
Z in distribution as n →∞, (5.1)

where Z ∼ N(0, 1) and σg is the standard deviation of g(Xt), σ2
g = Var[g(Xt)]. The standard

error of an estimator is defined as the standard deviation of the difference between the estimator
(ξ̂n) and the true value (ξ). The standard error for the Monte Carlo estimator ξ̂n, can be seen
from (5.1) to be σg/

√
n, which has a convergence rate O(n−1/2).

The expectation E [g(Xt)] is defined as the integral,
∫ ∞

−∞
g(x)fXt(x) dx.

The Monte Carlo method is in fact a method of estimating integrals. Another method to estimate
integrals is by using the trapezoidal rule. If the function g is twice differentiable then the simple
trapezoidal rule can be used to numerically evaluate the above integral. The simple trapezoidal
rule has a convergence rate of O(n−2), thus the Monte Carlo method has a slower convergence rate
than the simple trapezoidal rule. However, Monte Carlo excels when the problem involves higher
dimensions of the domain. If Xt ∈ Rd, then E (g(Xt)) would involve evaluating an d-dimensional
integral. The convergence rate for the Monte Carlo method is independent of the dimension of the
problem, however the convergence of the product trapezoidal rule for a d-dimensional integral is
O(n−2/d), if the integrand is twice differentiable. Thus the Monte Carlo method is advantageous,
with respect to the convergence rate, when the problem involves dimensions greater than three.

The CLT enables the construction of approximate confidence intervals for the estimate. The
CLT also enables us to calculate the number of sample points, that will make us 100(1 − α)%
confident3 the error of our Monte Carlo estimate ξ̂n is accurate to the kth decimal point

P
(
|ξ̂n − ξ| < 10−k

)
= 1− α

⇔ P

(
(−10−k

) √n

σg
<

ξ̂n − ξ

σg/
√

n
<

(
10−k

) √n

σg

)
= 1− α

⇒ P
((−10−k

) √n

σg
< Z <

(
10−k

) √n

σg

)
' 1− α.

In terms of standard normal percentiles:

P
(−z 1−α/2 < Z < z 1−α/2

)
= 1− α,

where z 1−α/2 represents the (1−α/2)th percentile of a standard normal distribution i.e. Φ(z 1−α/2) =
1 − α/2. Then, by using the standard normal distribution table, we can equate z 1−α/2 with
(10−k)

√
n/σg, and can calculate how many samples are needed, to be 100(1− α)% confident that

our estimate is accurate to the kth decimal place,

n ≈ (102k)σ2
g(z 1−α/2)2.

However, the parameter σg would typically be unknown in a setting in which ξ is unknown. However
by the LLN, applied to the sample variance:

s2
g =

1
n− 1

n∑

i=1

(
g

(
X

(i)
t

)
− ξ̂n

)2

,

3To conform with standard statistical literature we use (1− α) and not just α.
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we have that s2
g converges almost surely to the true variance σ2

g , for large n. Thus we can use
sg as an estimate for σg in the argument above4. In most practical problems of this type, the
sample variance is a good estimate for the distribution variance, and can be used in place of the
distribution variance to determine approximate confidence levels for ξ̂n.

We can increase the efficiency of the estimator ξ̂n by reducing its variance. There exist many
methods of reducing the variance of the Monte Carlo estimator ξ̂n (see Glasserman (2004) for
reviews on several of these variance reduction methods). The following briefly outlines two popular
variance reduction methods: control variates and antithetic variates.

The control variate method uses the price of another financial security that has a closed-form
solution, to reduce the variance error of the estimator. Lets denote the closed-form expression for
the price of another financial security5 as ξ∗ = E [h(Yt)]. The Monte Carlo estimate for ξ using
control variates is

ξ̂cv
n =

1
n

n∑

i=1

[
g

(
X

(i)
t

)
−

[
h

(
Y

(i)
t

)
− ξ∗

]]

= ξ̂n −
[
ξ̂∗n − ξ∗

]
,

where

ξ̂∗n =
h

(
Y

(1)
t

)
+ h

(
Y

(2)
t

)
+ ... + h

(
Y

(n)
t

)

n
.

The error ξ̂∗n − ξ∗ serves as a control in estimating ξ. The variance of the Monte Carlo control
variate estimator is

Var(ξ̂cv
n ) = Var

(
ξ̂n −

[
ξ̂∗n − ξ∗

])

=
1
n

(σ2
g − 2σg,h + σ2

h),

where σ2
h = Var[h(Yt)] and σg,h = Cov[g(Xt), h(Yt)]. Hence, the control variate estimator ξ̂cv

n has
a smaller variance than the standard estimator ξ̂n if

2σg,h > σ2
h. (5.2)

A good control variate would be one that is highly correlated (thus a high covariance) to the
financial product we are trying to estimate, in order for (5.2) to hold. In general a hedge portfolio
is a good control variate.

To simulate random a variable Xt from a specific density fXt(x), with cdf FXt(x), a uniformly
distributed random variable over [0, 1], i.e. U ∼ UNIF(0, 1), is generated. Next one applies the
inverse of the cdf to the uniformly generated random variable, Xt = F−1

Xt
(u). The antithetic

method is based on the observations that if U is uniformly distributed over [0, 1], then 1 − U is
too, and also Xt = F−1

Xt
(U) and X̃t = F−1

Xt
(1− U) both have the same CDF (they are distributed

identically). The estimate for ξ using antithetic variates is

ξ̂av
n =

1
n




n∑

i=1

g
(
X

(i)
t

)
+ g

(
X̃

(i)
t

)

2


 .

To compare the estimator variances of the antithetic variate method with the standard method, we
will assume that the standard method has 2n observations in its random sample. Using antithetic

4The confidence intervals are approximate since convergence only occurs for large n.
5Note that Yt and Xt do not have to be different. Usually these underlying assets would be the same because

we would want the covariance σg,h of these two financial securities prices ξ and ξ∗ to be high in order to reduce the
estimator’s variance.
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variates reduces variance if

Var


 1

n

n∑

i=1

g
(
X

(i)
t

)
+ g

(
X̃

(i)
t

)

2


 < Var

[
1
2n

2n∑

i=1

g
(
X

(i)
t

)]

i.e Var


 1

n

n∑

i=1

g
(
X

(i)
t

)
+ g

(
X̃

(i)
t

)

2


 < Var


 1

n

n∑

i=1

g
(
X

(i)
t

)
+ g

(
X

(n+i)
t

)

2




i.e Var
[
g

(
X

(i)
t

)
+ g

(
X̃

(i)
t

)]
< 2Var

[
g

(
X

(i)
t

)]
for all i = 1, . . . , n.

The variance on the left can be written as

Var
[
g

(
X

(i)
t

)
+ g

(
X̃

(i)
t

)]
= Var

[
g

(
X

(i)
t

)]
+Var

[
g

(
X̃

(i)
t

)]
+ 2Cov

[
g

(
X

(i)
t

)
, g

(
X̃

(i)
t

)]

= 2Var
[
g

(
X

(i)
t

)]
+ 2Cov

[
g

(
X

(i)
t

)
, g

(
X̃

(i)
t

)]
.

This uses the fact that X
(i)
t and X̃

(i)
t have the same distribution and so Var

[
g

(
X

(i)
t

)]
is equal to

Var
[
g

(
X̃

(i)
t

)]
. It can be seen that the condition to reduce the variance σ2

g is

Cov
[
g

(
X

(i)
t

)
, g

(
X̃

(i)
t

)]
< 0.

In a financial setting, a sufficient condition for antithetic variates to guarantee a reduction in the
variance of the estimator, is if the payoff function g of the derivative is monotone in the underlying
state variable Xt.

5.3 Brownian Bridge

The Brownian bridge method is an alternative method for constructing Brownian motion paths.
Let Wt be a Brownian motion at time t ≥ 0. The Brownian bridge technique generates Brownian
motion points Wtj given Wti = wti and Wtk

= wtk
, where ti < tj < tk. From the definition of

conditional densities,

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

we can determine the conditional density6 of Wtj = W = w given Wti = wti and Wtk
= wtk

:

f(W |Wti , Wtk
) =

f(w,wti , wtk
)

f(wti , wtk
)

=

1√
2πti(tj−ti)(tk−tj)

exp
(
− 1

2

[(
wti

ti

)2

+
(

w−wti

tj−ti

)2

+
(

wtk
−w

tk−tj

)2
])

1√
2πti(tk−ti)

exp
(
− 1

2

[(
wti

ti

)2

+
(

wtk
−wti

tk−ti

)2
]) .

This can be simplified to:

f (W = w|Wti = wti ,Wtk
= wtk

) =
1√

2πσ2
bb

exp
(
− 1

2σ2
bb

[
(w − µbb)

2
])

, (5.3)

where

σ2
bb =

(tk − tj)(tj − ti)
(tk − ti)

, µbb =
(

tk − tj
tk − ti

)
wti +

(
tj − ti
tk − ti

)
wtk

.

To simulate Brownian motion paths, we can generate Wtj given realisations Wti = wti and
Wtk

= wtk
using the following linear interpolation

Wtj =
(

tk − tj
tk − ti

)
wti +

(
tj − ti
tk − ti

)
wtk

+

√(
(tk − tj)(tj − ti)

(tk − ti)

)
Z, (5.4)

6We will omit the subscripts for the following density functions for notational simplicity.
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where Z is a N(0, 1) distributed random variable. The above linear interpolation (5.4) has an
equivalent distribution as the conditional distribution (5.3).

Consider the construction of a Brownian motion path with n steps Wt0 ,Wt1 ,Wt2 , ..., Wtn
. The

Brownian bridge algorithm first generates the endpoints Wtn =
√

tnZ and Wt0 = 0 of the Brownian
motion path, and then sequentially “fills in” the remaining points in the path, conditional on the
previously generated realisations. The next sample point to be generated in the Brownian bridge
algorithm is Wt[n/2] . It is generated using the realised endpoints wt0 and wtn

. The sequence is
generated in the following order, using the closest two realised Brownian motion points to the one
that is being generated

Wt0 ,Wtn
,Wt[n/2] ,Wt[n/4] ,Wt[3n/4] ,Wt[n/8] , ...

For example, if the n = 10, the sequence of Brownian motion points will be generated in the
following order

Wt0 ,Wt10 ,Wt5 , Wt2 ,Wt7 ,Wt1 ,Wt3 ,Wt6 ,Wt8 ,Wt4 , Wt9 .

The standard method of generating a Brownian motion point Wtj
, given the realisation Wti

= wti

where tj > ti, is done by the following function of a standard normal random variable

Wtj
= wti

+
√

(tj − ti)Z. (5.5)

The variance of the points of a Brownian bridge constructed Brownian motion path is smaller than
that of the points of a standard constructed Brownian motion path. This can be seen by comparing
the variances of expressions (5.4) and (5.5):

(tj − ti) >
(tk − tj)(tj − ti)

(tk − ti)
.

Furthermore the majority of the variance of the points of the Brownian Bridge constructed path
is contained in the initial steps.

5.4 A Brownian Bridge Simulation Procedure for Pricing
CDS Premiums

The difficulty in a jump-diffusion framework is the derivation of analytical expressions for exotic
financial derivatives prices. We often need to evaluate these prices using numerical or Monte Carlo
methods. In the structural model framework, default is modelled as the firm’s asset value process,
Vt, hitting a default barrier bt. In our case, we are modeling Vt using a jump-diffusion process and
the default barrier is a constant b. In order to find analytical expressions for the value of the CDS
premiums we need a closed-form solution for the risk-neutral probability of Vt crossing the barrier
b before the time T , maturity of the CDS:

Q(inf Vs ≤ b, 0 ≤ s ≤ T ). (5.6)

Closed form solutions do exist for expression (5.6), but only when the jump size distribution
follows specific distributions such as the double-exponential distribution, Kou & Wang (2003),
the mixed exponential distribution, Mordecki (2002), or when jumps are only positive, Blake &
Lindsey (1973). In general closed form solutions do not exist. Monte Carlo methods are able to
provide numerical solutions for expression (5.6) for general jump-diffusion processes. We will use in
particular a Monte Carlo Brownian bridge hybrid simulation procedure developed by Metwally &
Atiya (2002). This method significantly increases speed of convergence and reduces bias7 compared
to the standard Monte Carlo approach. The speed of convergence is important for us, since we
estimate our model parameters by calibration, and this procedure entails calculating Monte Carlo
estimates several times.

The standard Monte Carlo method for evaluating financial derivatives with a barrier feature,
when the underlying state variable follows a jump-diffusion process, requires simulating the risk-
neutral jump-diffusion process of the underlying state variable at short time steps until the deriv-
atives’ maturity is reached. Thus, under the proposed structural model, in order to price the

7The bias of an estimator ξ̂ is given by: b(ξ̂) = E(ξ̂)− ξ.
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premiums of a CDS initiated at t0 = 0 with maturity T , we must divide the interval [0, T ] into
small time steps, and then simulate the jump-diffusion process Vt along these time steps, under the
risk-neutral measure Q. This would be done by firstly generating the jump times τ1, τ2, ..., τN(T )

using the distribution of the jump times (N(T ) represents the number of jumps up to time T ).
Once the jump times are generated, then one can simulate the diffusion section between the jumps
along the short time steps. When a jump time is reached, one simulates the jump size according
to the assumed distribution of the jump sizes. This is done until the maturity of the CDS. The
value of the CDS premium is obtained by averaging the discounted CDS payoff profile from each
simulated path, and then calculating the value of the premium that makes the average of the
discounted CDS payoff profiles equal to zero.

The major problem with the standard Monte Carlo approach, is that by simulating the under-
lying stochastic process (Vt) at short time steps, we introduce bias into the estimate of the CDS.
To reduce this bias, one must further divide the time interval into smaller time steps, however this
increases the amount of times one needs to generate random values, increasing computation time.
The Monte Carlo Brownian bridge hybrid method uses the fact there exists a closed form solution
for the conditional probability that a process, that follows a GBM, remains above a barrier for
a certain time interval, conditional on the process starting and ending on this time interval at
specified values. Therefore, once one has generated the jump times τ1, τ2, . . . , τN(T ), the asset
values at these jump times and jump sizes, one merely can use these conditional probabilities to
calculate the value of a CDS. This method is computationally quicker than the standard Monte
Carlo method and also eliminates the bias completely.

5.4.1 Model Description and the CDS Pricing Formula

Our firm’s value process Vt is assumed to follow a jump-diffusion process, under the real-world
measure P,

dVt

Vt−
= µV dt + σ dWt + Yt dNt, (5.7)

where Nt is a Poisson process with intensity parameter λ, and Yt > 0 represents the percentage
change in V at time t. If there is a jump at time t = τi then Yt = (Vt+ − Vt−)/(Vt−), otherwise
Yt = 0. The stochastic processes Wt, Nt, and Yt are mutually independent. Let Ai be the logarithm
of the ratio of V after and before the ith jump:

Ai = ln Vτi
+ − ln Vτi

− = ln(Yτi + 1). (5.8)

We assume Ai is normally distributed:

Ai ∼ N(µA, σ2
A).

Let Jt be the sum of the logarithms of the ratio of jump sizes in the interval [0, t]

Jt =
N(t)∑

i=1

Ai.

The solution of the SDE (5.7) under the risk neutral measure Q is given by8

Vt = V0 exp
[(

r − σ2

2
− λκ

)
t + σWQ

t + Jt

]
,

where

κ = EP(Yt) = exp
(

µA +
σ2

A

2

)
− 1,

and WQ
t is a Brownian motion process under measure Q.

If we let X(t) = ln Vt, then the transformed process X(t) follows a normal distribution i.e.

X(t) ∼ N
(

X(0) +
[
r − σ2

2
− λκ + µAλ

]
t, σ2t +

[
σ2

A + µ2
A

]
λt

)
.

8See Appendix A.3 to understand why Vt has this form under measure Q .
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The proposed Monte Carlo algorithms will be applied to the transformed process X(t), since it is
computationally faster than using the process Vt.

To determine the fair premium p̃ 0, T , that is paid periodically at times t1, t2, . . . , tn = T , one
needs to find the discounted risk-neutral expectation of the CDS payoffs, set it to 0 and solve for
p̃(0, T )

φ(0, 0, T ) = EQ
[

n∑

i=1

(
e−rti p̃(0, T )(ti − ti−1)N1{τ∗>ti} + e−rτ∗ p̃(0, T )(τ∗ − ti−1)N1{ti−1<τ∗<ti}

)

− e−rτ∗N(1−R)1{τ∗≤T}
]

= 0 (5.9)

where9

τ∗ = inf{t > 0 : Vt ≤ b},
R is the recovery rate10, N is the notional amount of the CDS and φ(0, 0, T ) represents the value
at time t = 0 (present time) of a CDS, initiated at time t = 0 with maturity T . Let τ∗ = s and
rewrite the expectations in terms of integrals, then the RHS of equation (5.9) becomes

p̃ 0, T N

n∑

i=1

e−rti(ti − ti−1)EQ
[
1{s>ti}

]
+ p̃ 0, T N

n∑

i=1

EQ
[
e−rs(s− ti−1)1{ti−1<s<ti}

]

−N(1−R)EQ
[
e−rs1{s≤T}

]

= p̃ 0, T N

n∑

i=1

[
e−rti(ti − ti−1)

∫ ∞

0

1{s>ti}h(s) ds +
∫ ∞

0

e−rss1{ti−1<s<ti}h(s) ds

]

−N

[
n∑

i=1

p̃ 0, T ti−1

∫ ∞

0

e−rs1{ti−1<s<ti}h(s) ds + (1−R)
∫ ∞

0

e−rs1{s≤T}h(s) ds

]

= p̃ 0, T N

n∑

i=1

[
e−rti(ti − ti−1)

∫ ∞

ti

h(s) ds +
∫ ti

ti−1

e−rssh(s) ds

]

−N

[
n∑

i=1

p̃ 0, T ti−1

∫ ti

ti−1

e−rsh(s) ds + (1−R)
∫ T

0

e−rsh(s) ds

]
(5.10)

where h(·) is the pdf of the random variable τ∗. Since Vt is a jump-diffusion process with log-normal
jump sizes, we unfortunately do not have a closed form expression for the pdf h(·). In order to
find the premium p̃ 0, T that makes the value of a newly minted CDS contract equal to 0, we set
equation (5.10) equal to 0 and make p̃ 0, T subject of the formula

p̃ 0, T =
(1−R)

∫ T

0
e−rsh(s) ds

∑n
i=1

(
e−rti(ti − ti−1)

∫∞
ti

h(s) ds +
∫ ti

ti−1
e−rssh(s) ds− ti−1

∫ ti

ti−1
e−rsh(s) ds

) . (5.11)

The proposed hybrid Monte Carlo method numerically evaluates these non-analytical integrals.

5.4.2 Outline of the Monte Carlo Brownian Bridge Method to Price
CDS premiums

The simulation procedure starts by firstly generating the jump times using the inter-arrival jump
time distributions, which are i.i.d. with an exponential distribution11 with mean 1/λ i.e.

(τi − τi−1) ∼ Exp(1/λ), ∀i ∈ N.

In between jump times, for t ∈ [τi−1, τi], the risk-neutral asset value process follows a pure GBM
diffusion process

dVt

Vt
= (r − λκ) dt + σ dWQ

t , (5.12)

9Since we want to find the fair premium at t = 0 for a CDS with maturity T , the barrier we are working with is
b 0, T . For notational brevity we just denote it as b.

10To condense the following analysis we assume the recovery rate is constant. The recovery rate can be easily
changed in this Monte Carlo framework to our model assumption, that states that the R = 1− [w0 − (Vτ∗/b)] .

11Since the number of jumps Nt has a Poisson distribution with mean λ.
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Using Itô’s Lemma (see Appendix A.1.1) the dynamics of the transformed process X(t) = ln Vt,
for t ∈ [τi−1, τi], can be represented in the following SDE form

dX(t) =
(

r − σ2

2
− λκ

)
dt + σdWQ

t ,

We can generate the transformed asset values immediately before the jump times, X(τ−i ) where
i = 1, 2, ..., N(T ), using its normal distribution

X(τ−i ) ∼ N
(

X(τ+
i−1) +

[
r − σ2

2
− λκ

]
(τi − τi−1) , σ2 (τi − τi−1)

)
.

Note that to generate a value for X(τ−i ) we need a value for the transformed asset value immediately
after the previous jump X(τ+

i−1). This will be calculated by generating the transformed asset jumps,
Ai−1 = X(τ+

i−1)−X(τ−i−1), which are i.i.d. with a Normal distribution with mean µA and variance
σ2

A. Once this is generated we add Ai−1 to X(τ−i−1) to get the value of the transformed asset value
immediately after the jump time τi−1. Let τN(T )+1 = T . If any one of these generated transformed
asset values X(τ−i ) and X(τ+

i ), for i = 1, 2, ..., N(T ), N(T ) + 1, are less than ln b then the firm
has defaulted and the CDS buyer stops paying his periodic payments and the CDS seller pays out
the default payment at the time of the default barrier crossing12. However, the firm’s asset value
process could have fallen below the barrier in between the jump times. To accommodate for this,
we use the conditional probability of the firm’s asset value process crossing the barrier in these
inter-jump intervals (note that the process follows a GBM in between these jumps), conditional on
the asset values taking on known values at the end of these inter-jump intervals. We then use this
conditional probability with the concept of uniform sampling in order to sample a hitting time in
between jumps. Now, that we’ve covered all possibilities of reaching the default barrier b, either
by jumps or by diffusion, we sequentially generate these possible default barrier crossings, until a
crossing or maturity, whichever comes first. Finally we average all the payoffs of a CDS resulting
from these simulated paths, equate it to 0 and calculate the fair premium p̃ 0, T .

5.4.3 Conditional First Passage Time Distribution

The stopping time τ∗i = inf{τi−1 ≤ s ≤ τi : Vs ≤ b}, is the first-passage time of the GBM process
Vs to the constant barrier b on the interval [τi−1, τi]. Note that inf ∅ = +∞. If we let τ∗i = t, the
conditional probability density function of the first passage time τ∗i , conditional on the end-values
of the process on the interval [τi−1, τi], is defined as13:

gi(t) = f
(
t|X(τ+

i−1) = x(τ+
i−1), X(τ−i ) = x(τ−i )

)
. (5.13)

Using Bayes’ rule14 the above equation (5.13) can be expressed as

gi(t) =
f

(
t, x(τ−i )|x(τ+

i−1)
)

f
(
x(τ−i )|x(τ+

i−1)
)

=
f

(
t|x(τ+

i−1)
)
f

(
x(τ−i )|t, x(τ+

i−1)
)

f
(
x(τ−i )|x(τ+

i−1)
) . (5.14)

Then by the definition of τ∗i and by the Markov property of X(t), the above equation (5.14)
becomes

f
(
t|x(τ+

i−1)
)
f

(
x(τ−i )|x(t) = ln b

)

f
(
x(τ−i )|x(τ+

i−1)
) . (5.15)

From the assumed Gaussian distribution of X(t) on the inter-jump interval [τi−1, τi], the following
two expressions can be rewritten:

f
(
x(τ−i )|x(t) = ln b

)
=

1√
2π(τi − t)σ2

exp
(
− [x(τ−i )− ln b− c(τi − t)]2

2σ2(τi − t)

)
, (5.16)

f
(
x(τ−i )|x(τ+

i−1)
)

=
1√

2π(τi − τi−1)σ2
exp

(
− [x(τ−i )− x(τ+

i−1)− c(τi − τi−1)]2

2σ2(τi − τi−1)

)
, (5.17)

12We must also check if barrier crossing has occurred at maturity T = τN(T )+1.
13We will omit the subscripts for the following density functions for notation simplicity.
14See Bain & Engelhardt (1991) for the Bayes’ rule Theorem.
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where c = r − λκ− σ2/2. The remaining component of expression (5.15) is derived from the first
passage time (FPT) distribution15 of a GBM process

f
(
t|x(τ+

i−1)
)

=
x(τ+

i−1)− ln b√
2πσ2

(t− τi−1)−
3
2 exp

(
− [x(τ+

i−1)− ln b− c(t− τi−1)]2

2σ2(t− τi−1)

)
. (5.18)

Now substituting (5.16), (5.17) and (5.18) into (5.15), and simplifying we get:

gi(t) =
x(τ+

i−1)− ln b

2πσ2y
(t− τi−1)−

3
2 (τi − t)−

1
2 ×

exp

[
− [x(τ−i )− ln b− c(τi − t)]2

2(τi − t)σ2
− [x(τ+

i−1)− ln b− c(t− τi−1)]2

2(t− τi)σ2

]
,

where

y =
1√

2π(τi − τi−1)σ2
exp

(
− [x(τ+

i−1)− x(τ−i ) + c(τi − τi−1)]2

2σ2(τi − τi−1)

)
.

The conditional probability (under the risk-neutral measureQ) that the risk-neutral GBM asset
value process Vt (5.12) will hit the barrier b on the interval [τi, τi−1], conditional on the values of the
asset process at the end-points on this interval is computed by integrating the FPT distribution16:

pi = Q
(

inf
τi−1≤s≤τi

Vs ≤ b
∣∣∣ Vτ+

i−1
= vτ+

i−1
, Vτ−i

= vτ−i

)

= Q
(

inf
τi−1≤s≤τi

X(s) ≤ ln b
∣∣∣ X(τ+

i−1) = x(τ+
i−1), X(τ−i ) = x(τ−i )

)

= Q (τi−1 < τ∗i < τi)

=
∫ τi

τi−1

gi(t) dt

=





exp
(
−2[ln b−x(τ+

i−1)][ln b−x(τ−i )]

(τi−τi−1)σ2

)
if x(τ−i ) ≥ ln b

1 otherwise
(5.19)

The conditional probability of not reaching the barrier in the interval [τi, τi−1] is defined as p̄i :=
1− pi.

5.4.4 Decomposition of the CDS Pricing Formula

In this section we decompose the RHS of equation (5.10), in order to observe that this Monte Carlo
Brownian bridge algorithm indeed evaluates φ(0, 0, T ). For notational brevity we set p̃ 0, T := p̃ for
this section 5.4.4 only.

By the Tower property we can express φ(0, 0, T ) as

φ(0, 0, T ) = EQ
[
EQ

[
n∑

i=1

(
e−rti p̃(ti − ti−1)N1{τ∗>ti}

+ e−rτ∗ p̃(τ∗ − ti−1)N1{ti<τ∗<ti}
)
− e−rτ∗N(1−R)1{τ∗≤T}

∣∣∣∣∣F
∗
]] (5.20)

where

F ∗ := σ
{

N(T ); 0 < τ1 < . . . < τN(T ) < T ;X
(
τ−1

)
, X

(
τ+
1

)
, . . . , X

(
τ−N(T )

)
, X

(
τ+
N(T )

)
, X(T )

}

is the σ-algebra representing the information set containing the number of jumps, the location of
the jump times, the values of X immediately before and after jump times, and the value of X at

15See Appendix B for the calculation of the first passage time distribution for a GBM process. Note in the
appendix the FPT distribution is calculated with a drift term µV , in this section our drift term for our GBM
process is r − λκ.

16See Metwally & Atiya (2002) [§2, p. 47 ] for more details.
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maturity. Note that X
(
τ+
i

)
= X

(
τ−i

)
+ Ai (from (5.8)), and so the information set generated by

the values X
(
τ−i

)
and X

(
τ+
i

)
is equivalent to the information set generated by the values X

(
τ−i

)
and Ai. If we let

N(T ) = k,

τ1 = z1, . . . τk = zk,

X
(
τ−1

)
= x1, . . . , X

(
τ−k

)
= xk, X(T ) = xk+1,

A1 = y1, . . . , Ak = yk,

then by the definition of the information set F ∗ and from the assumption that X(t), τi and N(t)
are mutually independent ∀ i ∈ N and ∀ t ∈ R+, we can rewrite the outer expectation of expression
(5.20) in terms of a summation over the discrete random variable k, and integrals of the continuous
random variables z1, . . . zk ; x1, . . . , xk, xk+1 and y1, . . . , yk :

∞∑

k=0

∫

(z1,...,zk)

∈[0,T ]k

∫

(x1,...,xk+1)

∈[−∞,∞]k+1

∫

(y1,...,yk)

∈[−∞,∞]k

EQ
[

n∑

i=1

(
e−rti p̃(ti − ti−1)N1{τ∗>ti}

+ e−rτ∗ p̃(τ∗ − ti−1)N1{ti<τ∗<ti}
)
− e−rτ∗N(1−R)1{τ∗≤T}

∣∣∣∣∣F
∗
]

× fA1,...,Ak
(y1, . . . , yk) dy1 · · · dyk fX(τ−1 ),...,X(τ−k ),X(T )(x1, . . . , xk+1) dx1 · · · dxk+1

× 1{τ1<···<τk<T}fτ1,...,τk
(z1, . . . , zk|N(T ) = k) dz1 · · · dzk fN(T )(k).

(5.21)

The terms fA1,...,Ak
(y1, . . . , yk) and fX(τ−1 ),...,X(τ−k ),X(T )(x1, . . . , xk+1) are the joint probability den-

sity functions for A1, . . . , Ak and X(τ−1 ), . . . , X(τ−k ), X(T ), respectively. Furthermore, the expres-
sion fN(T )(k) is the probability mass function17 (pmf) for the discrete random variable N(T ) and
the expression fτ1,...,τk

(z1, . . . , zk|N(T ) = k) is the conditional joint probability density function of
τ1, . . . , τk conditional that N(T ) = k.

Since we assumed the number of jumps to follow a Poisson process with intensity parameter λ,
N(T ) ∼ POI(λT ). The pmf for N(T ) is

fN(T )(k) =
e−λT (λT )k

k!
. (5.22)

A consequence of assuming the number of jumps following a homogenous (constant intensity para-
meter) Poisson process, is that the inter-arrival jump times τ̃i = τi− τi−1, ∀i ∈ N are independent
and have an exponential distribution with mean 1/λ:

τ̃i ∼ EXP(1/λ).

Suppose that 0 < τ1 < τ2 < · · · < τk < T . Then the conditional joint probability density function
of τ1, . . . , τn given N(T ) = k can be written in terms of τ̃i:

fτ1,...,τk
(z1, . . . , zk|N(T ) = k) =

Q(τ̃k+1 < T − τk)
fN(T )(k)

k∏

i=1

fτ̃i(z̃i), (5.23)

where fτ̃i(z̃) is the pdf of the random variable18 τ̃i, and z̃i = zi − zi−1. Since τ̃i ∼ EXP(1/λ)
equation (5.23) can also be expressed as

fτ1,...,τk
(z1, . . . , zk|N(T ) = k) =

λeλz1λeλ(z2−z1) · · ·λeλ(zk−zk−1)eλ(T−zk)

eλT (λT )k/k!

=
k!
T k

. (5.24)

17The probability mass function is fN(T )(k) = Q[N(T ) = k].
18Note τ0 = t0 = 0 and thus z0 = 0.
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We have assumed that Ai ∀i ∈ N, are independent and have a normal distribution with mean µA

and variance σ2
A. Thus the explicit form of the joint probability density function fA1,...,Ak

(y1, . . . , yk)
is

fA1,...,Ak
(y1, . . . , yk) =

k∏

i=1

fAi
(yi) (5.25)

=
(
2πσ2

)−k/2
exp

(
k∑

i=1

(yi − µA)2

2σ2
A

)
,

where fAi
(yi) is the probability density function of the random variable Ai. From equation (5.12)

it can be seen that the firm’s asset value process V follows a GBM in between jump times. Hence
X̃(τi) := X(τ−i ) − X(τ+

i−1), for all 0 ≤ τi ≤ T , are mutually independent and have a normal
distribution, i.e.

X̃(τi) ∼ N
([

r − σ2

2
− λκ

]
(τi − τi−1), σ2(τi − τi−1)

)
.

Note that X(τ+
i−1) = X(τ−i−1) + Ai−1, so X̃(τi) = xi − (xi−1 + yi−1). The joint probability density

function fX(τ−1 ),...,X(τ−k ),X(T )(x1, . . . , xk+1) can be written in terms of X̃(τi):

fX(τ−1 ),...,X(τ−k ),X(T )(x1, . . . , xk+1) =
k+1∏

i=1

fX̃(τi)
(x̃i) (5.26)

=

[
k+1∏

i=1

(
2πσ2τ̃i

)−1/2

]
exp

(
k+1∑

i=1

x̃i −
(
r − σ2/2− λκ

)
τ̃i

2σ2τ̃i

)

where x̃i = xi − (xi−1 + yi−1) and fX̃(τi)
(x̃i) is the pdf of the random variable X̃(τi). Note that

τ0 = t0 = 0 and τk+1 = T . Substituting (5.22), (5.24), (5.25), and (5.26) into (5.21) results in

∞∑

k=0

∫

(z1,...,zk)

∈[0,T ]k

∫

(x1,...,xk+1)

∈(−∞,∞)k+1

∫

(y1,...,yk)

∈(−∞,∞)k

EQ
[

n∑

i=1

(
e−rti p̃(ti − ti−1)N1{τ∗>ti}

+ e−rτ∗ p̃(τ∗ − ti−1)N1{ti<τ∗<ti}
)
− e−rτ∗N(1−R)1{τ∗≤T}

∣∣∣∣∣F
∗
]

k∏

i=1

fAi(yi) dyi

×
k+1∏

i=1

fX̃(τi)
(x̃i) dxi 1{τ1<···<τk<T} dzi e−λT λk.

(5.27)

Now define the following:

Qi := max {q ∈ {0, 1, . . . , n} : tq < τi} , i.e. τi ∈ (tQi , tQi+1],

J := min
{

j ∈ {1, . . . , N(T )} : Vτ+
j
≤ b

}
, min ∅ := N(T ) + 1,

Gτ∗i := max {g ∈ {0, 1, . . . , n} : tg < τ∗i } , i.e. τ∗i ∈ (tGτ∗
i
, tGτ∗

i
+1],

and remember that τ∗i = inf{τi−1 ≤ s ≤ τi : Vs ≤ b}, (the first hitting time of the barrier in the
ith inter-jump interval). Taking into account the information set F ∗ and that V has independent
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increments, the conditional expectation in expression (5.27) can be expressed as:

EQ
[

n∑

i=1

(
e−rti p̃(ti − ti−1)N1{τ∗>ti} + e−rτ∗ p̃(τ∗ − ti−1)N1{ti<τ∗<ti}

)

− e−rτ∗N(1−R)1{τ∗≤T}

∣∣∣∣∣F
∗
]

= NEQ
[

J∑

j=1

(
j−1∏

l=1

1{τ∗l 6∈(τl−1,τl)}

)
1{τ∗j ∈(τj−1,τj)}

(
p̃

Qj∑

i=1

(ti − ti−1)e−rti + p̃(τ∗j − tGτ∗
j
)e−rτ∗j

− (1−R)e−rτ∗j

)∣∣∣∣∣F
∗
]

+ NEQ
[
1{J 6=0}

J∏

l=1

1{τ∗l 6∈[τl−1,τl]}
(

p̃

QJ∑

i=1

(ti − ti−1)e−rti + p̃(tQJ − τJ)e−rτJ

− (1−R)e−rτJ

)∣∣∣∣∣F
∗
]

+ p̃NEQ
[
1{J=0}

N(T )+1∏

l=1

1{τ∗l 6∈[τl−1,τl]}
(

n∑

i=1

(ti − ti−1)e−rti

)∣∣∣∣∣F
∗
]

= N

J∑

j=1

j−1∏

l=1

(
p̄lpj p̃

Qj∑

i=1

(ti − ti−1)e−rti + p̄lp̃EQ
[
1{τ∗j ∈[τj−1,τj ]}(τ

∗
j − tGτ∗

j
)e−rτ∗j

− (1−R)e−rτ∗j

∣∣∣∣∣F
∗
])

+ 1{J 6=0}N
J∏

l=1

(
p̄lp̃

QJ∑

i=1

(ti − ti−1)e−rti + p̄lp̃(tQJ
− τJ)e−rτJ

− p̄l(1−R)e−rτJ

)
+ 1{J=0}p̃N

N(T )+1∏

l=1

p̄l

(
n∑

i=1

(ti − ti−1)e−rti

)

= N

J∑

j=1

j−1∏

l=1

(
p̄lpj p̃

Qj∑

i=1

(ti − ti−1)e−rti + p̄lp̃

∫ τj

τ∗j

(
(s− tGs)e

−rs − (1−R)e−rs
)
gj(s) ds

)

+ 1{J 6=0}N
J∏

l=1

(
p̄lp̃

QJ∑

i=1

(ti − ti−1)e−rti + p̄lp̃(tQJ − τJ)e−rτJ

− p̄l(1−R)e−rτJ

)
+ 1{J=0}p̃N

N(T )+1∏

l=1

p̄l

(
n∑

i=1

(ti − ti−1)e−rti

)
.

(5.28)

Essentially three events can occur: V does not reach the barrier in the lifetime of the CDS
[0, T ], V reaches the barrier by the diffusion part of V , or V reaches the barrier by a jump. The
above expression (5.28) covers all three of these possible events. The first part of expression (5.28)
deals with reaching the barrier by the diffusion part of V , the second part deals with V reaching
the barrier by a jump, and the final part deals with no barrier crossing.

5.4.5 Sampling a First Hitting Time in an Inter-Jump Interval

The integral in expression (5.28) cannot be evaluated in closed form. In order to evaluate this
non-analytical integral, we perform a uniform sampling method. Consider an inter-jump interval
[τi−1, τi], this sampling method samples the first hitting time τ∗i , conditional on the asset values at
the beginning and end of the inter-jump intervals. The conditional probability that the asset value
will hit the barrier during this interval is given by equation (5.19). In order to make sure that the
probability of the sampled first hitting time s falls in this interval is equal to pi, we sample from a
uniform distribution over the interval [τi−1, τi−1 + l], where l = (τi− τi−1)/pi. In order to see that
these probabilities are equal, let S ∼ UNIF(τi−1, τi−1 + l), then the probability that a realisation19

of S will fall in the interval [τi−1, τi] is given by:

Q(τi−1 ≤ s ≤ τi) = FS(τi)− FS(τi−1)

=
τi − τi−1

τi−1 + l − τi−1
− τi−1 − τi−1

τi−1 + l − τi−1

=
τi − τi−1

l
= pi,

19A sampled point from UNIF(τi−1, τi−1 + l) distribution is denoted by s.
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where FS(s) is the cdf of S ∼ UNIF(τi−1, τi−1 + l). Thus the probability of the random variable S
falling in the inter-jump interval is equal to the conditional probability of the first hitting time in
the interval [τi−1, τi].

We sequentially work through each of the intervals generating a point s each time. If s falls in
the inter-jump interval under consideration, then a barrier crossing has occurred. If s falls outside
the inter-jump interval then the barrier has not been reached in the interval.

5.4.6 The Simulation Algorithm to Price the Premium of a CDS

The following is an algorithm to price the fair premium20 of a newly created CDS contract, using the
Monte Carlo Brownian bridge simulation method. Premiums are paid periodically until maturity
T or default whichever comes first and the default payment is paid at default. The steps of the
algorithm are as follows21:

1. For w = 1 to W , perform Monte Carlo simulations according to steps 2
to 4:

2. Generate the jump times τi for i = 1, 2, ..., N(T ) = K, using the inter-
arrival jump time distributions, (τi − τi−1) ∼ Exp(1/λ).

3. For j = 1 to K + 1 (loop through all inter-jump intervals, including the
final interval [τK , τK+1 = T ]):

a. Generate the jth jump size aj , from its distribution, Aj ∼ N(µA, σ2
A).

b. Generate the transformed asset value the instant before the jth jump
time x(τ−j ), according to its normal distribution:
X(τ−j ) ∼ N

(
x(τ+

j−1) +
[
r − σ2/2− λκ

]
(τj − τj−1), σ2(τj − τj−1)

)
.

c. Calculate the transformed asset value the instant after the jth jump,
x(τ+

j ) = x(τ−j ) + aj . Note that ak+1 = 0.

d. Calculate the conditional probability pj according to equation (5.19).
d. Let l = (τj − τj−1)/pj .
e. Generate a point sj from a uniform distribution in the interval

[τj−1, τj−1 + l], UNIF(τj−1, τj−1 + l)
f. If sj ∈ [τj−1, τj ], default has occurred, then:
• Evaluate the conditional first passage time density gj(sj).
• Let DiscDefaultPayment(w) = (1−R)lgj(sj)e−rsj .
• Let DiscPremiums(w) =

∑Q(j)
i=1 e−rti(ti−ti−1)+(sj−tQ(j))lgj(sj)e−rsj ,

where Q(j) := max {q ∈ {0, 1, . . . , n} : tq < sj}.
• Exit the j loop, return to step 1, now w = w + 1, and perform another

Monte Carlo simulation.
g. If x(τ+

j ) ≤ ln b, then the jth jump has crossed the barrier and default
has occurred. Then:
• Let DiscDefaultPayment(w) = (1−R)e−rτj .
• Let DiscPremiums(w) =

( ∑H
i=1 e−rti(ti − ti−1) + (τj − tH)e−rτj

)
,

where H := max {h ∈ {0, 1, . . . , n} : th < τj}.
• Exit j loop , return to step 1, now w = w + 1, and perform another

Monte Carlo simulation.
h. If x(τ+

j ) > ln b, no default has occurred at the jth jump. Proceed to
the next inter-jump interval. This is done by returning to step 3, where
now j = j + 1.

20The fair premium is the premium p̃ that makes φ(0, 0, T ) = 0.
21Note that in this chapter we assumed the recovery rate is constant. If we wanted to include our original

assumption on the recovery rate, we would have to simulate (Vτ∗/b). This can be done by firstly simulating the
first hitting time, then one can simulate the firm’s value at the first hitting time.
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4. If default does not happen until the maturity T then:
• LetDiscDefaultPayment(w) = 0.
• LetDiscPremiums(w) =

∑n
i=1 e−rti(ti − ti−1).

• Exit j loop, return to step 1, now w = w + 1, and perform another
Monte Carlo simulation.

5. If w = W , we have completed W Monte Carlo simulations. Calculate
the Monte Carlo estimate for the fair premium of a CDS, with notional
N :
• p̃ = N 1

W

∑W
w=1

DiscDefaultPayment(w)
DiscPremiumPayments(w) .

5.4.7 The Brownian Bridge Simulation Algorithm to Value a CDS

The simulation algorithm to value a CDS contract after the CDS issue date follows similarly as
the algorithm to price the fair CDS premium. Lets assume the CDS contract we are valuing, was
issued at t = 0, and we are valuing it at some future time point tf . The value of this CDS at time
tf is

φ(0, tf , T ) =EQ
(

[p̃(tf , T )− p̃(0, T )]
n∑

i=1

[
1{ti≥tf}e

−r(ti−tf )(ti − ti−1)1{τ∗>ti}

+ 1{ti≥tf}e
−r(τ∗−tf )(τ∗ − ti−1)N1{ti−1<τ∗<ti}

])
.

(5.29)

See Section 3.8 for the derivation of equation (3.7) which reduces to equation (5.29) on setting
t = 0. Note that the present time was equal to 0 when calculating the fair premium, we now
wish to value the CDS at time tf . The decomposition of this formula is very similar to the CDS
premium decomposition, except that we do not include the protection seller’s default payoff. We
now present a Brownian bridge algorithm to value a CDS at time tf after time of issue 0 i.e. the
value of φ(0, tf , T ). Steps from 1 to 3e are the same as for the algorithm for the fair premiums,
so we start from 3f:

3. For j = 1 to K + 1 (loop through all inter-jump intervals, including the
final interval [τK , τK+1 = T ]):

f. If sj ∈ [τj−1, τj ], default has occurred. Then:
• Let DiscDiffPremiums(w) = [p̃(tf , T )− p̃(0, T )]

( ∑Q(j)
i=1 e−r(ti−tf )

×(ti− ti−1) + (sj − tQ(j))lgj(sj)e−r(sj−tf )
)
.

• Exit the j loop, return to step 1, now w = w + 1, and perform another
Monte Carlo simulation.

g. If x(τ+
j ) ≤ ln b, then the jth jump has crossed the barrier and default

has occurred. Then:
• Let DiscDiffPremiums(w) = [p̃(tf , T )− p̃(0, T )]

( ∑H
i=1 e−r(ti−tf )

×(ti − ti−1) + (τj − tH)e−r(τj−tf )
)
.

• Exit j loop , return to step 1, now w = w + 1, and perform another
Monte Carlo simulation.

h. If x(τ+
j ) > ln b, no default has occurred at the jth jump. Proceed to

the next inter-jump interval. This is done by returning to step 3, where
now j = j + 1.

4. If default does not happen until the maturity T then:
• Let DiscDiffPremiums(w) = [p̃(tf , T )− p̃(0, T )]

∑n
i=1 e−r(ti−tf )

×(ti − ti−1).
• Exit j loop, return to step 1, now w = w + 1, and perform another

Monte Carlo simulation.
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5. If w = W , we have completed W Monte Carlo simulations. Calculate
the Monte Carlo estimate for the fair premium of a CDS, with notional
N :
• φ(0, tf , T ) = 1

W

∑W
w=1 DiscDiffPremiums(w).

5.4.8 The Brownian Bridge Simulation Algorithm to Price Equity

In a similar fashion we can price the firm’s equity using this Monte Carlo Brownian bridge method.
Under our structural model framework the price of equity at time t is given by

Et = EQ
[
e−r(T−t) max(VT − b t, T , 0)1{τ∗>T}

∣∣Ft

]
, (5.30)

where bt,T is the barrier for the interval22 [t, T ]. If there are η number of outstanding shares then
the price of a single share at time t is

St =
Et

η
. (5.31)

From (5.30) we can see that to obtain an analytical expression for the price of equity one needs a
closed form solution for the risk-neutral probability of default. Under our assumed jump-diffusion
framework this closed form solution does not exist. We will estimate the price of equity E0 using
Monte Carlo simulation. Specifically we will use the Monte Carlo Brownian bridge algorithm as we
did for the CDS premiums. Thus for23 t = 0 equation (5.30) can be written similarly to equation
(5.21), with the inner conditional expectation equal to

EQ
[
e−rT max(VT − b0,T , 0)1{τ∗>T}|F ∗] . (5.32)

The above conditional expectation (5.32) can be decomposed into24

1{J=0}

N(T )+1∏

l=1

p̃l(max(VT − bt,T , 0)). (5.33)

The steps of the Monte Carlo Brownian bridge algorithm will be as for the algorithm for CDS
premiums, except for steps 3f, 3g, 4 and 5. These steps are altered to evaluate the equity payoff
profile:

3. For j = 1 to K + 1 (loop through all inter-jump intervals, including the
final interval [τK , τK+1 = T ]):

f. If sj ∈ [τj−1, τj ], default has occurred. Then:
• Let DiscEquityPayoff(w) = 0.
• Exit the j loop, return to step 1, now w = w + 1, and perform another

Monte Carlo simulation.
g. If x(τ+

j ) ≤ ln b, then the jth jump has crossed the barrier and default
has occurred. Then:
• Let DiscEquityPayoff(w) = 0.
• Exit j loop , return to step 1, now w = w + 1, and perform another

Monte Carlo simulation.
h. If x(τ+

j ) > ln b, no default has occurred at the jth jump. Proceed to
the next inter-jump interval. This is done by returning to step 3, where
now j = j + 1.

4. If default does not happen until the maturity T then:
• Let DiscEquityPayoff(w) = e−rT max(eXT − b0,T , 0).
• Exit j loop, return to step 1, now w = w + 1, and perform another

Monte Carlo simulation.

22Note that we use T to denote a generic maturity for the security under consideration. We do this for notational
simplicity. The maturity of the CDS and equity need not be the same. When we are dealing with more than one
security we will distinguish between the maturities.

23To correspond with the notation in the algorithm for the CDS premium, we will consider the price of equity at
time 0. The algorithm is equivalent for t > 0, except that our starting time points differ.

24The notation here is the same as for the decomposition of the CDS premium formula (5.28).
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5. If w = W , we have completed W Monte Carlo simulations. Calculate
the Monte Carlo estimate for the fair premium of a CDS, with notional
N :
• E0 = 1

W

∑W
w=1 DiscEquityPayoff(w).

5.4.9 Numerical Results of the Brownian Bridge Simulation Algorithm

We perform the Monte Carlo Brownian bridge simulation algorithm on two examples for both CDS
premiums and share prices. We numerically investigate the convergence rate of this algorithm for
both CDS premiums25 p̃ and share prices S. For the CDS premium examples we keep parameters
V0, b, R, r and T unchanged through the two examples. The values of these parameters are:
V0 = 10000, b = 4000, R = 0.4, r = 0.05 and T = 5 years. We choose to use different values for σ,
λ, µA and σA for the different examples since these values together with maturity26 determine the
variance of the CDS premiums27, and from expression (5.1) it can be seen that the convergence
rate of our Monte Carlo estimate for p̃ is a function of Var(p̃). The values of these parameters for
each of the CDS examples are as follows:

Example σ λ µA σA

CDS Example 1 0.3 1 -0.05 0.02
CDS Example 2 0.5 2 -0.07 0.1

Table 5.1: The different parameter values for the Monte Carlo Brownian bridge simulation proce-
dure, to calculate the fair CDS premium.

For the share price examples we keep the values for the parameters V0, b and r the same as for the
above CDS cases. The number of shares equals η = 1000. We choose to use different values for
T , σ, λ, µA and σA for the different share examples for the same reason as stipulated in the CDS
case28. Their values for each example are:

Example σ λ µA σA T

Share Example 1 0.3 1 -0.05 0.02 5
Share Example 2 0.5 2 -0.07 0.1 10

Table 5.2: The different parameter values for the Monte Carlo Brownian bridge simulation proce-
dure, to calculate the share price.

There are two different set of parameters for CDS premiums and share prices: low volatility
parameter set29 (example 1) and high volatility parameter set (example 2). We name them so,
since lower values of the parameter set produce a lower variance for V and higher values produces
higher variance for V .

From expression (5.1), it can be seen that a higher number of simulations produces a more
accurate Monte Carlo estimate. However, we need to find a balance between computation time
and accuracy. We wish to determine how many simulations are required to achieve a subjectively
reasonable convergence. It can be seen from Figure 5.1, that the low parameter set converges
quicker than the high parameter set. For example 1 for CDS and equity, it can be seen that a
reasonable convergence occurs at the 500 000 and 200 000 simulation mark, respectively. This
can be seen from Plot (a.1) and Plot (b.1) from Figure 5.1. For example 2 for CDS and equity, a
reasonable convergence occurs at the 700 000 and 300 000 simulation mark, respectively (see Plot
(a.2) and Plot (b.2) from Figure 5.1). The dotted lines in Figure 5.1, represent the maximum and
minimum values after the chosen simulation mark of reasonable convergence. We need to calibrate
these parameters eventually, which is computationally intensive under the Monte Carlo framework.

25For this section of numerical analysis the premiums are paid twice a year: mid-year and at the end of the year.
26We do not use different maturities, since the standard maturity for a CDS contract is 5 years. Also note that

maturity values are measured in years.
27These parameters determine the variances of all the stochastic elements in our model.
28Note that different maturities are used in the share price case since, unlike the CDS case, there is no standard

maturity.
29The majority of the estimated parameters in the empirical tests done in Chapter 6, fall under the low volatility

parameter set.
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Thus we need to know how many simulations are needed under a parameter value set, which will
achieve reasonable convergence.
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Figure 5.1: Plot (a.1) and (a.2) refer to CDS example 1 and 2 respectively. Plot (b.1) and (b.2)
refer to share example 1 and 2 respectively.

We also compare the effectiveness of the Brownian bridge Monte Carlo algorithm against the
standard Monte Carlo algorithm for a jump diffusion framework. We run MATLAB programs on a
Pentium IV 3.20 GHz computer. The number of simulations for the particular example are specified
in the tables. The number of simulations is chosen from the previous analysis on convergence. We
know that the Brownian bridge method has zero bias, and therefore use its simulation result to
obtain the true value of the CDS premium and share price. We use 10 million iterations to obtain
the true vales. We record the bias between the simulated results and the true value and the
computation CPU time (measured in seconds). The results are displayed in Table 5.3 and Table
5.4:

CDS Example 1 Comparisons

Method 500 000 simulations Bias (abs) Bias (%) CPU Time
Standard Monte Carlo ∆t = 0.01 0.0162295 -0.46206 1368.782
Standard Monte Carlo ∆t = 0.001 0.0156827 -0.44649 57789.512
Brownian Bridge Monte Carlo 0.0017029 -0.04848 34.828
True value: 0.03512

CDS Example 2 Comparisons

Method 700 000 simulations Bias (abs) Bias (%) CPU Time
Standard Monte Carlo ∆t = 0.01 0.1616869 -0.54997 5092.516
Standard Monte Carlo ∆t = 0.001 0.1587716 -0.54006 64758.438
Brownian Bridge Monte Carlo 0.0154644 -0.05261 64.414
True value: 0.29399

Table 5.3: Numerical comparison of the standard Monte Carlo method versus the Monte Carlo
Brownian bridge method applied to pricing CDS premiums, for different parameter sets.
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Share Example 1 Comparisons

Method 200 000 simulations Bias (abs) Bias (%) CPU Time
Standard Monte Carlo ∆t = 0.01 0.0555575 -0.00896 1202.251
Standard Monte Carlo ∆t = 0.001 0.0445763 -0.00719 11277.391
Brownian Bridge Monte Carlo 0.0063537 -0.00102 12.313
True value: 6.19724

Share Example 2 Comparisons

Method 300 000 simulations Bias (abs) Bias (%) CPU Time
Standard Monte Carlo ∆t = 0.01 0.1138508 0.0171 2156.546
Standard Monte Carlo ∆t = 0.001 0.0861704 0.01287 46151.515
Brownian Bridge Monte Carlo 0.0136171 0.00203 23.204
True value: 6.69756

Table 5.4: Numerical comparison of the standard Monte Carlo method versus the Monte Carlo
Brownian bridge method applied to pricing share prices, for different parameter sets.

From the tabled results it can be seen that the standard Monte Carlo method becomes more
accurate as our time discretisations ∆t become smaller. However this significantly increases com-
putation time. The proposed Brownian bridge algorithm is not only considerably faster but also
more accurate as measured by the bias of the estimate. In both equity and CDS examples, both
methods take more time to complete and are less accurate for the high volatility parameter set.
The reason why the estimates are less accurate is because the variance increases with higher values
of the parameter set, thus our estimates have a higher standard error. In order to increase accuracy
one needs to increase the number of simulations. The Monte Carlo Brownian bridge method is
superior in both accuracy and computation time for all scenarios tested.

5.5 Valuing Equity Options by a Monte Carlo Linear Re-
gression Approach

It is difficult to price an equity option in our structural model framework because equity options
are in fact compound options. In order to price this compound option we have to evaluate a
conditional expectation, which is a non-trivial problem within a Monte Carlo framework.

Under our structural model framework the price of an equity call option at time 0, with strike
K and maturity T ∗ < T , is given by30

ϕ0 = EQ
[
e−rT∗ max(ST∗ −K, 0)

]
. (5.34)

The stock price ST∗ itself is an option under our structural model framework. From (5.30) and
(5.31) ST∗ can be written as

ST∗ = η−1EQ
[
e−r(T−T∗) max(VT − bT∗,T , 0)1{τ∗>T}

∣∣∣FT∗
]
. (5.35)

Thus in order to evaluate (5.34) we need to evaluate the conditional expectation (5.35). The naive
approach to obtain a Monte Carlo estimate for equation (5.34) would be to simulate a number of
paths for the firm’s asset value from 0 until the option maturity T ∗, and then for each of these
paths simulate again a number of firm’s asset value paths from T ∗ to T (called resimulation).
This resimulation procedure requires simulating a large number of sample paths which causes high
computation time. For example if we use 100 000 simulated paths until T ∗ and then for each
of these paths simulate another 100 000 paths from T ∗ to T , we end up simulating 10 000 000
000 paths. Figure 5.2 illustrates how the simulated paths31 have to be simulated to evaluate the
conditional expectation (5.35).

30In practice, following a bankruptcy announcement by a firm, trading in it’s underlying stock is suspended by
the exchange that lists the firm. When trading in the underlying stock has been halted, trading on the options is
also halted. Equity option positions are usually then immediately closed out by the clearinghouse. For simplicity,
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Figure 5.2: Example of simulated sample paths of a resimulation procedure.

Longstaff & Schwartz (2001) provide an efficient alternative to obtain a Monte Carlo estimate
for options that are functions of conditional expectations such as (5.34). They name it the Least
Squares Monte Carlo (LSM) approach. For our problem, the LSM approach involves simulating
one set a sample paths from 0 until T . The conditional expectation (5.35) is estimated from the
cross-sectional information of the simulated paths, at time T ∗ by using least squares regression.
This is done by regressing the discounted payoffs32 on a set of basis functions33 of the various
values of the firm’s asset value at time T ∗.

5.5.1 The LSM Algorithm

For example, say we need to find a Monte Carlo estimate for the following expression

EQ
[
g

(
EQ [h(VT )|FT∗ ]

)]
. (5.36)

The LSM approach uses least squares regression to approximate the inner conditional expectation
within expression (5.36). Let

f = EQ [h(VT )|FT∗ ] .

Note that since V is a Markov process, f is function of VT∗ and not of any past realisations of
V . Let ωi represent the ith sample path of V . If we simulate W number of paths for V , we will
have W number of realisations for f . We can write f as f(VT∗(ω)) to show its dependence on
the realisations of VT∗(ω). Longstaff and Schwartz assumed that f can be represented as a linear
combination of a countable set of FT∗-measurable orthonormal34 basis functions35. There are many
possible choices of basis functions. Here are a few types: Laguerre, Hermite, Legendre, Chebyshev
and Jacobi polynomials. Section 5.5.2 has numerical comparisons of two different choices of basis
function: Laguerre, and a simple order 3 polynomial function. Let {Ln} represent the general form
of our choice of basis functions. With this specification, f(VT∗) can be represented as

f(VT∗) =
∞∑

j=0

βjLj(VT∗),

where the coefficients βj are constants.
To implement the LSM approach, we approximate f(VT∗) using the first M < ∞ basis functions

and denote this truncated approximation by fM (VT∗). If we simulate W number of paths of V from

we will assume that the equity options are closed out at the options maturity.
31The parameters used to generate Figure 5.2 are: V0 = 10000, r = 0.05, σ = 0.2, λ = 1, µA = −0.05, σA = 0.2,

T ∗ = 2 and T = 4. The number of simulated paths are 5 and 10 for the interval [0, 2] and [2, 4], respectively.
32For our case, the discounted payoffs are e−r(T−T∗) max(VT − b T∗, T , 0)1{τ∗>T}.
33This will be explained in Section 5.5.2.
34See Fraleigh & Beauregard (1995) for the definition of orthonormal functions.
35Some integrability conditions must hold for this assumption to hold: see Longstaff & Schwartz (2001) for further

explanation on this assumption.
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0 until T , we can then estimate fM (VT∗) by regressing realised values of h(VT (ωi)) on fM (VT∗(ωi))
for each i = 1, . . . ,W . This involves finding the least squares estimates for βj , j = 1, . . . ,M , which
we will denote as β̂j . By substituting β̂j for βj in fM (VT∗), we get a least squares approximation for
fM (VT∗), which we will denote by f̂M (VT∗)36. The conditional expectation function f is estimated
by f̂M (VT∗). We then estimate (5.36) by averaging the realisations g

[
f̂M (VT∗(ωi))

]
, i.e.

W−1
W∑

i=1

g
[
f̂M (VT∗(ωi))

]
.

In some cases it may be more efficient to use alternative regression techniques, such as weighted
least squares or generalised least squares in estimating the conditional expectation function. For
example, if the process V has volatility that is a function of V , then the residuals from regression
may be heteroskedastic. In this case these alternative regression techniques may have advantages37.
Longstaff and Schwartz point out that numerical tests indicate that the results from the LSM
algorithm are remarkably robust to the choice of basis functions. They also notice that few basis
functions are needed to closely approximate the conditional expectation function (they use M = 3
for their numerical analysis). It is important to note the numerical implications of the choice basis
functions. It could lead to computation overflows depending on the how large the realised values
of VT∗ are. This can be resolved by normalising V .

For our case38,
h(VT ) = e−r(T−T∗) max(VT − bT∗,T , 0)1{τ∗>T}

and
g = e−rT∗ max(h(VT )−K, 0).

We calculate all our equity option prices ϕ0, using the LSM algorithm, with Laguerre polynomials
as our choice of basis functions (with M = 3).

5.5.2 Numerical Comparison of Basis Functions

In this section we compare two choices of basis function to illustrate that this choice has a negligible
impact on our numerical results. We chose a Laguerre polynomial

β0 + β1e
−V/2 + β2e

−V/2(1− V ) + β3e
−V/2(1− 2V + V 2/2), (5.37)

and a simple order 3 polynomial

β0 + β1V + β2V
2 + β3V

3, (5.38)

for our two choices of basis function. We then apply both these basis functions to price equity op-
tions using the described Longstaff and Schwartz method.39. Figure 5.3 illustrates the convergence
and variability of the results achieved from the two basis functions. The strike price is K = 3 for
all the plots. The parameters used for Plot (a.1) and (b.1) are equivalent to those used in Section
5.4.9 for equity example 1, the equity option maturity is T ∗ = 0.25. Similarly Plots (a.2) and (b.2)
have equivalent parameters to equity example 2, with option maturity T ∗ = 0.5.

It can be seen from Figure 5.3 that both basis functions produce very similar results. There is
a significant difference when the high volatility parameter set is used. From Figure 5.3 it can be
seen that the simple polynomial basis functions produces estimates with a higher variance. The
low and high parameter set examples converge reasonably after the 500 000 and 600 000 mark
respectively. The dotted lines represent the maximum and minimum values after the respective
reasonable convergence mark.

36Note that f̂M (VT∗ ) converges in probability to fM (VT∗ ) as W tends towards to infinity.
37See Longstaff & Schwartz (1995) for more details.
38Note that the function h(VT ) is also a function of τ∗, which depends on other realisations of V. This indicator

can easily be evaluated within the LSM algorithm by noting if any simulated paths cross the barrier.
39We use the Monte Carlo Brownian bridge algorithm to simulate sample paths.
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Figure 5.3: Plot (a.1) and (a.2) correspond to the Longstaff Schwartz method using the Laguerre
basis function, with different parameter sets. Plot (b.1) and (b.2) correspond to the Longstaff
Schwartz method using the simple polynomial basis function, with different parameter sets.

5.6 Estimation of parameters

The parameters in our model that need to be estimated are θ = (V0, σV , b, λ, µA, σA). We choose
the calibration method in order to estimate the parameter set θ, and the simple estimating method
for the initial guess for our calibration procedure40. We choose the calibration method since the
other estimation methods need analytical solutions for the share price. Our model does not omit
closed-form solutions for the share price. We are going to estimate our parameters θ by calibrating
our model prices to market prices. We are going to use the sum of the squared differences41 a as
measure of how well our calibration procedure is performing. Define

g(θ) =
n∑

i=1

(
Ui(θ)− Uobs

i

)2
, (5.39)

where Uobs
i is the observed market price of the ith calibrating instrument42, and Ui(θ) is the

theoretical price given by the model for this instrument. We denote the estimates for our parameters
by θ̂. Our objective is to search for the values of the parameters that minimise g(θ) i.e.

θ̂ = arg inf
θ

n∑

i=1

(
Ui(θ)− Uobs

i

)2
. (5.40)

We will use the Nelder & Mead (1965) direct search method to locate the parameters that minimise
g(θ). This is a standard method to find the minimum. We use this method since it is simple to
implement in our framework. The following sections on the Nelder-Mead simplex method is derived
from the paper Lagarias et al. (1998).

40See Section 4.4 for details on the different available estimating methods for structural models.
41See Hull (2003) for alternative more complex measures.
42In our case this would be either shares, CDS premiums, or share options of different strikes and maturities. The

number of market instruments used will be equal to the number of parameters we are estimating.
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5.6.1 The Nelder-Mead Simplex Method

Nelder & Mead (1965) developed a direct search method43 that aims to find the minimum44 of
a function g(θ) of k variables θ = (θ1, θ2, ..., θk). It depends solely on comparing the function
values at the (k+1) vertices of a general simplex45, and replacing the vertex with the highest value
achieved with another created vertex with a lower function value. We will denote a simplex by
4. This algorithm terminates when the simplex structure contracts sufficiently. It is necessary to
specify a convergence criterion46. This simplex adapts itself to the local landscape of the function
g(θ), by using four operations: reflection, expansion, contraction and shrinkage. Four parameters
relating to these operations must firstly be specified to define the Nelder-Mead method: coefficients
of reflection ρ, expansion χ, contraction γ and shrinkage κ. According to Nelder & Mead these
coefficients must satisfy the following inequalities

ρ > 0, χ > 1, 0 < γ < 1 and 0 < κ < 1.

The standard values for these coefficients used in the Nelder-Mead algorithm are:

ρ = 1, χ = 2, γ =
1
2

and κ =
1
2
.

5.6.2 The Nelder-Mead Algorithm

At the beginning of the jth iteration, j ≥ 0 of the Nelder-Mead algorithm, a new simplex is given
by 4j , along with its k + 1 vertices, each of which are points in Rk. The first step at the jth

iteration is to order and label the vertices as θ
(j)
(1), θ

(j)
(2), . . . , θ

(j)
(k+1), such that

g
(
θ

(j)
(1)

)
≤ g

(
θ

(j)
(2)

)
≤ · · · ≤ g

(
θ

(j)
(k+1)

)
.

For notational brevity, let g
(
θ

(j)
(i)

)
= g

(j)
(i) . The jth iteration of this algorithm generates another

set of k + 1 vertices that defines a different simplex for the next iteration, the (j + 1)th iteration,
so that 4j 6= 4j+1. The following steps illustrate a generic iteration. We omit the superscript j
to simplify the notation:

1. Order. The k + 1 vertices must be ordered to satisfy to g(1) ≤ g(2) ≤
... ≤ g(k+1).

2. Reflect. Calculate the reflection point θr from

θr = θ̄ + ρ(θ̄ − θ(k+1))

where θ̄ =
∑k

i=1 θ(i)/k is the centroid of the vertices excluding θ(k+1).
Substitute the above reflection point into the function g and evaluate
gr = g(θr). If g(1) ≤ gr < g(k), replace θ(k+1) with the reflected point θr

and skip to the last step (step 6) of the iteration. Otherwise proceed on
to the next step.

3. Expand. If gr < g(1), calculate the expansion point θe from

θe = θ̄ + χ(θr − θ̄)

Substitute the above expansion point into the function g and evaluate
ge = g(θe). If ge < gr, replace θ(k+1) with the expanded point θe and
skip to last step (step 6) of the iteration. Otherwise proceed on to the
next step.

43The expression direct search method means that the gradient (derivative) of the function is not used to determine
the minimum of the function.

44Note that this algorithm finds local minima. To find the global minimum you would to have run this algorithm
several times to cover the whole domain.

45A simplex is a geometric figure in k-dimensions of non-zero volume.
46The convergence criterion is usually a measure of the distance of the vertices from a central point.
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4. Contract. If gr ≥ g(k), perform a contraction with either θr or θ(k+1)

depending on which parameters gives us the lowest function value
a. Outside . If g(k) ≤ gr < g(k+1) calculate the outside contraction point

θoc from

θoc = θ̄ + γ(θr − θ̄)

Substitute the above outside contraction point into the function g and
evaluate goc = g(θoc). If goc ≤ gr, replace θ(k+1) with the outside
contracted point θoc and skip to last step (step 6) of the iteration.
Otherwise proceed on to the next step.

b. Inside . If gr ≥ g(k+1) calculate the inside contraction point θic from

θic = θ̄ − γ(θ̄ − θk+1)

Substitute the above inside contraction point into the function g and
evaluate gic = g(θic). If gic < g(k+1), replace θ(k+1) with the inside
contracted point θic and skip to last step (step 6) of the iteration.
Otherwise proceed on to the next step.

5. Shrink. Construct k new vertices by the following equation

θi = θ(1) + κ(θ(i) − θ(1)),

i = 2, ..., n + 1. The new set of unordered vertices for the new simplex
consists of θ(1),θ2, ..., θk+1. Note that we keep the vertex θ(1), which
produces the lowest value when substituted in g. Evaluate g at these
vertices, and proceed to the next step.

6. Stopping Criterion. Evaluate the following

k+1∑

i=1

(gi − ḡ)2 /k.

where ḡ =
∑k+1

i=1 gi/(k + 1). The above measure indicates how close
the vertices are amongst themselves. When the measure is below the
preset value, the local minimum has been reached. In this case stop the
algorithm, otherwise start another iteration beginning at step 1.

The result of each iteration is a new simplex with either a single new vertex that replaces θ(k+1) or,
if a shrink is performed, a new set of k vertices along with θ(1). The variables above are assumed
to be individually unconstrained. However, this algorithm also holds for individually constrained
variables. One method to deal with constraints on the variables, is by assigning a large function
value to g when the variables violate their constraints. It will be generally inaccessible to reach an
actual minimum at these constraints, though arbitrarily close approaches could be made to it.

To initiate the Nelder-Mead algorithm we need an initial guess for θ. We use the simple
estimating method for this. The initial asset value V0 is estimated with the most recent total asset
value figure in the balance sheet. The asset volatility σ is estimated by calculating the standard
deviation of the percentage changes in the firm asset value Vt. The default barrier is estimated
as the midpoint between the long term liabilities and the current liabilities of the firm (Crosbie
& Bohn (2003)). We calculate the initial estimate for λ by counting the number of non-marginal
percentage changes per year. We consider a non-marginal change to be a jump greater than 2σ.
We estimate µA and σA by calculating the mean and standard deviation of the natural logarithm
of the percentage changes, respectively.

No assumptions are made on the surface of the function g except that it is continuous and it has
a unique minimum around the area of the search. A general problem common with all minimisation
problems is the false convergence to a point other than the minimum. Refining the convergence
criterion could just add needless evaluations and it could still end up being ineffective. A method
to overcome this is to continue after the first convergence for a specified number of iterations, and
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then evaluate the convergence criterion again. If the second set of functions meet the convergence
criterion, then compare the two sets of converged function values. If they are sufficiently close,
convergence is accepted. Note that since we are working in a jump-diffusion framework, we have
an incomplete market which has several equivalent martingale measures. Thus there exist several
possible parameter set values that will achieve the same prices47. Cont & Tankov (2004b) studied
calibration under a jump-diffusion framework. They extend the calibration measure (5.39) to
include a relative entropy term. A possible criterion48 to choose a set of parameter values is to
choose the parameter set values that do not oscillate excessively when a small change in the market
prices occurs.

5.7 Discussion

Our jump-diffusion framework does not admit analytical solutions for the values of a CDS, equity
or equity options. We use Monte Carlo methods to estimate these values. In this chapter we
introduce Monte Carlo simulation methods, and a few variance reduction methods. We use the
Brownian bridge Monte Carlo method (Metwally & Atiya (2002)) to price these financial securities.
The advantages of this method are that it is computationally faster and has a smaller bias than the
standard Monte Carlo method. We numerically investigated the convergence rate of this method for
different parameter sets. In order to calculate the price of an equity option, under our framework,
we need to calculate the conditional expectation (5.35). We do this by using the Monte Carlo linear
regression method developed by Longstaff & Schwartz (2001). Lastly, in this chapter we discussed
how the parameters of our model are estimated. We use a calibration procedure to estimate the
model’s parameters. We discussed the Nelder-Mead minimising algorithm, which is implemented
in our calibration procedure in order to find the parameters that minimise the calibration measure
(5.39).

47See Appendix A.
48See Cont & Tankov (2004b).



Chapter 6

Numerical Analysis

6.1 Introduction

In this chapter we summarise the effects of credit risk on the values of credit default swaps, stocks
and stock options. An explanation of hedging and an examination of the difference in hedging in
complete and incomplete markets, is included. We focus only on one particular hedging method,
termed delta hedging. A hedging efficiency measure is constructed, so the empirical hedging results
can be tested and compared. An outline of the procedure used to perform the hedges is provided.
To begin with, we test the hedging mechanism on simulated data, and then apply the hedges to
market data. The results are presented, and a discussion of the results follows. Finally, we draw a
conclusion from the results.

6.2 Effects of Credit Risk on CDS, Equity and Equity Deriv-
atives

Risk is related to the variability of the future value of a financial position, due to market changes
or more generally to uncertain events. Credit risk is the uncertainty of the ability of an obligor to
honour payment obligations1. Credit risk of a firm affects the value of all the securities issued by
the firm, debt and equity. As a firm’s credit risk increases, the firm’s financial health decreases (its
propensity to default increases). In this case investors in the firm will become sceptical of realising
a return on their investment, and so the value of their investment will decrease.

The value of a CDS contract, with maturity T , at some time tf ≥ t, after it was initially issued
at time t, is equal to2

φ(t, tf , T ) =N
(
p̃tf , T − p̃t, T

)
EQ

[
n∑

i=1

1{ti≥tf}

(
e−r(ti−tf )(ti − ti−1)1{τ∗>ti}

+ e−r(τ∗−tf )(τ∗ − ti−1)1{ti−1<τ∗<ti}

)]
,

(6.1)

where

p̃tf , T =
EQ

[
e−r(τ∗−tf )(1−Rτ∗)1{τ∗≤T}

]

EQ
[∑n

i=1 1{ti≥tf}
(
e−r(ti−t)(ti − ti−1)1{τ∗>ti} + e−r(τ∗−tf )(τ∗ − ti−1)1{ti−1<τ∗<ti}

)] .

(6.2)
By construction, credit default swaps reflect a firm’s credit risk, since the value of a CDS φ(t, tf , T )
is primarily affected by all the major constituents of credit risk arrival risk, timing risk and recovery
risk. At time of issue t the CDS spread p̃t, T is chosen such that the value of the CDS contract is
equal to 0. At a future time point tf > t, the credit risk of the reference entity (the firm which the
CDS contract was written on) may have changed. Thus the CDS spread for providing protection
from the future time point tf until the same maturity T will change if the market’s perception
of the reference entity’s credit risk has also changed. If at a future time tf the credit risk has

1See Section 3.2, for a detailed description of credit risk.
2See Section 3.8 for the derivation of equations (6.1) and (6.2).
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increased, the probability of default would also have increased, thus the CDS spread p̃t, T also
increases. This can be seen from Equation (6.2). If the spread for time interval [tf , T ] is higher
than the spread for the time interval [t, T ], i.e. p̃t, T < p̃tf , T , then the original contract issued at
t, has a positive value for the CDS buyer and a negative value for the CDS seller at time tf . The
reason for this is that the spread the CDS buyer is paying for default protection, is cheaper than
the spread being offered at time tf . The CDS seller has a negative value since he is receiving a
spread lower than the current market spread.

The main objective of this dissertation is to hedge one’s exposure on a CDS position, with an
equity position (either using an equity option or the underlying equity). We chose a structural
credit risk model since it enables us to link the value of a CDS with the value of equity via the
firm’s asset value V . The default time τ∗ in time interval [tf , T ] is modelled as

τ∗ = inf{s ≥ 0 : Vs ≤ b tf , T }.
Let t ≤ tf ≤ tg ≤ T . Then under our model assumptions, the tf–time value of a share3 is:

Stf
= η−1EQ

[
e−r(T−tf ) max(VT − b tf , T , 0)1{τ∗>T}

∣∣∣Ftf

]
. (6.3)

A European share call option4 maturing at tg ≥ tf , has value:

ϕtf
= EQ

[
e−r(tg−tf ) max(Stg

−K, 0)
∣∣∣Ftf

]
, (6.4)

and a European share put option maturing at tg ≥ tf , has value:

ϕtf
= EQ

[
e−r(tg−tf ) max(K − Stg , 0)

∣∣∣Ftf

]
. (6.5)

If the credit risk of a firm increases, the probability of default increases, and so the firm’s share
price S decreases. This can be seen from Equation (6.3). Thus an increase in credit risk will
decrease the value of a call option and increase the value of a put option. We summarise the
effects of credit risk on the value of a long position in a CDS, a share and a European share option
(call & put), in the following table5:

Credit Risk CDS (φ) Share (S) Call Option (ϕ) Put Option (ϕ)
Increase Decrease Decrease Decrease Increase
Decrease Increase Increase Increase Decrease

Table 6.1: The effects of credit risk on the value of a long position in a CDS, a share and a European
share option (call & put).

6.3 Hedging

A hedge is a trading strategy ψt that is designed to reduce risk. Let ξ(Vt, t) denote the price at
time t of a contingent claim that is dependent on the firm’s asset value process Vt. To hedge this
contingent claim we need to find a trading strategy ψt that reduces the variability of the future
values of the contingent claim. In a complete market a perfect hedging strategy can be constructed
that eliminates all the risk of the contingent claim, since in a complete market all contingent claims
can be replicated exactly. Thus by taking an exact opposite position in the replication strategy
all the uncertainty of the future values of the contingent claim will be completely eliminated.
However, in an incomplete market it is impossible to replicate a contingent claim exactly. Thus
it is impossible to hedge perfectly in an incomplete market. To hedge in an incomplete market,
one needs to find a hedging strategy that minimises a specified risk measure6. We now provide an
example of a perfect hedging strategy in a complete market, and then apply this hedging strategy
to an incomplete market.

3See Section 4.5 for the derivation of the share formula.
4See Section 5.5 for the derivation of the share option pricing formula.
5For a visualisation of the relationship of credit risk on these different financial products, see Figure 6.1. Note

that in these graphs, we model credit risk as the distance of the firm’s asset value V from the default barrier b. If b
is constant, the higher V is, the lower the credit risk; and the higher V is, the higher the credit risk.

6See Cont & Tankov (2004b) and McWalter (2006) for a detailed analysis of hedging in an incomplete market.
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Example: Complete Market Hedging

Suppose we are modelling under a structural framework, and the assumptions of this structural
model are equivalent to the assumptions in Section 4.5, except for the assumption of the dynamics
of the firm’s asset value Vt. In this example let, Vt follow a geometric Brownian motion (GBM)
process

dVt/Vt = µV dt + σ dWt. (6.6)

Using Girsanov’s Theorem, it can be seen that the model admits a unique equivalent martingale
measure7 Q. This implies the market is complete (see Theorem 2.2.4). Suppose we construct a
self-financing portfolio, consisting of a single contingent claim and ψt units of the underlying asset
Vt. The value of the contingent claim and the portfolio at time t is denoted by ξt := ξ(Vt, t) and
ϑt, respectively. Mathematically we can represent the value of the portfolio as

ϑt = ξt + ψt Vt. (6.7)

Applying Itô’s lemma (see Appendix A.1) we can express the portfolio ϑt by the following stochastic
differential equations

dϑt = dξt + ψt dVt

=
∂ξt

∂t
dt +

∂ξt

∂Vt
dVt +

σ2V 2
t

2
× ∂2ξt

∂V 2
t

dt + ψt dVt. (6.8)

There are two stochastic terms in Equation (6.8): ∂ξt

∂Vt
dVt and ψt dVt. By selecting the asset weight

ψt to be equal to − ∂ξt

∂Vt
, we are able to eliminate all the randomness in the portfolio’s dynamics. If

ψt = − ∂ξt

∂Vt
,

then

dϑt =
(

∂ξt

∂t
+

σ2V 2
t

2
× ∂2ξt

∂V 2
t

)
dt. (6.9)

Equation (6.9) has no diffusion term. By letting the asset weight ψt = − ∂ξt

∂Vt
we have hedged the

contingent claim’s risk perfectly. Furthermore, the portfolio’s return must be equal to the risk-free
rate to avoid arbitrage opportunities:

dϑt = rϑt dt

⇒ ϑt = ϑ0e
rt

⇒ ξt + ψt Vt = (ξ0 + ψ0 V0) ert

⇒ ξt = (ξ0 + ψ0 V0) ert − ψt Vt, (6.10)

where
ψt = − ∂ξt

∂Vt
.

On the right-hand side of Equation (6.10) we have the the replicating portfolio for the contingent
claim: (ξ0 + ψ0 V0) units invested at the risk-free rate and a short position of ψt units of the
underlying asset Vt.

Example: Incomplete Market Hedging

Suppose now, we are modelling under a structural framework, and the assumptions of this structural
model are equivalent to the assumptions in Section 4.5. Then the firm’s asset value V follows a
jump-diffusion process

dVt/Vt− = µV dt + σ dWt + Yt dNt. (6.11)

See Section 4.5, for the interpretation of the parameters in Equation (6.11). Using Girsanov’s
Theorem, it can be seen that the model does not admit an unique equivalent martingale measure8

7From Theorem A.2.1 it can be seen the Radon-Nikodým derivative ρt is unique, where Yt = 0, Nt = 0 and
Θ = uV −r

σ
.

8From Theorem A.2.1 it can be seen the Radon-Nikodým derivative ρt is not unique. Different combinations of
Θ and β characterise a different equivalent martingale measure Q.
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Q. This implies that the market is incomplete (see Theorem 2.2.4). Let us examine the dynamics
of the portfolio

ϑt = ξ(Vt, t) + ψt Vt

where
ψt = − ∂ξt

∂Vt
,

and compare it to the previous portfolio’s dynamics when Vt followed a GBM process. Apply-
ing Itô’s lemma (see Appendix A.1) we can express the portfolio ϑt by the following stochastic
differential equations

dϑt = dξt − ∂ξt

∂Vt
dVt

=
(

∂ξt

∂t
+ µV Vt−

∂ξt

∂Vt
+

σ2V 2
t−

2
× ∂2ξt

∂V 2
t

)
dt + σVt−

∂ξt

∂Vt
dWt + [ξ(Vt− + ∆Vt)− ξ(Vt−)]

−µV Vt−
∂ξt

∂Vt
dt− σVt−

∂ξt

∂Vt
dWt − ∂ξt

∂Vt
∆Vt

=
(

∂ξt

∂t
+

σ2V 2
t−

2
× ∂2ξt

∂V 2
t

)
dt + [ξ(Vt− + ∆Vt)− ξ(Vt−)]− ∂ξt

∂Vt
∆Vt, (6.12)

where
∆Vt = Vt − Vt−

and the time of jumps have a Poisson distribution with intensity parameter λ. There are two
stochastic terms in Equation (6.12): [ξ(Vt− + ∆Vt) − ξ(Vt−)] and ∂ξt

∂Vt
∆Vt. Thus the portfolio

still has random behaviour due to the jump component of V . The two stochastic jump terms in
Equation (6.12) can not be eliminated since portfolio mixing is a linear operation and the contingent
claim price is not necessarily a linear function of Vt (Merton (1976)). By selecting the asset weight
ψt := − ∂ξt

∂Vt
, we are able to eliminate the randomness caused by the marginal fluctuations in Vt,

modelled by Wt (diffusion risk), but we are unable to eliminate the risk of the rare non-marginal
jumps9.

The firm’s asset value is not a publicly traded asset. Thus to hedge contingent claim ξ(Vt, t)
we need to use another publicly traded financial instrument whose value depends on the firm’s
asset value Vt. Let ξ1

t = ξ1(Vt, t) denote the time-t value of another contingent claim whose value
depends on Vt. Suppose we are still under the jump-diffusion framework. Let us construct a
portfolio at time t, consisting of a single unit of contingent claim ξt (which we want to hedge) and
ψt units of another contingent claim ξ1

t (which will serve as our hedging instrument)

ϑt = ξ(Vt, t) + ψt ξ1(Vt, t). (6.13)

Let10

ψt := − ∂ξt

∂ξ1
t

= − ∂ξt

∂Vt

∂Vt

∂ξ1
t

.

Then applying Itô’s lemma (see Appendix A.1) we can express the portfolio ϑt by the following
stochastic differential equations

dϑt = dξt − ∂ξt

∂ξ1
t

dξ1
t

=
(

∂ξt

∂t
+ µV Vt−

∂ξt

∂Vt
+

σ2V 2
t−

2
× ∂2ξt

∂V 2
t

)
dt + σVt−

∂ξt

∂Vt
dWt + [ξ(Vt− + ∆Vt)− ξ(Vt−)]

− ∂ξt

∂ξ1
t

(
∂ξ1

t

∂t
+ µV Vt−

∂ξ1
t

∂Vt
+

σ2V 2
t−

2
× ∂2ξ1

t

∂V 2
t

)
dt− σVt−

∂ξt

∂ξ1
t

∂ξ1
t

∂Vt
dWt

− ∂ξt

∂ξ1
t

[ξ1(Vt− + ∆Vt)− ξ1(Vt−)]

=
[(

∂ξt

∂t
+

σ2V 2
t−

2
× ∂2ξt

∂V 2
t

)
− ∂ξt

∂ξ1
t

(
∂ξt

∂t
+

σ2V 2
t−

2
× ∂2ξt

∂V 2
t

)]
dt (6.14)

+ [ξ(Vt− + ∆Vt)− ξ(Vt−)]− ∂ξt

∂ξ1
t

[ξ1(Vt− + ∆Vt)− ξ1(Vt−)]. (6.15)

9See Cont & Tankov (2004a) for more details on this hedging inaccuracy, and different methods to hedge under
a jump-diffusion framework.

10We assume there exists a one-to-one relationship between ξ1(Vt, t) and Vt.
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Thus the portfolio still has random behaviour due to the jump component of V . However, by
selecting the asset weight

ψt = − ∂ξt

∂Vt

∂Vt

∂ξ1
t

,

we are able to eliminate the frequent marginal fluctuations, modelled by Wt (diffusion risk). Sim-
ilarly, if Vt follows a the GBM process (6.6) it can be shown that by selecting asset weight

ψt = − ∂ξt

∂Vt

∂Vt

∂ξ1
t

,

we perfectly hedge contingent claim ξt.
In our case we are interested in hedging the CDS value φ with either shares S, call options

ϕ or put options ϕ. We will apply this simple hedging tactic whereby the weight of the hedging
instrument is the negative of the rate of change of the contingent claim price with respect to the
hedging instrument’s price. This is known as delta hedging.

6.4 Delta Hedging

Suppose we construct a self-financing portfolio with value:

ϑt(ψ) = ψt . ξt =
n−1∑

i=1

ψi
t ξi(Vt, t)− ψn

t ξn(Vt, t)

=
n−1∑

i=1

ψi
t ξi

t − ψn
t ξn

t , (6.16)

where ξi
t := ξi(Vt, t) is the time-t value of the ith contingent claim and where the underlying asset

is the firm’s asset value Vt. We assume that yi
t := gi(Vt) := ξi(Vt, t) is a one-to-one transformation

from A = {Vt > 0} on to B = {yi
t ∈ R} for i = 1, 2, . . . , n. The inverse transformation is defined

as Vt = g−1
i (yi

t). The notation ψi
t represents the number of units of contingent claim ξi

t held at
time t. Contingent claim ξn

t will represent our hedging instrument. The objective of a hedging
instrument in a portfolio is to reduce the randomness of the portfolio’s behaviour. The delta of
a portfolio ϑt , denoted by ∆ϑt/ξn

t
, is defined as the rate of change of the portfolio’s value with

respect to the hedging instrument, with all the other model parameters remaining fixed. Thus
∆ϑt/ξn

t
of portfolio (6.16) is

∆ϑt/ξn
t

:=
∂ϑt

∂ξn
t

=
n−1∑

i=1

ψi
t

∂ξi
t

∂ξn
t

− ψn
t

∂ξn
t

∂ξn
t

=
n∑

i=1

ψi
t

∂ξi
t

Vt

Vt

∂ξn
t

− ψn
t . (6.17)

Thus the delta of a portfolio with respect to the hedging instrument is given by the summation
of each rate of change of the price of the contingent claims in the portfolio with respect to the
hedging instrument. Let us denote the rate of change of the ith contingent claim ξi

t with respect
to the hedging instrument ξn

t by

∆ξi
t/ξn

t
:=

∂ξi
t

∂ξn
t

=
∂ξi

t

Vt

Vt

∂ξn
t

. (6.18)

We refer to ∆ξi
t/ξn

t
as the delta of the ith contingent claim ξi

t with respect to the hedging instrument
ξn
t . Using the introduced notation (6.18), we can express Equation (6.17) as

∆ϑt/ξn
t

=
n−1∑

i=1

ψi
t ∆ξi

t/ξn
t
− ψn

t ∆ξn
t /ξn

t
.

The objective of delta hedging is to choose the weight of the hedging instrument such that the
delta of the portfolio, with respect to the hedging instrument, is equal to zero

∆ϑt/ξn
t

= 0.
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If the delta of a portfolio with respect to a hedging instrument is zero, then the portfolio is referred
to as delta neutral. For portfolio (6.16) to be delta neutral, the hedging instrument weight ψn

t must
be equal to

ψn
t =

n−1∑

i=1

ψi
t

∂ξi
t

∂ξn
t

=
n−1∑

i=1

ψi
t ∆ξi

t/ξn
t
.

Example: Delta Hedging with the Underlying Asset V

Suppose, we construct a portfolio consisting of a long position on one unit of contingent claim
ξ1(Vt, t) and a short position of

∆ξ1
t /Vt

:=
∂ξ1

t

∂Vt

units of underlying asset Vt (our hedging instrument). Let

ϑt = ξ1
t −∆ξ1

t /Vt
Vt

= ξ1
t −

∂ξ1
t

∂Vt
Vt. (6.19)

The delta of portfolio (6.19), with respect to the hedging instrument Vt, is equal to 0:

∆ϑt/Vt
= ∆ξ1

t /Vt
−∆ξ1

t /Vt
∆Vt/Vt

=
∂ξ1

t

∂Vt
− ∂ξ1

t

∂Vt

∂Vt

∂Vt

= 0. (6.20)

From Section 6.3 we have seen that this delta neutral portfolio (6.19) perfectly hedges contingent
claim ξ1, when V follows a GBM process (6.6). Under our structural model, where V follows a
jump-diffusion process (6.11), by constructing the delta neutral portfolio (6.19), we eliminate the
diffusion risk but the randomness, due to the jumps in V , still remains. The same results hold for
the general case when the delta neutral portfolio ϑt consists of n − 1 contingent claims and one
hedging instrument Vt, i.e.

ϑt =
n−1∑

i=1

ψi
t ξi(Vt, t)−

n−1∑

i=1

ψi
t ∆ξi

t/Vt
Vt

Example: Delta Hedging with Another Contingent Claim

Since V is not a publicly traded asset, consider the following delta neutral portfolio with two
contingent claims, ξ1(Vt, t) and ξ2(Vt, t) (which will act as our hedging instrument):

ϑt = ξ1(Vt, t)−∆ξ1
t /ξ2

t
ξ2(Vt, t) (6.21)

= ξ1(Vt, t)− ∂ξ1
t

∂ξ2
t

ξ2(Vt, t),

Using ∆ξ1
t /ξ2

t
as the weight of our short position in hedging instrument ξ2(Vt, t), it was shown under

the jump-diffusion framework (Section 6.3), that it hedges the diffusion risk but not the jump risk.
It can similarly be shown, that the asset weight ∆ξ1

t /ξ2
t

hedges contingent claim ξ1(V, t) perfectly,
when V follows the GBM process (6.6). The same results hold for the general case when the delta
neutral portfolio ϑt consists of n− 1 contingent claims and one hedging instrument ξn(Vt, t)

ϑt =
n−1∑

i=1

ψi
t ξi(Vt, t)−

n−1∑

i=1

ψi
t ∆ξi

t/ξn
t

ξn(Vt, t)

Example: Simple Numerical Example

Consider delta neutral portfolio (6.21). Suppose ∆ξ1
t /ξ2

t
= 0.75, this means that when contingent

claim (hedging instrument) ξ2(Vt, t) changes by a small amount δξ2
t , contingent claim ξ1(Vt, t)

changes by 75% of that amount:
δξ1

t = 0.75δξ2
t .
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If the price of ξ2 goes up $10, then contingent claim ξ1 will tend to increase by 0.75× $10 = $7.50.
The delta neutral portfolio (6.21) will make a profit of $7.50 from the long position of one unit
in contingent claim ξ1. However this will be offset by the loss of $7.50 from the short position
−∆ξ1

t /ξ2
t
ξ2. From this simplistic example it can be seen that this method reduces the future

randomness of the value of contingent claim ξ1.

6.4.1 A Measure for the Efficiency of a Delta Hedge

Note that when the underlying asset value Vt changes in time, the delta of the portfolio will
change too. In practice, we cannot trade continuously but only discretely. Thus a delta neutral
portfolio will only remain delta neutral for a short period of time, and will only be delta neutral
again the instant we adjust the hedge such that the delta of the portfolio is zero. These periodic
hedge adjustments are known as rebalancing. Delta hedging is a dynamic-hedging scheme since
the hedge is regularly adjusted11. The delta hedge will be more efficient, as the number of times
that rebalancing occurs increases (Hull (2003)). We measure the efficiency of a delta hedge by
measuring the difference between the accumulated change in the values of the assets which we want
to hedge, and the accumulated change in value in the hedging instrument.

Suppose we are interested in hedging contingent claim ξ1(Vt, t) with contingent claim ξ2(Vt, t)
(hedging instrument). We construct the following delta neutral portfolio

ϑt = ξ1(Vt, t)−∆ξ1
t /ξ2

t
ξ2(Vt, t)

= ξ1(Vt, t)− ∂ξ1
t

∂ξ2
t

ξ2(Vt, t).

If the risk of this portfolio is perfectly hedged, the instantaneous return on the portfolio is totally
deterministic (see Section 6.3). To avoid arbitrage opportunities this deterministic return must be
equal to the risk-free rate

dϑt = rϑt dt. (6.22)

Suppose we are interested in hedging until some time point T . Let

ϑ̂t = ϑte
r(T−t)

ξ̂1
t = ξ1

t er(T−t)

ξ̂2
t = ξ2

t er(T−t).

Then from the perfect hedge property (6.22), we can write

dϑt = rϑt dt

dϑ̂t = 0 (6.23)

dξ̂1
t −∆ξ1

t /ξ2
t
dξ̂2

t = 0

dξ̂1
t = ∆ξ1

t /ξ2
t
dξ̂2

t∫ T

t

dξ̂1
s =

∫ T

t

∆ξ1
s/ξ2

s
dξ̂2

s

ξ̂1
T − ξ̂1

t =
∫ T

t

∆ξ1
s/ξ2

s
dξ̂2

s

ξ1
T − er(T−t)ξ1

t =
∫ T

t

∆ξ1
s/ξ2

s
dξ̂2

s

Thus if the delta hedge eliminates all random fluctuations in contingent claim ξ1(Vt, t) then

ξ1
T − er(T−t)ξ1

t −
∫ T

t

∆ξ1
s/ξ2

s
dξ̂2

s = 0. (6.24)

The closer the right hand side (RHS) of Equation (6.24) is to zero, the better the delta hedge is
performing. However since it is impossible to trade continuously, we will anaylse the discrete trading
case of Equation (6.24). If we divide interval [t, T ] into N subintervals such that t0, t1, t2 . . . , tN ,

11See Hull (2003) for examples of static-hedging schemes.
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where t0 = t, tN = T and ti−1 ≤ ti, ∀i = 1, 2 . . . N . Using this interval, the discrete form of the
RHS of Equation (6.24) becomes

ξ1
tN
− er(tN−t0)ξ1

t0 −
N∑

i=1

∆ξ1
ti−1

/ξ2
ti−1

(
ξ̂2
ti
− ξ̂2

ti−1

)

= ξ1
tN
− er(tN−t0)ξ1

t0 −
N∑

i=1

∆ξ1
ti−1

/ξ2
ti−1

(
er(tN−ti)ξ2

ti
− er(tN−ti−1)ξ2

ti−1

)

= ξ1
tN
− er(tN−t0)ξ1

t0 −
(
∆ξ1

tN−1
/ξ2

tN−1
ξ2
tN
−∆ξ1

t0
/ξ2

t0
ξ2
t0e

r(tN−t0)
)

−
N−1∑

i=1

(
∆ξ1

ti−1
/ξ2

ti−1
−∆ξ1

ti
/ξ2

ti

) (
er(tN−ti)ξ2

ti

)
. (6.25)

For a perfect hedge (6.25) will be equal to zero. Let

Λ(t0, tN ) = a + b, (6.26)

where
a = ξ1

tN
− er(tN−t0)ξ1

t0 , (6.27)

b = −
(
∆ξ1

tN−1
/ξ2

tN−1
ξ2
tN
−∆ξ1

t0
/ξ2

t0
ξ2
t0e

r(tN−t0)
)
−

N−1∑

i=1

(
∆ξ1

ti−1
/ξ2

ti−1
−∆ξ1

ti
/ξ2

ti

) (
er(tN−ti)ξ2

ti

)
.

(6.28)
In fact, Λ(t0, TN ) is the accumulated change in value in the hedging portfolio ϑ, from inception
t0 till the hedging maturity tN . The term a in Equation (6.26) is the accumulated change of the
value in the instrument we wish to hedge ξ1. The term b in Equation (6.26) is the accumulated
change of the value in the hedging position −∂ξ1

t

∂ξ2
t

ξ2
t . A financial position is well hedged, when the

change of value in the financial position we wish to hedge is mirrored by the change of value of the
hedging position. For our empirical delta hedging tests, we will measure the effectiveness of the
delta hedge using Λ(t, T ). The closer Λ(t, T ) is to zero, the better our delta hedge is performing.
The purpose of a hedging strategy is to reduce the randomness of the value of the financial position
we wish to hedge. A hedging strategy is functioning if the absolute value of the change in value
of our financial hedged position λ(t0, t) is less than the absolute value of the change in value
of the financial position without the hedging strategy a. Mathematically, this condition can be
expressed as |λ(t0, t)| < |a|. Thus a hedging is functioning if |λ(t0, t)| < |a|, and is performing well
if λ(t0, t) ≈ 0. These conditions can be restated as the following |at|−|λ(t0, t)|

|at| ≤ 1, the closer the
ratio is to 1 the better the hedge is performing. This ratio can be interpreted as the percentage
reduction in the change of the value of the position we wish to hedge, achieved by the hedge.

Our empirical tests do not take into account transaction costs. If transaction costs are taken
into account, the investor has to balance the effectiveness of a delta hedge, achieved by increasing
the number of times rebalancing occurs (Hull (2003)), with the increase in transactions costs
accompanied along with this. This can be done by measuring the sensitivity of the delta of the
portfolio with respecting to the hedging instrument.

6.4.2 Gamma Hedge

The gamma of a portfolio ϑt, with respect to a hedging instrument ξn(Vt, t), Γϑt/ξn
t
, is the rate of

change of the portfolios’s delta ∆ϑt/ξn
t
, with respect to the hedging instrument

Γϑt/ξn
t

:=
∂

(
∆ϑt/ξn

t

)

∂ξn
t

=
∂2ϑt

∂2ξn
t

.

A small portfolio gamma, implies the delta of the portfolio changes slightly with respect to changes
in the hedging instrument. Thus portfolio rebalancing needs to be done relatively infrequently, to
keep the portfolio delta neutral. A large portfolio gamma, implies the delta of the portfolio is
highly sensitive to the changes in the hedging instrument. Thus portfolio rebalancing needs to be
done frequently. A portfolio is gamma neutral if Γϑt/ξn

t
= 0. The procedure of keeping a portfolio

gamma neutral, is similar to the procedure of keeping a portfolio delta neutral, except we use
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second order partial derivatives. Note, by adjusting a delta neutral portfolio such that it is gamma
neutral, will affect the delta of the portfolio, thus a position in the underlying asset is needed
in order to maintain delta neutrality (Hull (2003)). By increasing the number of times a delta
neutral portfolio is rebalanced, increases the efficiency of the delta hedge (Hull (2003)). However,
by increasing the number of times rebalancing occurs, increases the transaction costs incurred. An
investor wishing to keep his portfolio delta neutral, can decide how often to rebalance, by analysing
the gamma of the portfolio. By doing this he also curbs transaction costs.

6.5 Empirical Tests

The main objective of this dissertation is it to hedge credit default swaps with shares and European
share options. Suppose a long position is taken in a CDS with maturity T . The value of the CDS at
its inception is φ(t0, t0, T ) = 0. As we move towards maturity, market’s perception of the reference
entity’s credit risk may change, altering the value of the CDS (see Section 6.2). We wish to take a
position in either shares or share options to hedge the randomness of the future values of a CDS.
To achieve this we will delta hedge. We will construct the following delta neutral portfolios:

ϑ1
t = φ(t0, t, T )−∆φ(t0,t,T )/St

St (6.29)

ϑ2
t = φ(t0, t, T )−∆φ(t0,t,T )/ϕt

ϕt (6.30)

ϑ3
t = φ(t0, t, T )−∆φ(t0,t,T )/ϕt

ϕt, (6.31)

where

∆φ(t0,t,T )/St
=

∂ (φ(t0, t, T ))
∂St

∆φ(t0,t,T )/ϕt
=

∂ (φ(t0, t, T ))
∂ ϕt

∆φ(t0,t,T )/ϕt
=

∂ (φ(t0, t, T ))
∂ ϕt

.

We name these partial derivatives the delta hedge ratios. We use delta hedging for our purposes,
since it was shown in Section 6.4 that this hedging method hedges all the marginal fluctuations in
the value of a contingent claim, and it is a widely used and understood hedging scheme.

Under our assumed structural model (see Section (4.5)), the time of default is modelled as

τ∗ = inf{s ≥ 0 : Vs ≤ b tf , T }.
Thus the value of a CDS (Equation (6.1)) is dependent on the firm’s asset value V . Also, under
our model, all of the securities issued by a firm are dependent on the firm’s asset value V . Thus
the share price of the firm is dependent on V . The relation is given by Equation (6.3). This implies
that option prices are also dependent on V . The relation is given by Equation (6.4) for a European
call, and by Equation (6.5) for a European put.

Figure 6.1 shows that there is one-to-one relationship between CDS values, share prices, share
option prices and the firm’s asset value12. From this one-to-one relationship we can write the delta
hedge ratios as

∆φ(t0, t, T )/St
=

∂ (φ(t0, t, T ))
∂Vt

∂Vt

∂St

∆φ(t0, t, T )/ϕt
=

∂ (φ(t0, t, T ))
∂Vt

∂Vt

∂ ϕt

∆φ(t0, t, T )/ϕt
=

∂ (φ(t0, t, T ))
∂Vt

∂Vt

∂ ϕt

.

We perform delta hedges, according to portfolios (6.29), (6.30) and (6.31), with daily, weekly
and monthly rebalancing. We also calculate Λ(t, T ) (6.25), to determine how efficient these delta
hedges are performing.

12Note that there are no explicit solutions for equations (6.1), (6.3), (6.4) and (6.5). Thus the graphs in Figure
6.1 were calculated using Monte Carlo simulation. Specifically, we used the Monte Carlo methods described in
Chapter 5. We used the following parameter values when calculating Monte Carlo estimates for equations (6.1),
(6.3), (6.4) and (6.5): t = 0, tf = 1, tg = 1.25, T = 5, V1 = $1000000000, b 1, 5 = 500000000, r = 0.05, λ = 1,
µA = −0.05, σA = 0.1, K = $75, N = $1000000, η = 5000000, w0 = 0.4, p̃ 0, 5 = 0.0324 and n = 20 (number of
CDS premium payments from inception until maturity, four per year). We use Equation (5.37) as the basis function
for the calculation of the European options.
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Figure 6.1: Plot (a) is a plot of CDS values versus different values of the firm’s asset value V . Plot (b) is
a plot of share prices versus different values of the firm’s asset value V . Plot (c) is a plot of European call
option prices versus different values of the firm’s asset value V . Plot (d) is a plot of European put option
prices versus different values for the firm’s asset value V .

6.5.1 Method

We will now describe the procedure applied, under our mathematical and pricing framework, to
create delta neutral portfolios, in order to hedge the value of a CDS with shares or European
share options (portfolios (6.29), (6.30) and (6.31)). We explain our steps to perform delta hedge
(6.29), where the hedging instrument is the firm’s shares. The steps to perform the other two delta
hedges (6.30) and (6.31) follow similarly. Suppose we enter into a long position in a CDS contract,
initiated at time t, with a maturity of T . We wish to hedge this CDS position, from initiation
time t0 until some time Th < T . We divide the time interval [t, Th] into N subintervals such that
t0, t1, t2 . . . , tN , where t0 = t, tN = Th and ti−1 ≤ ti, ∀i = 1, 2 . . . N .

Firstly, at time t0 we calibrate our model parameters θt0 = (Vt0 , σV , bt0, T , λ, µA, σA) to
market prices. See Section 5.6 for a description of our calibration method. Once we have obtained
the calibrated model parameters θ̂t0 , we use them to calculate the theoretical premium p̃t0,t0,T

from Equation (6.2). We calculate the premium according to the method described in Section
5.4.6. The calculated premium p̃t0,t0,T will be approximately equal to the current market CDS
premium p̃obs

t0, T . Next, we calculate the delta hedge ratio

∆φ(t0, t0, T )/St0
=

∂ (φ(t0, t0, T ))
∂Vt0

∂Vt0

∂St0

. (6.32)

Our mathematical model, does not admit explicit solutions for the value of a CDS, the price of
a share and the price of a share option. We use Monte Carlo methods to find the value of these
instruments (see Chapter 5). Thus there is no explicit solution for the partial derivative (6.32).
We estimate the delta hedge ratios numerically. Let the numerical estimate for ∆φ(t0, t0, T )/St0

be
denoted by ∆̂φ(t0, t0, T )/St0

.
To denote the functional dependence of the CDS and share price on the firm’s asset value V let
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φt0, t, T (Vt) := φ(t0, t, T ) and St(Vt) := St. We estimate the partial derivative ∂(φ(t0, t0, T ))
∂Vt0

with13

∆̂φ(t0,t0,T )/Vt0
:=

φt0, t0, T (Vt0 + h)− φt0, t0, T (Vt0)
h

, (6.33)

where h is small. In our numerical analysis we choose h to be 1% of Vt0 . Since there is an one-to-one
relationship between St(Vt) and Vt

∂Vt0

∂St0

= 1
/∂St0

∂Vt0

. (6.34)

We estimate the partial derivative ∂St0
∂Vt0

with

∆̂St0/Vt0
:=

St0(Vt0 + h)− St0(Vt0)
h

. (6.35)

We estimate partial derivative (6.32) with

∆̂φ(t0, t0, T )/St0
= ∆̂φ(t0,t0,T )/Vt0

× ∆̂St0/Vt0
. (6.36)

We calculate expression (6.36), using Monte Carlo simulation. For example to calculate ∆̂St0/Vt0
:

specify a small h (we choose h = 0.01Vt0), then using Monte Carlo simulation calculate St0(Vt0),
and with the same generated paths calculate St0(Vt0 +h). Subtract St0(Vt0) from St0(Vt0 +h) and
divide it by h. Note Monte Carlo simulation is done with the calibrated parameters θ̂t0 .

Next, we construct the delta neutral portfolio (6.29), using our estimated delta hedge ratio
∆̂φ(t0, t0, T )/St0

:
ϑ1

t0 = φobs(t0, t0, T )− ∆̂φ(t0, t0, T )/St0
Sobs

t0 . (6.37)

Remember Sobs
t0 is the observed market share price and φobs(t0, t0, T ) is the observed market CDS

value at time t0. Note, the market value of a CDS is not a true market price since it is not observable
in the market, only the CDS premiums p̃t0,t0,T are disclosed in the market. The market CDS value
is calculated by inputting p̃t0,t0,T into the investor’s mathematical model (called market-to-model
value). In our case, the market value at time t1 of a CDS initiated at time t0, with maturity T , is

φobs(t0, t1, T ) =N
(
p̃obs

t1, T − p̃obs
t0, T

)
EQ

[
n∑

i=1

1{tp
i≥t1}

(
e−r(tp

i−t1)(tpi − tpi−1)1{τ∗>tp
i }

+ e−r(τ∗−t1)(τ∗ − tpi−1)1{tp
i−1<τ∗<tp

i }

)] (6.38)

where tpi is the time of the ith premium payment.
At the next time point rebalancing occurs, t1, the next step is to once again calibrate our model

parameters θt1 = (Vt1 , σV , bt1, T , λ, µA, σA) to the current market prices. The instant before
rebalancing takes place at time t1, the market value of the delta neutral portfolio constructed at
t0, is equal to

ϑ1
t1 = φobs(t0, t1, T )− ∆̂φ(t0, t0, T )/St0

Sobs
t1 . (6.39)

We then calculate the delta hedge ratio for time point t1, ∆̂φ(t0, t1, T )/St1
. This is done similarly to

the method to calculate the delta ratio at time t0, ∆̂φ(t0, t0, T )/St0
. Now, the market value at time

t1, for the delta neutral portfolio the instant after rebalancing is

ϑ1
t1 = φobs(t0, t1, T )− ∆̂φ(t0, t1, T )/St1

Sobs
t1 . (6.40)

We then calculate the delta hedge efficiency measure Λ(t0, t1). These steps are done recursively
until the hedge maturity Th is reached. We then analyse Λ(t0, Th).

13See Appendix C, Definition C.0.1, for the definition of a partial derivative. From this definition one can
understand why we use the RHS of Equation (6.33) as an estimate for the partial derivatives.
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6.5.2 Testing the Delta Hedging Strategy with Simulated Data

We now present simulated examples of the delta neutral portfolios (6.29) and (6.30). From these
examples one can see the dynamics of the value of delta neutral portfolios and Λ as we reach the
hedge maturity.

We wish to construct the following delta neutral portfolios

ϑ1
t = φ(t0, t, T )−∆φ(t0,t,T )/St

St (6.41)

ϑ2
t = φ(t0, t, T )−∆φ(t0,t,T )/ϕt

ϕt, (6.42)

at time t0 = 0, and hold it until time Th = 60 days. Rebalancing will be done daily for both
portfolios. The CDS value φ(t0, t, T ), share price St and share option price ϕt will be simulated.
This is done by simulating the real-world firm’s asset value process

Vti = Vti−1 exp
[(

µV − σ2

2

)
(ti − ti−1) + σWti−ti−1 + Jti

− Jti−1

]
(6.43)

for 60 daily periods. Next, 60 daily CDS values, share and share option prices are calculated from
each of these simulated firm asset values. Then we calculate the delta hedge ratios ∆φ(t0,ti−1,T )/Si−1

and ∆φ(t0,ti−1,T )/ϕti−1
for i = 1, . . . , 60, as illustrated in Section 6.5.1.

The following graphs (Figure 6.2) summarise our simulated14 delta hedge results, when shares
are used as the hedging instrument (portfolio (6.41)).
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Figure 6.2: Time series plot of Λ(0, t), and its constituents a and b. This is a simulated delta hedge,
where a share is the hedging instrument.

The complete results are tabulated, and appear in Table D.1, in Appendix D.1. These tables
include each rebalancing delta hedge ratio and Λ(t0, ti). From Figure 6.2, one can see that the
accumulated loss from the CDS position (a) is approximately mirrored by the profits from the
share hedge position. The general trend is as a decreases (resp. increases), b increases (resp.
decreases). We will call this property the mirroring property, and is an essential characteristic of
a well performing hedge. The net result Λ(0, t) fluctuates near zero. Note that the hedge becomes
progressively better with time. This is because the accumulated losses and profits are averaged
out as we progress in time. The end results, at Day 59, are: the accumulated loss in the CDS
position is −$8961.30, the accumulated profit in the share hedge position is $8126 and Λ(0, 59) is
−$835.28.

The following graphs (Figure 6.3) summarise our simulated delta hedge results, when call
options are used as the hedging instrument (portfolio (6.41)):

The complete results are tabulated, and appear in Table D.2, in Appendix D.1. From Figure
6.3, one can see again that the accumulated loss from the CDS position (a) is approximately

14The parameters used for these simulations are: t0 = 0, tf = 0, tg = 0.25, T = 5, V0 = $62994450000,
b 0, 5 = 28731768645, r = 0.045, µV = 0.05, λ = 1.4350, µA = −0.0329, σA = 0.0540, K = $45, N = $1000000,
η = 791380000, w0 = 0.4 and n = 20 (number of CDS premium payments from inception until maturity, four per
year). We use Equation (5.37) as the basis function for the calculation of the European options.
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Figure 6.3: Time series plot of Λ(0, t), and its constituents a and b. This is a simulated delta hedge,
where a call option is the hedging instrument.

mirrored by the profits from the call option hedge position. The end results, at Day 59, are: the
accumulated loss in the CDS position is −$9044.90, the accumulated profit in the call option hedge
position is $10127 and Λ(0, 59) is $1082.20.

From both the above delta hedges one can see that the changes in the value of the delta neutral
portfolios are significantly less than the change in value of the CDS position. Both delta neutral
portfolios fluctuate near zero, but neither are exactly equal to zero. There are several reasons
why these simulated delta hedges do not perfectly hedge the value of a CDS. Firstly, we simulated
under a jump-diffusion framework, thus the delta hedge will only eliminate the diffusion risk and
not the jump risk (see Section 6.4). Another reason is that we do not have explicit solutions for the
values of the financial products, thus we need to numerically estimate their values and the delta
hedge ratios. Finally, it is impossible to continuously trade, thus the discrete nature of trading,
also makes our hedge imperfect.

Both delta hedges, from simulated data, performed well, since |λ(t0, t)| < |a| and λ(t0, t) ≈ 0.
This simulated example shows theoretically that our methods to calculate the price and delta hedge
ratios are acceptable, since the simulated delta hedges perform well. Thus if the estimation of the
model parameters is correct and our model assumptions are not significantly different to reality,
our hedging results from market data should follow similarly.

6.5.3 Data

We chose six companies to test our hedge: Boeing, Daimler Chrysler, Deutsche Telekom, Ford,
General Motors and Vodafone. We chose companies that have widespread credit ratings to test
if our model can produce a hedging mechanism that can manage firms with different credit risk
profiles. We chose popular companies, since their data is easily available.

The balance sheet and equity (stock and stock option) data was obtained from Bloomberg.
The daily closing prices were used for the stock and stock option prices. In order to simplify the
analysis we chose stock options with long maturities, so we only need to use one particular option
contract throughout the hedging time interval. If we chose short maturity option contracts, we
may have to use several different option contracts since these options could mature before the end
point of our hedging time interval. The most liquid15 long maturity option contracts were chosen.
A liquid asset has a high probability that the next trade is executed at a price near to the most
recent price. Since European type stock options are rare, we use corresponding American type
stock options to approximate the value European stock options16.

All of the CDS contracts we hedge have a maturity of 5 years and a notional value of 1 000
000. Consider the CDS valuation formula (6.1). The maturity of the CDS contract is T = 5 years
and the time of initiation of the CDS is the present time t = 0. To calculate the value of the CDS

15Liquidity was measured by the volume of contracts traded.
16The difference in value between American and European options is neglige in our case. Since not many dividends

are paid out in our hedging intervals and most of the options are deep out of the money. The early exercise premium
of an American option is an increasing function of the moneyness of the option (see Engström & Nordén (2000)).
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contract after one month φ(0, 1
12 , 5) we need the market premium p̃ 1

12 , 5. However, in the market
they do not quote premiums for all time intervals. The most common time intervals are 5, 3, and
1 year time intervals. The 5 year CDS premiums are the most liquid and are available for most
companies. To calculate φ(0, 1

12 , 5) at time t = 1
12 , we estimate the market premium p̃ 1

12 , 5 with
the current 5 year market premium p̃ 1

12 , 5 1
12

. For all the CDS valuation in our empirical tests, we
use the 5 year CDS market premiums to estimate the premium for the time interval starting from
the valuation time till CDS maturity. We used the daily mid price for the 5 year CDS premiums,
obtained from Bloomberg.

For each company we perform an equity and an equity option hedge. For each equity and equity
option hedge, we perform three hedges where rebalancing is done daily, weekly and monthly. The
reason why we do this, is that the relationship between the credit and equity markets might be
weak between daily data, but stronger for larger intervals. The currency used for equity hedging is
US Dollars. However the currency used for the equity option hedging is the currency that particular
option is quoted in.

The time interval for each hedge is given in Appendix D.2.1, Table D.10. The descriptions of
the stock options is given in Appendix D.2.1, Table D.9.

6.5.4 Results

We sequentially analyse the hedging results of each company and conclude at the end of the chapter.
See the tables in Appendix D.2, for a detailed description of all the hedging results.

Boeing

In the case where shares are used as the hedging instrument, the delta hedge, for the Boeing
company, did not perform well. Figure 6.4 (Plot (a.1), (a.2) and (a.3)), shows the small losses
incurred by the CDS position is excessively hedged by the position in shares, for all three cases where
rebalancing is done daily, weekly and monthly. The equity hedge positions make disproportionate
profits relative to the CDS losses. These equity delta hedges do not have the mirroring property
seen in the simulated equity hedge Figure 6.2. The accumulated changes in the CDS positions (a)
are relatively stationary. However, the accumulated changes in the equity positions (b) increase
steadily for the daily and the monthly cases; for the weekly case there is a temporary decline of
b to appropriate levels at weeks 27 to 33 (λ(0, 32) = −$82.81 is the best value achieved), this is
short lived as b rises towards the end of the hedge period to disproportionate levels again. The
final equity delta hedge results for Boeing are:

Boeing Daily Rebalancing Weekly Rebalancing Monthly Rebalancing
λ $7605.01 $6682.39 $47608.30
a −$847.67 −$1643.59 −$3024.01
b $8452.68 $8325.98 $50632.31

Table 6.2: The final results of the equity delta hedge for Boeing.

A possible explanation for the poor results of the equity delta hedge is the non-intuitive co-
movement of market CDS spreads and share prices. Intuitively, if credit risk increases (resp.
decreases), CDS spreads increase (resp. decrease) and share prices decrease (resp. increase). For
all three equity delta hedges this intuitive relationship did not hold for more than half of the data.
The data of the Boeing company, suggests the link between the CDS (credit) and the stock (equity)
market dynamics is weak.

In the case where share options are used as the hedging instrument, the delta hedge results,
for the Boeing company, are similar to those when shares were used as a hedging instrument.
Again, the excessive hedge positions in the share options nullify the mirroring property needed for
a good hedge result. For the daily rebalancing case, λ(0, t) is only stable around 0 for a short
period (between Day 14 and Day 16). For the rest of the hedging period λ(0, t) is considerably
distant from 0 (see Figure 6.4, Plot (b.1)). The weekly rebalancing hedging case, performs better
than the daily case, since λ(0, t) remains at the level 0 longer (between weeks 8 and 28) however
increases to disproportionate levels at the end of the hedging interval (see Figure 6.4, Plot (b.2)).
The monthly rebalancing case, is similar to the weekly case, in the beginning λ(0, t) hovers around
0 but increases dramatically towards the end of the hedge (see Figure 6.4, Plot (b.3)). For all
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Figure 6.4: Plot (a.1), (a.2) and (a.3) are the results of the equity delta hedges, for the Boeing company, for
daily, weekly and monthly rebalancing, respectively. Plot (b.1), (b.2) and (b.3) are the results of the equity
option delta hedges, for the Boeing company, for daily, weekly and monthly rebalancing, respectively.

three rebalancing cases, the hedge position is too large, relative to the CDS value. The final equity
option delta hedge results for Boeing are:

Boeing Daily Rebalancing Weekly Rebalancing Monthly Rebalancing
λ $3523.38 $16650.63 $64245.41
a −$966 −$584.86 −$421.28
b $4489.38 $16065.77 $63824.13

Table 6.3: The final results of the equity option delta hedge for Boeing.

Similarly to the equity hedging cases, a weak link between the CDS (credit) and the stock
option (equity) market dynamics is observed. Again, more than 50% of the data does not follow
the intuitive credit/equity relationship. This could be a possible reason for the poor performance
of the equity option hedge results.

Daimler Chrysler

In the case where shares are used as the hedging instrument, the delta hedge performs well for the
weekly rebalancing case, however the daily and monthly cases do not perform well. From Figure
6.5 Plot (a.1), we can see for the daily rebalancing case, there is a mirroring property between
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the accumulated changes in the CDS position and the accumulated changes in the equity hedge
position. However, this mirroring property is not symmetric about the the level 0, thus λ(0, t) is
not close to zero. This same property holds for the monthly rebalancing case.
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Figure 6.5: Plot (a.1), (a.2) and (a.3) are the results of the equity delta hedges, for the Daimler Chrysler
company, for daily, weekly and monthly rebalancing, respectively. Plot (b.1), (b.2) and (b.3) are the
results of the equity option delta hedges, for the Daimler Chrysler company, for daily, weekly and monthly
rebalancing, respectively.

The weekly case displays a mirroring property, that is approximately symmetric about 0 (see
Figure 6.5, Plot (a.2)). For the weekly rebalancing case, the hedge performs well initially (since
λ(0, t) is close to zero). During the middle of the hedging interval the hedge does not perform
too well, (from Week 11 to Week 33) it diverges away from zero. However, at the end the hedge
performs well since |λ(0, t)| < |at|, and λ(0, t) stabilises around the level 0. At the end of the
hedging time interval, the weekly equity hedge successfully reduces the change in value of the CDS
position by 1 − |λ(0, Th)|/|aTh

| = 46%. The final equity delta hedge results for Daimler Chrysler
are:

Daimler Chrysler Daily Rebalancing Weekly Rebalancing Monthly Rebalancing
λ $4303.83 −$1321.62 −$7497.30
a −$477.62 −$2461.82 −$3000.89
b $4781.54 $1140.20 −$4496.41

Table 6.4: The final results of the equity delta hedge for Daimler Chrysler.
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Again for the majority of the data, the intuitive relationship between credit risk and equity
does not hold for all three equity hedges. However, the relationship holds more often than with
the data for Boeing. The daily and monthly equity hedge cases did not fare well. The weekly case
was successful at the initial and end period of the hedging time interval. This could be due to the
strong credit/equity relationship during these periods. For the weekly case the relationship held
for the majority of the data at the beginning and end of the hedging time interval. The weekly
rebalancing equity hedge was the only successful hedge.

When a stock option is used as a hedging instrument, the hedging for all three rebalancing
cases did not fare well. The accumulated changes in the hedge position (bt), are disproportionate
to the changes in the CDS value (at). The hedge positions are too large, and it eliminates the
mirroring property. For all rebalancing cases λ(0, t) is considerably far from the level 0 (see Figure
6.5, Plot(b.1), Plot(b.2) and Plot(b.3)). The profits from the equity hedge positions are excessive
relative to the losses from the CDS positions. The final equity option delta hedge results for
Daimler Chrysler are: All of the equity option hedges did not perform well. This could be due to

Daimler Chrysler Daily Rebalancing Weekly Rebalancing Monthly Rebalancing
λ e20858.65 e38681.54 e33957.82
a - e3955.38 - e579.67 e1086.29
b e24814.03 e39261.21 e32871.53

Table 6.5: The final results of the equity option delta hedge for Daimler Chrysler.

the weak link between between the CDS (credit) and the stock option (equity) market. Similar
to the equity hedging scenario, the majority of the stock data, for all rebalancing cases, does not
follow the intuitive credit/equity relationship. However, this relationship holds more often in the
monthly and weekly than the daily case.

Deutsche Telekom

For the instance where shares are used as the hedging instrument, the hedge performs well for
the daily and weekly rebalancing cases. All three rebalancing cases, have the mirroring property
between the accumulated changes in the CDS position (a) and the equity hedge position (b) (See
Figure 6.6, Plot (a.1), (a.2) and (a.3)).

For the daily and weekly rebalancing cases, the accumulated changes (a and b), are approxi-
mately symmetric about the level 0, since the net results λ(0, t) for most of the time points are
between a and b. The hedge performs well for the daily and weekly cases as the absolute value of
the accumulated changes in the delta neutral portfolios λ(0, t) is less than the absolute value of
the accumulated changes in the CDS position a, i.e. |λ(0, t)| < |a|. The equity hedge successfully
reduced the change in value of the CDS position by 44% and 25% for the daily and weekly case
respectively. The equity hedge did not perform well for the monthly case. The monthly case has
the mirroring property, but is not symmetric about the level 0, consequently the absolute value of
the accumulated change in the delta neutral portfolio (λ(0, t)) is greater than the absolute value
of the accumulated change in the CDS value (b), at the end of the hedge period.

The final equity delta hedge results for Deutsche Telekom are:

Deutsche Telekom Daily Rebalancing Weekly Rebalancing Monthly Rebalancing
λ $892.87 $2143.60 −$6690.01
a −$1607.45 −$2841.69 −$1358.42
b $2500.32 $4985.29 −$5331.59

Table 6.6: The final results of the equity delta hedge for Deutsche Telekom.

The majority of the data points for the daily and weekly cases follow the intuitive relationship
between CDS spreads and share prices. However, the majority of the data for the monthly case
does not. This is a possible reason for why the hedge results perform well for the daily and weekly
case but not for the monthly case.
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Figure 6.6: Plot (a.1), (a.2) and (a.3) are the results of the equity delta hedges, for the Deutsche Telekom
company, for daily, weekly and monthly rebalancing, respectively. Plot (b.1), (b.2) and (b.3) are the
results of the equity option delta hedges, for the Deutsche Telekom company, for daily, weekly and monthly
rebalancing, respectively.

For the instance where share options are used as a hedging instrument, the daily and weekly
rebalancing cases did not perform well since |λ(0, Th)| > |aTh

|. There exists no mirroring property
between at and bt for the weekly case, but there is a weak mirroring property for the daily case.
The monthly cases at the end of the hedging interval is successful in reducing the change in value
of the CDS position by 13%. This is only a slight reduction. However, for the monthly case the
hedge before the end did not perform well. The final equity option delta hedge results for Deutsche
Telekom are:

Deutsche Telekom Daily Rebalancing Weekly Rebalancing Monthly Rebalancing
λ - e1798.47 e2333.09 e1732.74
a - e1763.00 e1741.66 e1999.15
b - e35.47 e591.43 - e266.41

Table 6.7: The final results of the equity option delta hedge for Deutsche Telekom.

For most part the stock option data did not follow the intuitive co-movement between CDS
spreads and equity values. This could be a reason for the poor hedge results.
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Ford

For the instance where shares are used as the hedging instrument, the monthly rebalancing case is
the only hedge that is successful. For the daily and weekly cases, both equity delta hedges have the
mirroring property between the accumulated changes in the CDS position (a) and the accumulated
changes in the equity hedge position (b). However, they are not symmetric about the level 0. Thus
the final hedge results are not satisfactory (since |λ(0, t)| > |a|), but they perform well for the
period 0 to 25 days and 0 to 10 weeks (see Figure 6.7, Plot (a.1), (a.2)). The monthly hedge
is an example of a very successful hedge. It has the mirroring property and it is approximately
symmetric about the level 0. Throughout the monthly equity hedge case, the accumulated changes
in the delta neutral portfolio λ(0, t) lies between a and b, and it ends close to zero (see Figure 6.7,
Plot (a.3)). At the end of the hedging interval, the monthly equity hedge successfully reduced the
change in value of the CDS position by 75%.
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Figure 6.7: Plot (a.1), (a.2) and (a.3) are the results of the equity delta hedges, for the Ford company,
for daily, weekly and monthly rebalancing, respectively. Plot (b.1), (b.2) and (b.3) are the results of the
equity option delta hedges, for the Ford company, for daily, weekly and monthly rebalancing, respectively.
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The final equity delta hedge results for Ford are:

Ford Daily Rebalancing Weekly Rebalancing Monthly Rebalancing
λ −$33922.20 −$78867.60 −$8278.23
a −$30113.10 −$66827.30 −$33774.77
b −$3809.10 −$12040.30 −$42053

Table 6.8: The final results of the equity delta hedge for Ford.

A possible explanation for the poor results of the daily and weekly equity delta hedges is the
non-intuitive co-movement of market CDS spreads and share prices, especially for at the end of the
hedging periods. This hedge shows that the link between changes in CDS values and share prices
is stronger between monthly intervals than daily and weekly intervals.

For the case where share options are used as the hedging instrument, all three rebalancing
hedges do not perform well. The equity option hedge position is too large and the profits from
this hedge position are disproportionate to the CDS losses. Throughout the equity option hedges
there is no strong mirroring property. For all three rebalancing cases |λ(0, t)| > |a| throughout all
of the hedging intervals. The final equity option delta hedge results for Ford are:

Ford Daily Rebalancing Weekly Rebalancing Monthly Rebalancing
λ $94304.75 $102662.04 $92808.47
a −$49088.81 −$11258.11 −$8728.33
b $143393.55 $113920.15 $101536.80

Table 6.9: The final results of the equity option delta hedge for Ford.

The majority of the stock option data for Ford, did follow the intuitive co-movement of market
CDS spreads and stock option prices, however all three equity option hedges failed.

General Motors

For the instance where shares are used as the hedging instrument, the weekly and monthly rebalance
cases succeed in hedging the value of the position in the CDS; since at the end of the hedging
time intervals |λ(0, Th)| < |aTh

|, for both situations. However, this does not occur for the daily
rebalancing case, and for the most part |λ(0, t)| > |at| throughout the hedging interval (see Figure
6.8, Plot (a.1)). For the weekly case, the majority of the time |λ(0, t)| > |at| holds, however by
not much. Thus the λ(0, t) does not stay close to 0. The weekly equity hedging case only manages
to reduce the change in value of the CDS position by 14%. For the weekly case, the profits from
the equity hedge position are minor compared to the CDS losses (see Figure 6.8, Plot (a.2)). The
monthly equity hedge performs well: throughout the hedging time interval |λ(0, t)| < |at| and at
the end of the time interval the hedge successfully reduced the change in value of the CDS position
by 51%. For the monthly case there exists a mirroring property between at and bt at the beginning
of the period however the equity hedge position is unable to mirror the volatile profits in the latter
stages (see Figure 6.8, Plot (a.3)). The final equity delta hedge results for General Motors are:

General Motors Daily Rebalancing Weekly Rebalancing Monthly Rebalancing
λ −$25894.80 −$124092.31 $6678.52
a −$− 24667.30 −$143667.45 $13606.02
b −$1227.50 $19575.14 −$6927.50

Table 6.10: The final results of the equity delta hedge for General Motors.

For the daily and weekly rebalancing cases, the majority of stock data did not follow the intuitive
co-movement pattern between market CDS spreads and stock prices. This could be a reason for
the daily hedging rebalancing case’s failure and the minor hedge achievement from the weekly case.
However, 61% of the monthly stock data followed the intuitive credit/equity relationship.

When stock options are used as the hedging instrument, the daily rebalancing case is the only
hedge that succesfully hedges since |λ(0, Th)| < |aTh

|. At the end of the interval, the hedge reduces
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Figure 6.8: Plot (a.1), (a.2) and (a.3) are the results of the equity delta hedges, for the General Motors
company, for daily, weekly and monthly rebalancing, respectively. Plot (b.1), (b.2) and (b.3) are the
results of the equity option delta hedges, for the General Motors company, for daily, weekly and monthly
rebalancing, respectively.

the absolute value of the change in the CDS position aTh
by 11%. The weekly and monthly cases

do not meet this hedging condition. For these two rebalancing cases, the profits from the equity
option hedge position are too large compared to the losses of the CDS positions (see Figure 6.8,
Plot (b.2) and Plot (b.3)). The final equity option delta hedge results for General Motors are:

General Motors Daily Rebalancing Weekly Rebalancing Monthly Rebalancing
λ $51396.76 $76840.89 $77068.19
a −$58321.93 −$3310.04 −$1581.05
b $109718.69 $80150.93 $78649.24

Table 6.11: The final results of the equity option delta hedge for General Motors.

The majority of the equity option data did follow the intuitive co-movement of market CDS
spreads and share prices, however the daily hedge was the only successful hedge.
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Vodafone

The equity delta hedge results for Vodafone company are poor for the daily and weekly rebalancing
cases. From Figure 6.9 (Plot (a.1) and (a.2)), it can be seen that the accumulated changes in
the CDS positions (a) are very small compared to the large accumulated changes in the equity
hedge positions (b). There is no mirroring property, the equity hedge position seems to move
independently and at disproportionate levels relative to the CDS position value. For these two
equity hedges |λ(0, Th)| > |aTh

|, and thus they did not perform well. The monthly rebalancing
case performs well as there is the mirroring property between at and bt, and at the end of the
hedging interval |λ(0, Th)| < |aTh

|. The monthly equity hedge successfully reduced the change in
value of the CDS position by 74%. The final equity delta hedge results for Vodafone are:

Vodafone Daily Rebalancing Weekly Rebalancing Monthly Rebalancing
λ $65884.71 $77173.21 $− 28668.56
a −$49.51 −$1691.60 −$− 96.42
b $65934.22 $78864.81 $− 28572.10

Table 6.12: The final results of the equity delta hedge for Vodafone.
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Figure 6.9: Plot (a.1), (a.2) and (a.3) are the results of the equity delta hedges, for the Vodafone company,
for daily, weekly and monthly rebalancing, respectively. Plot (b.1), (b.2) and (b.3) are the results of
the equity option delta hedges, for the Vodafone company, for daily, weekly and monthly rebalancing,
respectively.



6.6. Conclusion 92

For the daily and weekly rebalancing cases the intuitive relationship between CDS spreads and
share prices did not hold for more than 50% of the data. Surprisingly, for the monthly data, 67%
of the data did follow the intuitive relationship. However, our equity delta hedge scheme was
unable to predict the correct market equity delta ratios, which quantifies the sensitivity between
the market CDS value and the market share price.

For the instance where stock options are used as hedging instruments, all three rebalancing
cases did not fare well. The accumulated changes in the value of equity option hedge positions are
too large compared to the accumulated changes in the value of the CDS position. This nullifies
the mirroring property. For all cases |λ(0, Th)| > |aTh

|. The final equity option delta hedge results
for Vodafone are: The majority of stock option data did not follow the intuitive credit/equity

Vodafone Daily Rebalancing Weekly Rebalancing Monthly Rebalancing
λ £13848.94 £19227.33 £17198.71
a - £1809.66 £2447.17 £3554.44
b £15658.60 £16780.16 £13644.27

Table 6.13: The final results of the equity option delta hedge for Vodafone.

relationship. This could be a reason for the poor performance of the equity option hedges.

6.6 Conclusion

The simulated delta hedge examples (see Section 6.5.2) verify this hedge procedure is able to
theoretically hedge the value of a CDS position with an equity or equity option position. From
the market data, we show that it is possible to hedge the value of a CDS position with an equity
position, however it is more difficult to do with an equity option position. In the market the link
between credit risk and equity is more robust for firms that have a higher credit risk, this is evident
from our hedge results. The firms that produced successful hedges all have a credit rating lower
than Baa1 (Moody’s), only Deutsche Telekom being the exception17. The successful hedge results
are summarised in Table 6.14. It can be seen from Table 6.14 that most of the successful hedges

Company Rebalancing Hedging Instrument |aTh
| − |λ(0, Th)|/|aTh

|
Daimler Chrysler Weekly Shares 46%
Deutsche Telekom Daily Shares 44%
Deutsche Telekom Weekly Shares 25%
Deutsche Telekom Monthly Call Option 13%

Ford Monthly Shares 75%
General Motors Weekly Shares 14%
General Motors Monthly Shares 51%
General Motors Daily Put Option 11%

Vodafone Monthly Shares 74%

Table 6.14: Summary of the successful hedge results.

occurs when rebalancing is done with intervals longer than a day. This suggests that the link
between the credit and equity market dynamics is weak for daily intervals but stronger for larger
intervals. The majority of the equity data did not follow the intuitive co-movement relationship
between CDS spreads and equity prices. This suggests that equity and credit markets seem to move
independently or that information is absorbed into the different markets at different rates. This
inconsistency occurs more often with firms with higher credit ratings. Our hedge results confirms
this reasoning, since most of the successful hedges occur for firms with a low credit rating and
where rebalancing is done at long intervals. Another explanation for why our hedges performeed
better for firms with a low credit rating, is that the value of equity is influenced by several factors
(e.g. dividend rates, interest rates, credit risk). However, credit risk is likely to be the dominant
factor for firms with a low credit rating.

17Deutsche Telekom official credit rating is A3, however Moody’s equity implied credit rating for Deutsche Telekom
is Baa3.
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Only two equity option hedge results were successful. The inaccuracy in the equity hedges are
magnified in the equity option hedging cases. From our analysis it can be seen that is possible to
hedge the value of a CDS with equity, but it is more difficult to hedge with equity options.

6.7 Further Research Directions

The main reason for why some hedges do not produce good results is the non-intuitive co-movement
relationship between CDS spreads and equity prices. Further investigations can be made, to con-
struct a model that is able to explain this characteristic that is more evident for low credit risk
firms. Since the market is incomplete, using a combination of shares and share options simulta-
neously in the hedging procedure should produce better hedge results, since this is a step towards
completing the market. Our calibration procedure is a very simple local minimisation algorithm. A
more stable and global calibration procedure could possibly provide more accurate results, an ex-
ample of this is the non-parametric calibration procedure by Cont & Tankov (2004a). Since we use
the jump-diffusion framework the market is incomplete. We use the simple delta hedge technique.
However one could also use more complex incomplete market risk minimising techniques such as:
utility maximisation, quadratic hedging, optimal martingale measures (see McWalter (2006) and
Cont & Tankov (2004b)). Since our model does not admit closed-form solutions for prices of the
financial instruments under consideration, we need to calculate the prices and delta hedge ratios
using Monte Carlo simulation. Mallivian calculus (theory of variational stochastic calculus) pro-
vides a much more efficient18 method for calculating derivatives (hedge ratios) of random variables
(see Sanz-Solé (2005)). In order to make a stronger conclusion for which type of firms this hedging
model will perform well for, more firm’s should be analysed.

18Convergence is quicker, especially when calculating the delta ratios of financial instruments with discontinuous
payoffs.



Appendix A

Jump Processes: Miscellaneous
Results

A.1 Itô’s Formula for Diffusions with Jumps

Consider a jump diffusion process

Xt = µ + σWt + Jt = Xc
t + Jt,

where J is a compound Poisson process and Xc is the continuous part of X:

Jt =
Nt∑

i=1

∆Xi, Xc
t = µ + σWt,

where Nt is a Poisson process, representing the number of jumps in the interval [0, t]. Let Gt =
f(Xt), where f ∈ C2(R) and τi, i = 1, . . . , NT the jump times of X. The notation C2 represents
the space of continuous, twice differentiable functions. On the interval (τi, τi+1), X follows the
following dynamics

dXt = dXc
t = µ dt + σ dWt.

Applying Itô’s formula on the above diffusion part, we obtain

Gτ−i+1
−Gτi =

∫ τ−i+1

τi

σ2

2
f ′′(Xt) dt +

∫ τ−i+1

τi

f ′(Xt) dXt.

If a jump of size ∆Xt, occurs then the resulting change in Gt is given by f(Xt− + ∆Xt)− f(Xt−).
The total change in Gt can therefore be written as the sum of these two contributions:

f(Xt)− f(X0) =
∫ t

0

σ2

2
f ′′(Xs) ds +

∫ t

0

f ′(Xs) dXc
s

+
∑

0≤s≤t, ∆Xs 6=0

[f(Xs− + ∆Xs)− f(Xs−)].

The following proposition is derived from Cont & Tankov (2004b).

Proposition A.1.1. Itô’s formula for jump-diffusion processes. Let X be a diffusion process
with jumps:

Xt = X0 +
∫ t

0

µs ds +
∫ t

0

σs dWs +
Nt∑

i=1

∆Xi,

where µs and σs are continuous processes with

E

[∫ T

0

σ2
t dt

]
< ∞.
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Then, for any C1,2 function, f : [0, T ] ×R → R, the processe Gt = f(t,Xt) can be represented
as:

f(t,Xt)− f(0, X0) =
∫ t

0

[
∂f

∂s
(s, Xs) +

∂f

∂x
(s,Xs)µs

]
ds

+
1
2

∫ t

0

∂2f

∂x2
(s,Xs)σ2

s ds +
∫ t

0

∂f

∂x
(s,Xs)σs dWs

+
∑

i≥1, τi≤t

[f(Xτ−i
+ ∆Xi)− f(Xτ−i

)].

In differential notation:

dGt =
∂f

∂t
(t,Xt) dt + µt

∂f

∂x
(t,Xt) dt

+
σ2

t

2
∂2f

∂x2
(t,Xt) dt +

∂f

∂x
(t,Xt)σt dWt

+ [f(Xt− + ∆Xt)− f(Xt−)].

Proof. See Applebaum (2004) [Thm. 4.4.10, p. 229].

A.2 Girsanov Theorem for Jump-Diffusion Processes

We state the Girsanov theorem specifically for the jump process Vt. We assume V follows the
following dynamics

dVt/Vt− = µV dt + σ dWt + Yt dNt, (A.1)

where Nt is a Poisson process with intensity parameter λ, and Yt > 0 represents the percentage
change in V at time t. If there is a jump at time t = τi then Yt = (Vt+ − Vt−)/(Vt−), otherwise
Yt = 0. The stochastic processes Wt, Nt, and Yt are mutually independent. Let Ai be the logarithm
of the ratio of V after and before the ith jump:

Ai := ln Vτi
+ − ln Vτi

− = ln(Yτi + 1).

We assume Ai is normally distributed:

Ai ∼ N(µA, σ2
A).

Let Jt be the sum of the logarithms of the ratio of jump sizes in the interval [0, t]

Jt =
Nt∑

i=1

Ai.

Let
V̂t = Vte

−rt,

where Vt follows a jump-diffusion process (A.1). Thus by using the Itô formula for jump-diffusion
processes, the stochastic differential equation for V̂t is

dV̂t/V̂t− = (µV − r) dt + σ dWt + Yt dNt. (A.2)

Equation (A.2) can be written as

dV̂t/V̂t− = (µV − r) dt + σ dWt +
∫

R
Yt Ñ(dt, dA), (A.3)

where Ñ(t, A) = N(t, A) − λt is the compensated Poisson random measure, and the jump-size
space is the real line R (see Last & Brandt (1995) for an explanation of this representation).

Theorem A.2.1. Girsanov theorem for jump-diffusion processes. Let V̂t be a jump-
diffusion process of the form

dV̂t/V̂t− = (µV − r) dt + σ dWt +
∫

R
Yt Ñ(dt, dA).
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Assume there exist predictable processes Θ(t) = Θ(t, ω) ∈ R and β(t, A) = β(t, A, ω) ∈ R such
that

σΘ(t) +
∫

R
Ytβ(t, A)λ dA = µV − r,

and such that the process

ρt := exp
[
−

∫ t

0

Θ(s) dWs − 1
2

∫ t

0

Θ2(s) ds +
∫ t

0

∫

R
ln(1− β(s, A)) Ñ(ds, dA)

+ λ

∫ t

0

∫

R
ln(1− β(s, A)) + β(s, A) dA ds

]
; 0 ≤ t ≤ T

(A.4)

is well-defined and satisfies EP[ρT ] = 1. Define the probability measure Q on FT by the Radon-
Nikodým derivative

dQ
dP

∣∣∣∣
Ft

= ρt.

Then V̂t is a local martingale with respect to Q, i.e.

EQ[V̂T |Ft] = EP[V̂T ρT |Ft] = V̂t

Proof. See Øksendal & Sulem (2005) [Thm. 1.31, p. 15-16].

A.3 The Firm’s Value Process under the Risk-Neutral Mea-
sure

In our constructed mathematical framework, firm’s value process Vt is assumed to follow a jump-
diffusion process, under the real-world measure P,

dVt

Vt−
= µV dt + σ dWt + Yt dNt.

See Section A.1 for the interpretation of the parameters. Recall that:

Ai = ln Vτi
+ − ln Vτi

− = ln(Yτi + 1),

and Ai is normally distributed:
Ai ∼ N(µA, σ2

A).

Let Jt be the sum of the logarithms of the ratio of jump sizes in the interval [0,t]:

Jt =
Nt∑

i=1

Ai.

Let

κ := EP(Yt) = exp
(

µA +
σ2

A

2

)
− 1.

Under the risk-neutral measure Q (see Section A.2 for the Radon-Nikodým derivative ρt that
characterises measure Q), the stochastic differential equation for V is

dVt

Vt−
= (r − λQκQ) dt + σ dWQ

t + Y Q
t dNQ

t , (A.5)

where WQ
t is a Brownian motion process under the measure Q and Y Q

t is the percentage jump
sizes under the measure Q. The distribution of Y Q

t is determined by the risk-neutral distribution
of AQ which has pdf denoted by fQ(A). Furthermore κQ := EQ(Y Q

t ) =
∫
R Y Q

t fQ(A) dA, and
NQ

t is a Poisson process under the measure Q with intensity λQ (see Metwally & Atiya (2002)).
The Radon-Nikodým derivative process dQ

dP

∣∣
Ft

:= ρt is characterised by two processes Θ(t) and
β(t, A) (see Section A.2). If we let

β(t, A) = (1−ΘA(t, A))f(A),
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where ΘA(t, A) = ΘA(t, A, ω) ∈ R and f(A) is the pdf of A under measure P. We can relate the
risk-neutral distributions of the stochastic elements in V to their real-world distributions1:

λQ = λ

∫

R
ΘA(t, A)f(A) dA,

fQ(A) =
ΘA(t, A)f(A)∫

R ΘA(t, A)f(A) dA
,

WQ
t = Wt + Θ(t) t.

If we let

JQt =
NQ

t∑

i=1

AQ
i ,

then by using Itô’s formula for jump-diffusion processes (see Section A.1.1), the solution for the
stochastic differential equation (A.5) is

Vt = V0 exp
[(

r − σ2

2
− λQκQ

)
t + σWQ

t + JQt

]
. (A.6)

From equation (A.4), we can see that the Radon-Nikodým derivative ρt is not unique. Thus the
measure Q is not unique and differs for different combinations of Θ(t) and ΘA(t, A). This implies
that the market is incomplete (see Section 2.2.3). The term Θ(t) is named the market price of
diffusion risk and the term ΘA(t, A) is named the market price of jump-risk.

We apply the Merton (1976) simplistic approach to select the risk-neutral measures Q to price
a firm’s securities and credit default swaps written on a firm, our model can easily be changed to
account for different choices of Q. Merton proposed that jump risk is diversifiable2, therefore no
risk premium is attached to it: in mathematical terms ΘA(t, A) = 1, which implies that

Θ(t) =
uV − r

σ
.

This means that the risk neutral Q properties of the jump component of Vt are the same as its
statistical (real-world) P properties. In particular, the distribution of jump times and jump sizes
is unchanged:

λQ = λ,

fQ(A) = f(A),
κQ = κ.

Under this assumption the firm’s value process under the risk-neutral measure Q is:

Vt = V0 exp
[(

r − σ2

2
− λκ

)
t + σWQ

t + Jt

]
,

where WQ
t is a Brownian motion process under the measure Q. This approach has the effect of

correcting the price of the contingent claim for the average effect of jumps3.

1See Metwally & Atiya (2002) for a discussion of these relationships.
2The jump component of V , represents important new information that has a nonmarginal impact on V . Merton

proposed that this information is firm or industry specific. Thus the jump component is uncorrelated with the
market (jump risk is nonsystematic) and is diversifiable.

3See Cont & Tankov (2004a) for more details on the effect on Merton’s assumption on the price and hedging
error, and different methods to hedge and price under a jump-diffusion framework.



Appendix B

First Passage Time

Let

Vt = V0 exp
[(

µV − σ2

2

)
t + σWt

]
, (B.1)

and
τ∗ = inf{s ≥ 0 : Vs ≤ b}.

In order to find the probability density function of the first hitting time of a geometric Brownian
motion process V to a constant level b, f(τ∗), we firstly investigate the distributions of the supre-
mum and infimum of a standard Brownian motion process Wt. The following examination of first
hitting times is derived from Glasserman (2004).

B.1 The Hitting Time of a Standard Brownian Motion Process

The maximum of a standard Brownian motion process on the interval [0, t] is denoted by

Mt := sup
s≤t

Ws .

Let us denote the first hitting time of an upper constant barrier b > W0 by a standard Brownian
motion process Wt by:

τ∗M, b := inf{s ≥ 0 : Ms ≥ b}
= inf{s ≥ 0 : Ws ≥ b}.

B.1.1 Distribution of the Pair (Wt, Mt)

From the following proposition we are able to obtain the cdf F (τ∗M, b).

Proposition B.1.1. Let Φ(·) be the standard normal cumulative distribution function. Then:

P (Wt ≤ b, Mt ≤ y) = Φ
(

b√
t

)
− Φ

(
b−2y√

t

)
for y ≥ 0, b ≤ y,

P (Wt ≤ b, Mt ≤ y) = Φ
(

y√
t

)
− Φ

(
−y√

t

)
for y ≥ 0, b ≥ y,

P (Wt ≤ b, Mt ≤ y) = 0 for y ≤ 0.

Proof. The joint distribution of (Wt, Mt) depends on which area of the plane we are in.
Let us show that for y ≥ 0, b ≤ y

P (Wt ≤ b, Mt ≥ y) = P(Wt ≥ 2y − b). (B.2)

Define the stopping time τ∗M, y as the first hitting time of an upper level y by a standard Brownian
motion process Wt:

τ∗M, y = inf{s ≥ 0 : Ws ≥ y}.
Note that {τ∗M, y ≤ t} = {Mt ≥ y} and by the continuity of the Brownian motion’s paths, we have
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τ∗M, y = inf{s ≥ 0 : Ws = y}
and

Wτ∗M, y
= y.

Thus

P
(
Wt ≤ b, Mt ≥ y

)
= P

(
Wt ≤ b, τ∗M, y ≤ t

)
= P

(
Wt −Wτ∗M, y

≤ b− y, τ∗M, y ≤ t
)

.

By making use of the Multiplication Theorem1 the above expression becomes

P
(
Wt −Wτ∗M, y

≤ b− y
∣∣ τ∗M, y ≤ t

)
P

(
τ∗M, y ≤ t

)
. (B.3)

Using the equality P(A) = EP(1A), the expression (B.3) becomes

P
(
Wt −Wτ∗M, y

≤ b− y
∣∣ τ∗M, y ≤ t

)
EP

(
1τ∗M, y≤t

)

= EP
(
1τ∗M, y≤t P

(
Wt −Wτ∗M, y

≤ b− y
∣∣ τ∗M, y ≤ t

))

= EP
(
1τ∗M, y≤t P

(
Wt+τ∗M, y−τ∗M, y

−Wτ∗M, y
≤ b− y

∣∣ τ∗M, y ≤ t
))

. (B.4)

Using the strong Markov property2 of Brownian motion, the expression (B.4) reduces to

EP
(
1τ∗M, y≤t P

(
Wt −Wτ∗M, y

≤ b− y
))

(B.5)

also by noting that W and −W have the same distribution, the expression (B.5) equals

EP
(
1τ∗M, y≤t P

(
− (Wt −Wτ∗M, y

) ≤ b− y
))

= EP
(
1τ∗M, y≤t P

(
Wt −Wτ∗M, y

≥ y − b
))

= P
(
τ∗M, y ≤ t

)
P

(
Wt ≥ 2y − b

)

= P
(
τ∗M, y ≤ t, Wt ≥ 2y − b

)
. (B.6)

Finally, by noting that (τ∗M, y ≤ t) ⊂ (Wt ≥ 2y − b), and that if an event A ⊂ B then P(A ∩B) =
P(B), we can reduce (B.6) to

P(Wt ≥ 2y − b). (B.7)

To reduce
P(Wt ≤ b, Mt ≤ y), (B.8)

we only need to observe that

P(A ∩ B̄) = P(A)−P(A ∩B), (B.9)

where B̄ is the complement of B. Applying relation (B.9) to expression (B.8) results in

P(Wt ≤ b, Mt ≤ y) = P(Wt ≤ y)−P(Wt ≤ y, τ∗M, y ≤ t).

Noting that Wt ∼ N(0, t), for y ≥ 0, b ≤ y,

P (Wt ≤ b, Mt ≤ y) = Φ
(

b√
t

)
− Φ

(
b− 2y√

t

)
.

Since Mt ≥ Wt, for 0 ≤ y ≤ b,

P(Wt ≤ b,Mt ≤ y) = P(Wt ≤ y,Mt ≤ y) = P(Mt ≤ y) = Φ
(

y√
t

)
− Φ

(−y√
t

)
.

Since Mt ≥ M0, for y ≤ 0,
P(Wt ≤ b,Mt ≤ y) = 0.

1The Multiplication Theorem: for any events A and B,

P(A ∩B) = P(A|B)P(B).

2See Karatzaz & Shreve (1991) for the definition of the strong Markov property.
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B.1.2 Distribution of Mt and τ ∗M, b

From the distribution of Mt, it is possible to attain the distribution of the first hitting time of an
upper barrier b, τ∗M, b by a standard Brownian motion process.

Proposition B.1.2. The random variable Mt has the same distribution as the random variable
|Wt|.

Proof. Note that P(A) = P[(A ∩B) ∪ (A ∩ B̄)], now for b ≥ 0:

P(Mt ≥ b) = P(Mt ≥ b, Wt ≥ b) +P(Mt ≥ b, Wt ≤ b)

Substituting b for y into (B.2) we obtain

P(Mt ≥ b) = P(Wt ≥ b) +P(Wt ≥ b)
= P(Wt ≥ b) +P(Wt ≤ −b)
= P(|Wt| ≥ b).

We obtain the distribution of τ∗M, b = inf{s ≥ 0 : Ws ≥ b} by noting that

P(τ∗M, b ≤ t) = P(Mt ≥ b).

The cumulative distribution function for τ∗M, b is denoted by F (τ∗M, b).

F (τ∗M, b) = P(Tu
b ≤ t) = P(Mt ≥ b)

= P(Wt ≥ b) +P(Wt ≥ b)
= 2P(Wt ≥ b). (B.10)

Since Wt ∼ N(0, t), the expression (B.10) can be written as

2√
2πt

∫ ∞

b

e
−u2
2t du.

Then by change of variables s = tb2

u2 we can rewrite (B.10) as

−1√
2πt

∫ 0

t

e
−b2
2s b

√
t

s3
ds

=
1√
2πt

∫ t

0

e
−b2
2s b

√
t

s3
ds. (B.11)

The above is the cumulative distribution function (cdf) for τ∗M, b, to obtain the probability density
function f(τ∗M, b) we need to find the partial derivative of the cdf (B.11) with respect to t, thus the
pdf of τ∗M, b is

f(τ∗M, b) =
∂

∂t

(
1√
2πt

∫ t

0

e
−b2
2s b

√
t

s3
ds

)

= e
−b2
2t b

1√
2πt3

. (B.12)

B.1.3 The Distribution of the pair (Wt, mt)

Let us define mt, as the minimum value that a standard Brownian motion process achieves in the
time interval [0, t], i.e.

mt := inf
s≤t

Ws.

Which can also be defined as
mt := − sup

s≤t
(−Ws).
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Proposition B.1.3. Let W be a Brownian motion starting at 0, then

P(Wt ≥ b, mt ≥ y) = Φ
(
−b√

t

)
− Φ

(
2y−b√

t

)
for y ≤ 0, b ≥ y,

P(Wt ≥ b, mt ≥ y) = Φ
(
−y√

t

)
− Φ

(
y√
t

)
for y ≤ 0, b ≤ y,

P(Wt ≥ b, mt ≥ y) = 0 for y ≥ 0.

Proof. The proof follows the same principles as the proof for Theorem B.1.1. Remember that W
and −W have the same distribution properties.

B.1.4 Distribution of mt and τ ∗m, b

Let us denote the first hitting time of a lower constant barrier b < 0 by a standard Brownian
motion process Wt by:

τ∗m, b := inf{s ≥ 0 : ms ≤ b}
= inf{s ≥ 0 : Ws ≤ b}.

Following the same procedure as in Section B.1.2 we can see that the distribution of τ∗m, b is
equivalent to the distribution of τ∗M, b ,

f(τ∗m, b) = e
−b2
2t b

1√
2πt3

.

B.2 The First-Hitting Time for a Brownian Motion with
Drift

Let X(t) = ln(Vt/V0), where Vt is given by equation (B.1). Let µ := µV − σ2

2 , then the process
X(t) can be written as

X(t) = µt + σWt.

The process X is an example of a Brownian motion with drift µ (the drift term). Let us further
define the maximum, MX

t , and the minimum, mX
t , process of the drifted Brownian motion process

X(t). The process MX
t is mathematically defined as

MX
t = sup

s≤t
X(s)

and mX
t as

mX
t = inf

s≤t
X(s).

Let
X̃(t) := X(t)/σ,

then with the use of Girsanov’s theorem, X̃(t) can be transformed into standard Brownian motion
under an equivalent measure, which we denote as Q̃. This equivalent measure Q̃ is characterised
by the following Radon-Nikodým derivative

dQ̃
dP

∣∣∣∣
Ft

= exp
(
−µ

σ
Wt − µ2

2σ2
t

)
. (B.13)

By Girsanov’s theorem, under the measure Q̃ the process X̃(t) = µ
σ t + Wt is a standard Brownian

motion. We can write the Radon-Nikodým derivative (B.13) with respect to X̃(t),

dQ̃
dP

∣∣∣∣
Ft

= exp
(
−µ

σ
X̃(t) +

µ2

2σ2
t

)
. (B.14)

If we define
M

eX
t := sup

s≤t
X̃s,
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then using the above Radon-Nikodým derivative (B.14) we can establish the following

P(X(t) ≤ b, MX
t ≤ y) = EP

[
1{X(t)≤b, MX

t ≤y}
]

= EQ
[

dP
dQ̃

1{ eX(t)≤b/σ, M
fX
t ≤y/σ}

]

= EQ
[
exp

(
µ

σ
X̃(t)− µ2

2σ2
t

)
1{Wt≤b/σ, M

fX
t ≤y/σ}

]
.

Similarly to Proposition B.1.1, it can be shown that:

P(X(t) ≤ b, MX
t ≥ y) = exp

(
2µy
σ2

)
Φ

(
b−2y−µt

σ
√

t

)
for y ≥ 0, y ≥ b,

P(X(t) ≤ b, MX
t ≤ y) = Φ

(
b−µt

σ
√

t

)
− exp

(
2µy
σ2

)
Φ

(
b−2y−µt

σ
√

t

)
for y ≥ 0, y ≥ b,

P(X(t) ≥ b,MX
t ≥ y) = Φ

(
−b+µt

σ
√

t

)
− exp

(
2µy
σ2

)
Φ

(
−b+2y+µt

σ
√

t

)
for y ≤ 0, y ≤ b.

In particular, we can deduce from above the cumulative distribution function of the maximum as
well as that of the minimum:

F (MX
t ) := P(MX

t ≤ y) = Φ
(

y − µt

σ
√

t

)
− exp

(
2µy

σ2

)
Φ

(−y − µt

σ
√

t

)
, (B.15)

F (mX
t ) := P(mX

t ≤ y) = Φ
(

y − µt

σ
√

t

)
+ exp

(
2µy

σ2

)
Φ

(
y + µt

σ
√

t

)
. (B.16)

Let us denote the first hitting time of a lower constant barrier y < 0 by process X(t) by:

τ∗X, m, y := inf{s ≥ 0 : mX
s ≤ y}

= inf{s ≥ 0 : Xs ≤ y},
and the first hitting time of an upper constant barrier y < 0 by process X(t) by:

τ∗X, M, y := inf{s ≥ 0 : MX
s ≥ y}

= inf{s ≥ 0 : Xs ≥ y},
The cumulative distribution function of τ∗X, m, y and τ∗X, M, y can be computed by using the

equalities {τ∗X, m, y ≤ t} = {mX
t ≤ y} and {τ∗X, M, y ≤ t} = {MX

t ≥ y}. The probability distribution
functions of τ∗X, m, y and τ∗X, M, y can be calculated as in Section B.1.2 by finding the derivatives of
the respective cdf’s with respect to t (see Musiela & Rutkowski (1997) for details).

B.3 The First-Hitting Time of a Geometric Brownian Mo-
tion Process V to a Lower Barrier b

Since X(t) := ln(Vt/V0), where Vt is given by equation (B.1), we can determine the cdf of

τ∗ = inf{s ≥ 0 : Vs ≤ b}
from the cdf of τ∗X, m, y, given by Equation (B.16). Let

mV
t := inf

s≤t
Vs

then from the definitions X(t) := ln(Vt/V0) and µ := µV − σ2

2 we can say

F (τ∗) := P(τ∗ ≤ t) = P(mV
t ≤ b)

= P(Vt ≤ b, mV
t ≤ b)

= P
(

X(t) ≤ ln
(

b

V0

)
, mX

t ≤ ln
(

b

V0

))

= P
(

mX
t ≤ ln

(
b

V0

))

= Φ
(

ln(b/V0)− µt

σ
√

t

)
+ exp

(
2µ ln(b/V0)

σ2

)
Φ

(
ln(b/V0) + µt

σ
√

t

)
.
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To determine the pdf of τ∗, f(τ∗), we differentiate the cdf F (τ∗) with respect to t:

f(τ∗) = (Vt/b)−2µ 1√
2π

ln(Vt/b)
σt3/2

exp

[
−1

2

(
µσ2t− ln(Vt/b)

σ
√

u

)2
]

.



Appendix C

Miscellaneous

Theorem C.0.1. Suppose X is a continuous random variable with marginal pdf fX(x), and that
there exists a one-to-one transformation from A = {x | fX(x) > 0} on to B = {y | fY (y) > 0}
defined by Y = g(X), with inverse transformation x = g−1(y). If the derivative (d/dy)g−1(y) is
continuous and nonzero on B, then the pdf of Y is

fY (y) = fX(g−1(y))
∣∣∣∣

d

dy
g−1(y)

∣∣∣∣ , y ∈ B. (C.1)

Proof. Since y = g(x) is one-to-one, then it is either monotonic increasing or monotonic decreasing.
Lets first assume that it is monotonic increasing, then g(x) ≤ y if and only if x ≤ g−1(y). Thus1

FY (y) = P[g(X) ≤ y] = P[X ≤ g−1(y)] = FX(g−1(y))

and

fY (y) =
d

dy
FX(g−1(y)) =

d

dg−1(y)
FX(g−1(y))

d

dy
g−1(y) = fX(g−1(y))

∣∣∣∣
d

dy
g−1(y)

∣∣∣∣

because in this case d
dy g−1(y) > 0.

In the monotonic decreasing case, g(x) ≤ y if and only if x ≥ g−1(y), thus

FY (y) = P[g(X) ≤ y] = P[X ≥ g−1(y)] = 1− FX(g−1(y))

and,

fY (y) = −fX(g−1(y))
d

dy
g−1(y) = fX(g−1(y))

∣∣∣∣
d

dy
g−1(y)

∣∣∣∣

because in this case d
dy g−1(y) < 0.

Definition C.0.1. Let U be an open subset of Rn and let g : U → R be a given functional. We
define the partial derivative of g at the point a = (a1, . . . , an) ∈ U with respect to the ith variable
xi as

∂f(a)
∂xi

= lim
h→0

f(a1, . . . , ai−1, ai, ai+1, . . . an)− f(a1, . . . , an)
h

.

1If X ∈ R is a random variable with pdf fX(x), then the cumulative density function (cdf) is denoted by
FX(x) :=

R x
∞ x dx.
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Appendix D

Hedging Results

This appendix contains all the results of the simulated and empirical delta hedges performed in
this dissertation.

D.1 Simulated Delta Hedge Results

Hedging with Shares

Day Share Price Delta Hedge Equity Position CDS Position Delta Hedge
($) Ratio Value ($) Value ($) Efficiency Measure ($)

ti Sti ∆φ(t0,ti,T )/Sti
−∆φ(t0,ti,T )/Sti

Sti φ(t0, ti, T ) Λ(t0, ti)
0 50.55 -1441 72845.94 0.00 0.00
1 50.07 -1643 82270.18 -4235.90 -4936.56
2 48.81 -1764 86096.68 -3795.98 -6577.05
3 48.90 -1733 84741.12 -2636.83 -5270.10
4 49.12 -1784 87628.83 -3422.90 -5685.68
5 48.15 -1682 80985.84 -3085.67 -7090.01
6 49.08 -1501 73673.41 -3507.84 -5958.40
7 50.09 -1459 73077.07 -4994.70 -5938.64
8 50.09 -1059 53044.03 -4515.41 -5468.47
9 53.70 -1225 65776.57 -7484.13 -4620.86
10 54.40 -1315 71537.17 -8381.45 -4668.44
11 53.80 -1167 62780.67 -8243.97 -5328.32
12 55.78 -1276 71180.32 -8828.39 -3609.46
13 55.61 -1084 60276.58 -8680.53 -3686.65
14 55.62 -1310 72863.00 -8374.12 -3376.22
15 56.58 -1004 56807.49 -9456.92 -3209.78
16 56.64 -771 43670.40 -9666.84 -3365.70
17 56.58 -914 51714.36 -9568.58 -3318.30
18 55.77 -1249 69655.16 -9037.18 -3532.85
19 55.95 -1364 76320.07 -8916.09 -3194.85
20 54.84 -947 51937.57 -8665.43 -4466.93
21 55.44 -1530 84826.19 -7178.31 -2417.50
22 56.88 -1019 57960.69 -9657.19 -2703.05
23 56.22 -833 46829.92 -8512.62 -2237.31
24 57.01 -915 52162.60 -9324.78 -2396.40
25 58.15 -972 56517.29 -9659.63 -1693.72
26 56.74 -1284 72854.98 -9406.12 -2816.72
27 55.42 -1001 55471.89 -8719.78 -3833.43
28 55.96 -941 52653.69 -9060.19 -3639.54
29 55.51 -1146 63619.47 -8973.10 -3981.72
30 56.16 -1327 74524.74 -7582.24 -1853.19

105



D.1. Simulated Delta Hedge Results 106

Day Share Price Delta Hedge Equity Position CDS Position Delta Hedge
($) Ratio Value ($) Value ($) Efficiency Measure ($)

ti Sti ∆φ(t0,ti,T )/Sti
−∆φ(t0,ti,T )/Sti

Sti φ(t0, ti, T ) Λ(t0, ti)
31 56.88 -816 46414.91 -9536.77 -2860.76
32 57.47 -971 55803.34 -9726.73 -2574.18
33 58.64 -848 49722.87 -10395.24 -2112.62
34 59.22 -829 49094.70 -10507.75 -1738.40
35 60.34 -891 53764.64 -10901.57 -1208.71
36 59.22 -1025 60704.38 -10386.60 -1697.09
37 59.14 -645 38146.88 -10493.97 -1892.87
38 59.03 -723 42675.59 -10396.15 -1869.65
39 57.50 -474 27254.41 -9827.27 -2411.17
40 57.78 -500 28891.33 -9970.31 -2423.93
41 56.76 -1243 70550.95 -9023.02 -1989.27
42 57.99 -537 31138.09 -9893.84 -1339.03
43 57.33 -810 46438.42 -9517.37 -1319.77
44 57.77 -874 50495.18 -9884.87 -1335.58
45 58.00 -783 45417.60 -9917.96 -1172.82
46 57.15 -837 47831.81 -9165.98 -1090.92
47 55.19 -1008 55627.18 -8384.57 -1954.93
48 55.11 -190 10471.48 -8802.73 -2459.79
49 54.24 -1356 73552.60 -8887.73 -2710.60
50 54.68 -1101 60197.73 -8258.89 -1493.43
51 55.22 -1069 59034.12 -8665.89 -1312.48
52 56.75 -626 35523.04 -9267.01 -284.40
53 57.22 -801 45836.67 -9623.72 -350.16
54 56.70 -738 41843.36 -9270.27 -417.74
55 56.93 -823 46849.42 -9160.86 -142.65
56 56.05 -742 41586.44 -8776.94 -487.64
57 56.05 -1336 74884.19 -7440.77 844.42
58 56.02 -1288 72152.18 -8772.36 -535.46
59 55.94 -768 42964.21 -8961.26 -835.28

Table D.1: Hedging results for simulated stock prices and CDS values.

Hedging with Call Options

Day Share Price Delta Hedge Equity Position CDS Position Delta Hedge
($) Ratio Value ($) Value ($) Efficiency Measure ($)

ti ϕti ∆φ(t0,ti,T )/ϕti
−∆φ(t0,ti,T )/ϕti

ϕti φ(t0, ti, T ) Λ(t0, ti)
0 6.74 -3083 20784.96 0.00 0.00
1 6.38 -2040 13010.87 -4262.29 -5374.73
2 5.40 -2294 12393.03 -3318.25 -6431.63
3 5.46 -2354 12845.34 -2610.15 -5587.80
4 5.64 -2124 11969.48 -3843.54 -6399.43
5 4.92 -2190 10778.76 -2854.14 -6941.10
6 5.64 -2063 11641.03 -4217.66 -6729.65
7 6.42 -2127 13664.79 -1713.53 -2618.12
8 6.36 -2130 13551.13 -4778.92 -5812.93
9 9.59 -1287 12336.45 -7769.89 -1925.80
10 10.09 -1275 12858.64 -8226.57 -1739.78
11 9.64 -1254 12087.27 -8011.79 -2099.54
12 11.38 -1186 13496.85 -8908.53 -815.08
13 11.34 -549 6226.76 -8509.61 -464.26
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Day Share Price Delta Hedge Equity Position CDS Position Delta Hedge
($) Ratio Value ($) Value ($) Efficiency Measure ($)

ti ϕti
∆φ(t0,ti,T )/ϕti

−∆φ(t0,ti,T )/ϕti
ϕti

φ(t0, ti, T ) Λ(t0, ti)
14 11.34 -800 9069.51 -8962.90 -917.33
15 12.27 -839 10295.76 -9504.04 -714.59
16 12.38 -723 8950.37 -9541.04 -659.49
17 12.24 -670 8202.46 -9454.40 -674.08
18 11.50 -994 11430.03 -9008.16 -723.57
19 11.71 -1062 12437.20 -9264.92 -771.98
20 10.68 -976 10423.55 -8299.16 -900.56
21 11.23 -1523 17103.19 -6499.52 1435.51
22 12.69 -775 9835.12 -9723.24 434.24
23 12.00 -855 10257.70 -9249.40 373.36
24 12.71 -847 10765.18 -9614.19 615.55
25 13.87 -737 10220.10 -9922.72 1289.47
26 12.45 -1040 12947.57 -8911.34 1254.43
27 11.17 -735 8213.23 -8612.16 222.07
28 11.70 -1278 14950.44 -5013.07 4210.79
29 11.40 -923 10518.72 -8932.13 -92.38
30 11.96 -923 11039.36 -8660.67 695.75
31 12.60 -929 11707.01 -9392.37 554.57
32 13.20 -706 9320.51 -9846.57 657.55
33 14.35 -728 10444.12 -9885.51 1430.65
34 14.99 -652 9774.20 -10326.36 1455.83
35 16.00 -670 10722.72 -10743.05 1697.91
36 14.90 -642 9568.34 -10408.31 1295.86
37 14.93 -574 8570.22 -10367.36 1356.34
38 14.73 -786 11577.32 -10261.77 1347.51
39 13.25 -587 7776.03 -9382.73 1063.28
40 13.56 -687 9315.86 -9910.13 718.18
41 12.60 -759 9566.86 -9683.03 285.92
42 13.88 -662 9187.89 -10116.62 823.90
43 13.11 -1140 14944.07 -8749.32 1681.67
44 13.56 -739 10020.23 -9761.64 1181.80
45 13.76 -882 12135.62 -9946.65 1144.70
46 12.97 -853 11064.25 -9798.32 596.12
47 11.10 -832 9238.19 -8621.35 177.90
48 11.07 -863 9556.75 -8574.30 199.94
49 10.24 -657 6727.99 -7476.52 581.33
50 10.69 -769 8220.96 -8332.59 21.07
51 11.14 -1162 12940.06 -8142.32 557.41
52 12.56 -1192 14965.83 1004.04 2148.93
53 13.02 -681 8869.68 -9643.18 1253.82
54 12.51 -747 9347.36 -9450.98 1098.96
55 12.82 -717 9190.92 -9492.66 1289.00
56 11.89 -1400 16639.54 -3469.72 6453.23
57 11.88 -1040 12357.49 -8714.63 1385.61
58 11.85 -976 11561.64 -8743.11 1325.65
59 11.91 -1027 12235.95 -9044.91 1082.22

Table D.2: Hedging results for simulated European call share option prices and CDS values.
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measure and option pricing’, Journal of Applied Probability 32, 443–458.

Gemmill, G. (2003), ‘Testing Merton’s model for credit spreads on zero-coupon bonds’. Working
paper, City University London.

Geske, R. (1977), ‘The valuation of corporate liabilities as compound options’, Journal of Financial
and Quantitative Analysis 12, 541–552.



BIBLIOGRAPHY 135

Geske, R. (1979), ‘The valuation of compound options’, Journal of Financial Economics 7, 63–81.

Giesecke, K. (2005), ‘Default and information’. Working paper, Stanford University.

Glasserman, P. (2004), Monte Carlo Methods in Financial Engineering, Springer.

Harrison, J. M. & Kreps, D. M. (1979), ‘Martingales and arbitrage in multiperiod securities mar-
kets’, Journal of Economic Theory 20, 381–408.

Harrison, J. M. & Pliska, S. R. (1981), ‘Martingales and stochastic integrals in the theory of
continuous trading’, Stochastic Processes and their Applications 11, 215–260.

Harrison, J. M. & Pliska, S. R. (1983), ‘A stochastic calculus model of continuous trading: Complete
markets’, Stochastic Processes and their Applications 15, 313–316.

Hilberink, B. & Rogers, L. C. G. (2002), ‘Optimal capital structure and endogenous default’,
Finance and Stochastics 6, 237–263.

Hull, J. (2003), Option, Futures and Other Derivatives, 5th edn, Prentice Hall.

Hull, J. & White, A. (2000), ‘Valuing credit default swaps I: No counterparty default risk’, The
Journal of Derivatives 8, 29–40.

Jarrow, R. & Turnbull, S. (1995), ‘Pricing derivatives on financial securities subject to credit risk’,
Journal of Finance 50, 53–85.

Jones, E., Mason, S. & Rosenfeld, E. (1984), ‘Contingent claims analysis of corporate capital
structure: An empirical investigation’, Journal of Finance 39, 611–626.

Karatzaz, I. & Shreve, S. (1991), Brownian Motion and Stochastic Calculus, Springer.

Kim, I., Ramaswamy, K. & Sundaresan, S. (1993), ‘The valuation of corporate fixed income secu-
rities’. Working Paper, Wharton School, University of Pennsylvania.

Kou, S. & Wang, H. (2003), ‘First passage times of a jump diffusion process’, Advanced Applied
Probability 35, 504–531.

Lagarias, J., Reeds, J., Wright, M. & Wright, P. (1998), ‘Convergence properties of the Nelder-
Mead simplex method in low dimensions’, Journal of Optimization 9, 112–147.

Last, G. & Brandt, A. (1995), Marked Point Proceses on the Real Line– The Dynamic Approach,
Springer-Verlag.

Leland, H. (1994), ‘Corporate debt value, bond covenants and optimal capital structure’, Journal
of Finance 51, 1213–1252.

Leland, H. & Toft, K. (1996), ‘Optimal capital structure, endogenous bankruptcy and the term
structure of credit spreads’, Journal of Finance 51, 987–1019.

Liu, L. (2005), ‘Do firms have target leverage ratios? Evidence from historical market-to-book and
past returns’. Working Paper, Hong Kong University of Science and Technology.

Longstaff, F. & Schwartz, E. (1995), ‘A simple approach to valuing risky fixed and floating rate
debt’, Journal of Finance 50, 789–819.

Longstaff, F. & Schwartz, E. (2001), ‘Valuing american options by simulation: A simple least-
squares approach’, Review of Financial Studies 14, 113–147.

McWalter, T. (2006), ‘Quadratic criteria for optimal martingale measures in incomplete markets’.
Msc thesis, University of the Witwatersrand.

Mella-Barral, P. & Perraudin, W. (1997), ‘Strategic debt service’, Journal of Finance 52, 531–556.

Merton, R. (1974), ‘On the pricing of corporate debt: the risk structure of interest rates’, Journal
of Finance 29, 241–249.

Merton, R. (1976), ‘Option pricing when the underlying stock returns are discontinuous’, Journal
of Financial Economics 3, 125–144.



BIBLIOGRAPHY 136

Metwally, S. & Atiya, F. (2002), ‘Using Brownian bridge for fast simulation of jump-diffusion
processes and barrier options’, The Journal of Derivatives 10, 43–54.

Mordecki, E. (2002), ‘Optimal stopping and perpetual options for Lévy processes’, Finance and
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Sanz-Solé, M. (2005), Mallivian Calculus with Applications to Stochastic Partial Differential Equa-
tions, EPFL Press.

Sarig, O. & Warga, A. (1989), ‘Some empirical estimates of the risk structure of interest rates’,
Journal of Finance 44, 1351–1360.

Schefer, S. & Strebulaev, I. (2004), ‘Structural models of credit risk are useful: Evidence from
hedge ratios on corporate bonds’. EFA 2004 Maastricht Meetings Paper No. 4764.
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