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ABSTRACT 
 
The flow characteristics of an on-line analyser were measured using a 

stimulus � response technique. The analyser was developed for 

monitoring homogeneous catalyst concentrations in a non-aqueous 

solution and it was considered important to limit dispersion effects 

between sample injection and measuring points. Various tube lengths 

between these points were used and the system was operated over a 

range of flow rates. The detectors employed were electrochemical in 

nature and of two different designs. 

The residence time distributions of the system were determined 

experimentally and analysed by the method of moments and frequency 

techniques. As expected dispersion of the sample decreased as tube 

length decreased and flow rate increased. 

An attempt was made to fit the experimental results to the axially 

dispersed plug flow model. This was only successful over a limited range 

of the variables. 
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1 INTRODUCTION 
 
Sasol is the largest petrochemical company in South Africa, and was 

founded in 1950 by the South African government. South Africa has 

abundant coal reserves and Sasol is the world leader in converting coal 

and gas into fuels and valuable chemicals using proprietary Fischer-

Tropsch technology.  

Sasol are currently developing a process to convert olefins to linear 

alcohols. The process employs a homogeneous catalyst usually 

consisting of cobalt or rhodium compounds.  

Sasol have commissioned pilot facilities for the development of this 

process, and require some means of monitoring catalyst concentrations in 

non � aqueous media.   

Monitoring of the catalyst concentration on � line will be both time and 

money saving, and will enable Sasol to control and optimise their process. 

Furthermore, Sasol require an analytical system that is capable of 

providing results every 30 to 60 minutes, capable of sampling from more 

than just one location, be robust and should require infrequent 

maintenance.      

The initial period of this study was devoted to the development of an 

analyser capable of satisfying the requirements of Sasol. Apart from other 

activities the development phase included drafting a design for the 

analyser, surveying commercial literature (catalogues, brochures and user 

manuals), acquisition of the necessary components for the analyser, 

development of software to control components of the analyser (and the 

analyser as a whole) and lastly assembly and testing of the analyser 

system.  

The analyser developed for monitoring of the Sasol catalyst was a flow 

injection analyser with an electrochemical detector. Flow injection 

analysers operate on the principle where a sample volume is injected into 

a continuously flowing stream, called a carrier stream or carrier solution. 



 14

The carrier stream transmits the injected sample towards the detector. On 

route to the detector, the injected sample disperses into the carrier stream 

by means of molecular diffusion and convection [1]. 

 The electrochemical detector or cell was a block of a certain polymer 

material with nut threads for the attachment of electrodes and tubing. Two 

different types of electrochemical detectors were employed in this study. 

The first design was termed the wall jet cell and the second, the flow by 

cell. In both these designs, three electrodes were attached to each cell 

block. The differences between the two types of electrochemical detectors 

will be highlighted in Section 2.  

The electrochemical technique employed was chronoamperometry. In this 

technique, the working electrode is held at a fixed potential with respect to 

the reference electrode. The background electrolyte or the carrier solution 

is pumped through the detector.  The current is monitored as a function of 

time as the solution flows through the detector. Thereafter a small volume 

of sample is injected and is carried with the carrier stream towards the 

detector. If the injected sample present in the solution flowing past the 

working electrode is electroactive, then the electroactive species is either 

reduced or oxidised, depending on the working electrode potential. If the 

species is oxidised or reduced, then an oxidation or reduction current is 

observed, which is the recorded signal. 

The focus of this dissertation, however, is not on the development of the 

analyser itself, but rather on the methods and techniques used in 

describing the dispersion of sample and the flow within the analyser 

system. The extent of sample dispersion within the analyser system 

affects the detector reading and hence the analytical signal quality. The 

dispersion of sample in a flow injection analyser can be varied depending 

on the type of analytical procedure being followed [2, 3]. For example, in 

determining the pH of a sample using a flow injection analyser, the 

sample has to be transported to the detector without being mixed with the 

carrier fluid. For analytical procedures like spectrophotometry the sample 
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has to be mixed with the carrier solution, allowing a certain reaction to 

take place in order to form a compound, which is detectable. Similarly for 

electrochemical detectors, a certain degree of mixing or homogeneity is 

required between the background electrolyte and injected sample. Should 

the background electrolyte and injected sample flow through the 

electrochemical detector without any mixing as discrete volumes, then 

distorted or irregular signals would be observed. On the contrary, the 

dispersion of sample in the background electrolyte should be limited, such 

that significant dilution of the sample does not occur. Dilution of the 

sample results in peak broadening, which is unwanted. Dilution of the 

injected sample leads to excessive tailing, which results in computational 

errors.  

The dispersion of sample within the analyser system is a function of the 

flow rate of carrier solution within the analyser system, the length of tubing 

between the injection point and detector, the diameter of the tubing 

situated between the injection and detection points and the volume of 

sample injected [2, 4-11]. In this study the effect of varying the flow rate of 

carrier solution and the length of tubing between the injection and 

detection points on sample dispersion was investigated. Tests were also 

conducted using two different types of electrochemical detectors in order 

to qualitatively determine the dispersion caused by the detector itself, and 

to compare the analytical signal quality obtained using the different 

detector designs.  

In trying to understand the effect of varying these two parameters on 

sample dispersion, it is useful to attempt to formulate a flow model to 

represent the flow pattern and mixing behaviour within the analyser 

system. This requires a knowledge of the flow pattern of fluid elements 

within the system which may be obtained if the velocity distribution of fluid 

elements within the system is known. However in many circumstances the 

velocity distribution is not known or cannot be derived from the solution of 

the Navier-Stokes equation. Valuable information regarding the flow 

pattern and mixing behaviour can be obtained from the exit age 
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distribution (residence time distribution) of fluid elements leaving the 

system. The residence time distribution is obtained experimentally by a 

technique termed the stimulus � response technique. In this technique a 

tracer or sample is injected at the inlet to the system and the response at 

the system exit is observed. The shape of the experimentally determined 

residence time distribution can be used to draw conclusions regarding the 

flow pattern and mixing behaviour within the system. The flow model is 

then chosen on the basis of matching the experimentally determined 

residence time distribution with that obtained from the theoretical or 

mathematical model. However in order to perform quantitative 

comparisons between them other methods may be used. The methods 

employed in this work were moment analysis and frequency analysis. A 

major advantage of the method of moments is that both the experimental 

and theoretical moments may easily be determined [12-14]. This means that 

less computational time is required when using this method. Not only are 

the theoretical moments easily obtained, but also the expressions derived 

for the theoretical moments are simple and compact [12-14]. The method of 

moments does, however, suffer from certain disadvantages, which include 

uneven weighting of the tail of the signal, large errors due to noisy data, 

errors due to baseline drifting and lastly this method provides no 

information on how well a model fits the data [12-15]. Classical work on 

frequency analysis involved exciting the flow system with a sinusoidal 

input, and measuring the output when the system has reached steady 

state. The classical form of frequency analysis has disadvantages. This 

method is time consuming since the duration of the experiments will be 

lengthy for two reasons. Firstly time must be allowed for the system 

transients to disappear and secondly in order to obtain data for a wide 

frequency range a large number of experiments must be performed. 

Building and operating an instrument to generate a sinusoidal tracer input 

is difficult [13, 15]. To overcome the disadvantages associated with 

sinusoidal tracer testing, many workers have used the pulse testing 

method. This method involves injecting a pulse input signal and recording 
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the output signal. The shape of the pulse is not critical, as long as a 

closed pulse is injected at the input [15]. A closed pulse is a pulse, which 

starts and ends at zero (concentration), and has a finite value for a finite 

time period [15]. A single pulse experiment yields the same amount of 

information as a series of sinusoidal tracer input experiments [13, 15]. Unlike 

the method of moments, it is possible to test the validity of a certain model 

using frequency analysis. This was demonstrated by a number of workers 
[13, 16, 17]. Some workers [18-22] have applied the stimulus � response 

technique for the evaluation of dispersion in flow analysis systems or 

components of flow analysis systems. Some of these workers have used 

moment analysis to characterize or describe the dispersion. It is known 

that the method of moments suffers from shortcomings [12-15] and only 

moments up to the second moment can be estimated with reasonable 

accuracy. In cases where excessive tailing is present in signals, the 

accuracy of even the second moment is doubtful. In order to determine 

the response or residence time distribution function of the flow system, 

these workers have utilised either some numerical inversion technique or 

deconvolution. Frequency analysis is a much simpler alternative to both of 

these techniques for the determination of the system response. 

Frequency analysis is also less sensitive to the tail portion of signals, and 

hence more accurate than moment analysis [13].   

Essentially the tasks performed in this work included:  

• determining the residence time distribution of fluid elements in the 

analyser system by pulse testing 

• obtaining the experimental system response or system residence 

time distribution by frequency analysis, which included plotting the 

experimentally determined amplitude ratio and phase lag against 

frequency 

• drawing conclusions regarding the flow pattern and mixing 

behaviour within the analyser system from the shape of the 

experimentally determined system residence time distribution. 
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• determining the moments of the experimental system residence 

time distribution  

• proposing a flow model based on the shape of the experimental 

system response curve 

• testing the validity of the of the proposed flow model using 

frequency analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19

2 EXPERIMENTAL  
 
In the experimental work conducted two analyser systems were studied. 

The difference between the analyser systems was the type of 

electrochemical detectors used. The aim of these experiments was to 

determine the effect on the dispersion of the injected sample by varying 

the flow rate of carrier solution and the length of tubing between the 

injection and detection points for both systems. The flow rates that were 

tested were 0.5, 0.75, 1.0, 1.5 and 2.0 ml/min. The lengths of tubing 

between the injection and detection points that were used were 0.25, 0.5, 

0.8 and 1 m. All of the flow rates were tested for each of the lengths for 

both analyser systems. A detailed description of the experimental 

apparatus, analyser systems and reagents follows below. 

2.1 Apparatus 
The apparatus used in these experiments consisted of two pumps, a six 

port loop valve, two electrochemical flow-through detectors (cells) with 

three electrodes each, narrow bore tubing, fittings (nuts and ferrules), two 

potentiostats, a data acquisition system and a personal computer. A 

diagram of the experimental apparatus, a description of the analyser 

systems and each component are presented below.   
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Figure 2.1: Diagram of experimental apparatus. BE � background electrolyte,                  
BEP � background electrolyte pump, DAQ � data acquisition system, 
FS � ferrocene stock solution (tracer), SP � sample pump, SPLV � six 
port loop valve, IELCD � input electrochemical cell detector,                  
OELCD � output electrochemical cell detector, ISP � input signal 
potentiostat, OSP � output signal potentiostat, PC � personal 
computer, NBT � narrow bore tubing and W � waste. For details see 
text below.        

 

In the first analyser system (analyser system A) both the input and the 

output electrochemical cell detectors were of the same type, called the 

wall jet cell. In the second analyser system (analyser system B) the input 

and the output electrochemical cell detectors were of different types. For 

analyser system B the input electrochemical cell detector was based on a 

design termed the flow by detector, whilst the output electrochemical cell 

detector was a wall jet cell. The wall jet cell and flow by cell detectors had 

different geometric configurations, and as a result the flow configurations 

in the analyser systems differed. Representations of analyser systems A 

and B are shown below in Figures 2.2 and 2.3 from which the flow 

configurations can be clearly seen. The red arrows indicate the direction 
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of the solution flow. As an example the tubing length between the injection 

and detection points is shown as 0.25 m. In analyser system A shown in 

Figure 2.2 both the input and output detectors were wall jet cell detectors. 

A detailed representation of the wall jet cell detector is shown in Figures 

2.6, 2.7 and 2.8. In analyser system B shown in Figure 2.3, the input 

detector was a flow by cell detector. A detailed representation of the flow 

by cell detector is shown in Figures 2.9, 2.10 and 2.11. The output 

detector for analyser system B which was a wall jet cell detector is 

represented in detail in Figures 2.6, 2.7 and 2.8. 
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Figure 2.2: Representation of analyser system A. IELCD � input electrochemical 
cell detector, OELCD � output electrochemical cell detector,                        
AE � auxiliary electrode, RE � reference electrode and WE � working 
electrode.   
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Figure 2.3: Representation of analyser system B. IELCD � input electrochemical 
cell detector, OELCD � output electrochemical cell detector,                        
AE � auxiliary electrode, RE � reference electrode and WE � working 
electrode. 
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2.1.1 Electrochemical cell detectors 

The electrochemical detectors were based on two different designs. The 

first design is termed the wall jet cell and the second design termed the 

flow by cell.  In both these designs three electrodes were employed in 

each detector. These electrodes are called the working electrode, 

auxiliary electrode and reference electrode. In either cell designs, the 

working electrode was a platinum disc with a diameter of 2 mm encased 

in a cylindrical PEEK (polyether � ether ketone) shaft. The outer diameter 

of the PEEK shaft was 6 mm. For the wall jet design the auxiliary 

electrode was a gold rod with a 2 mm diameter, which was embedded in 

the cell. For the flow by cell the auxiliary electrode was a gold disc with a 

diameter of 2 mm encased in a PEEK shaft also with a diameter of 6 mm. 

For both cell designs, the reference electrode was a silver rod, with a 

diameter of 4 mm, immersed in silver nitrate reference electrolyte 

contained in an electrolyte vessel. Apart from the auxiliary electrode 

design the difference between the two cell designs was in the 

configuration of the flow channel. The wall jet cell that was used in the 

experiments is commercially available, model 6.5303.030 (Metrohm, 

Herisau, Switzerland), whilst the flow by cell was custom built. Shown 

below in Figure 2.4 is a representation of the working electrodes for both 

the wall jet and flow by cells and a representation of the auxiliary 

electrode for the flow by cell. These electrodes were attached to the cell 

blocks by means of locking screws. In order to ensure leak tight seals, 

PTFE (polytetrafluoroethylene) sealing gaskets were employed. The 

electrodes, locking screws and PTFE sealing gaskets are all commercially 

available. Shown in Figure 2.5 is a representation of the reference 

electrodes for both detector types. For the reference electrode a silver rod 

was encased in a locking screw. The locking screw was inserted into the 

reference electrolyte storage vessel, which was filled with reference 

electrolyte. To ensure no leaks from the top of the reference electrolyte 

storage vessel (where the silver rod locking screw was attached), a PTFE 

sealing gasket was used. The reference electrolyte storage vessel with 
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the attached silver rod was screwed into the body of the detector cell. To 

ensure no leaks from the cell block, once again PTFE sealing gaskets 

were utilised. The tip of the reference electrolyte storage vessel was 

embedded with a ceramic frit. The ceramic frit did not allow for reference 

electrolyte to leak out of the storage vessel or for other solutions to flow 

into the storage vessel, but did allow for diffusion of ions. The reference 

electrolyte storage vessels used in these experiments are commercially 

available. However the locking screws embedded with silver rods were 

custom made.  
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Figure 2.4: Representation of working electrode for wall jet and flow by cells and 
representation of auxiliary electrode for flow by cell.   

In the wall jet design, the auxiliary and reference electrodes were situated 

directly opposite each other. A very small space existed between the 
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reference and auxiliary electrode, which was the flow channel. The 

diameter of the flow channel was approximately 0.3 mm. 
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Figure 2.5: Representation of reference electrode.  

Both the auxiliary and reference electrodes were situated close to the 

solution exit. This is illustrated in Figure 2.6.   

The solution inlet tubing was screwed into a nipple, which in turn was 

screwed into the cell body. The working electrode and solution inlet nipple 

were situated directly opposite each other. A very small spacing existed 

between the working electrode surface and solution inlet nipple. The 

solution flowing into the cell therefore impinged perpendicularly onto the 
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working electrode surface creating a jet of liquid. This liquid then flowed 

through the flow channel towards the exit. The working electrode and 

solution inlet nipple were situated in a plane perpendicular to the 

reference and auxiliary electrode. Figure 2.7 below is representation of 

the wall jet cell, showing the position of the working electrode and solution 

inlet. Figure 2.8 below is a representation of the wall jet cell, which clearly 

illustrates the flow path. The dimensions of the wall jet cell block are 

shown on Figures 2.6 and 2.7.  
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Figure 2.6: Illustration of wall jet cell and components � side view.  
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Figure 2.7: Illustration of wall jet cell and components � front view. 
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Figure 2.8: Illustration of wall jet cell and components � top view. 

The design of the flow by cell is illustrated in Figures 2.9, 2.10 and 2.11 

below. In this design, the auxiliary and reference electrode were situated 

directly opposite each other, as was the case for the wall jet design. The 

spacing between the auxiliary electrode surface and the ceramic frit of the 

reference electrode was the flow channel, which had a diameter of 2 mm. 

The flow by cell therefore had a flow channel that had a greater diameter 

than the wall jet cell. In the flow by cell design, the auxiliary and reference 
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electrodes protruded slightly into the flow channel. This is illustrated in 

Figure 2.9. The working electrode was situated in a plane perpendicular to 

the reference and auxiliary electrodes, as was the case for the wall jet cell 

detector. In the flow by cell design there was no solution inlet nipple. The 

flow channel extended through the length of the flow by cell. On either 

ends of the flow channel were nut threads for the attachment of inlet and 

outlet solution tubing. The working electrode also protruded slightly into 

the flow channel. Therefore for the flow by cell design, the flow of solution 

was parallel to the working electrode surface. This is clearly illustrated in 

both Figures 2.9 and 2.11. The dimensions of the flow by cell block were 

the same as the wall jet cell block.  
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Figure 2.9: Illustration of flow by cell and components � side view. 
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Figure 2.10: Illustration of flow by cell and components � front view. 
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Figure 2.11: Illustration of flow by cell and components � top view. 
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2.1.2 Pumps 

The background electrolyte pump was utilised to continuously pump 

background electrolyte towards the detectors, whilst the sample pump 

was used to pump the electroactive species into the sample loop. 

The background electrolyte pump was a piston pump; model 765 

Dosimat, (Metrohm, Herisau, Switzerland) with a PTFE Teflon piston. The 

sample pump was a gear pump which consisted of the pump drive; model 

78004-02 (Ismatec, Glattbrugg, Switzerland) and pump head; model 1840 

(Micropump, Vancouver, USA). The pump head body was constructed of 

316 stainless steel, the gears were made of PEEK and the seals were 

PTFE Teflon. 

Both the background electrolyte and the sample pump were controlled via 

a personal computer using the RS-232 interface. Pump parameters that 

could be controlled were the flow rate and volume of solution dispensed.  

2.1.3 Six port loop valve 

A six port loop valve furnished with an external sample loop was utilised 

as the injection device. The volume of the sample loop was 20 µl. The 

valve assembly consisted of a valve head (or valve); model R36781 

(Hamilton, Bonaduz, Switzerland) and an electric valve drive; model 

R77810 (Hamilton, Bonaduz, Switzerland). The valve consisted of a fixed 

stator and a movable rotor. The stator was connected to the valve body in 

a manner that allowed attachment of tubing, sample loops and other 

devices. The rotor contained small passages that connected the stator 

passages as required. The movable rotor was driven by the electric 

motor. The diagram below illustrates the fixed stator, stator passages, 

movable rotor and rotor passages.   
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Figure 2.12: Illustration of six port loop valve. A � fixed stator, B � stator passages,                       

C � movable rotor, D � rotor passages and E � nut threads.  

 
 
The diagrams shown below illustrate the operation of the six port loop 

valve. 

 

 

 

      

 
 
 
 
 
 
 
 

Figure 2.13: Operation of six port loop valve � load position. BE in � background 
electrolyte flows into the valve, To ELCD � background electrolyte 
flows towards the electrochemical cell detector, SL � sample loop,               
S in � Sample flows into the valve and through the sample loop, and                  
W � excess sample flows to waste.   
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When the six port loop valve was in the load position as illustrated in 

Figure 2.13 above, a volume much greater than the volume of the sample 

loop was pumped through the sample loop. This ensured that the sample 

loop was flushed and filled with electroactive species. The excess solution 

was discarded as waste. 

At the same time the background electrolyte was pumped towards the 

detector and bypassed the sample loop.  

When the six port loop valve was in the inject position, as shown below in 

Figure 2.14, the rotor and stator passages were aligned in a manner such 

that the background electrolyte flowed through the sample loop, 

transporting with it the electroactive species to the input detector. The 

alignment of the rotor and stator passages can be noted by observing the 

relative positions of rotor passages 1 � 3 as illustrated in Figures 2.13 and 

2.14.  When the six port loop valve was in the inject position, the sample 

pump was inactive, therefore no sample was pumped to the valve. 

However, if for some reason the sample pump was pumping sample 

towards the valve when the valve was in the inject position; the sample 

did not flow through the sample loop, but flowed to the waste line. 
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Figure 2.14: Operation of six port loop valve � inject position. BE in � Background 

electrolyte flows into the valve and through the sample loop,                     
To ELCD � the background electrolyte and the sample flow towards 
the electrochemical cell detector, SL � sample loop, S � sample inlet 
port and W � to waste port. 

 
Switching the six port loop valve from the load to inject position and vice 

versa was achieved by actuating the electric motor. The electric motor 

was controlled by a personal computer via the RS-232 interface. 

2.1.4 Potentiostats 

The potentiostats used were model 791 VA detector (Metrohm, Herisau, 

Switzerland). The input and output detectors were connected to separate 

potentiostats as illustrated in Figure 2.1. The applied potential or the 

polarization potential on both the working electrodes of the input and 

output detectors in all the experimental runs was 300 mV vs. the silver/ 

silver nitrate reference electrode. Connections to the potentiostats from 

the electrodes were via shielded electrode cables. 
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2.1.5 Narrow bore tubing 

The narrow bore tubing was manufactured from FEP Teflon (Upchurch 

Scientific, Oak Harbor, USA). The outside diameter of the tubing was 

1/16�, and the inner diameter was 0.02�(0.508 mm). The lengths of the 

tubing between the injection and detection points that were used were 

0.25, 0.5, 0.8 and 1 m.  

2.1.6 Data acquisition system and personal computer 

The data acquisition system consisted of a PCI data acquisition card, 

model NI 6036E (National Instruments, Texas, USA) and a 68 pin 

shielded connector block, model SCB 68 (National Instruments, Texas, 

USA). The potentiostat signals were configured as differential inputs to 

the shielded connector block. The CPU of the personal computer was an 

Intel Pentium� 3 microprocessor, with a clock speed of 667 MHz. The 

personal computer had 256 MB of RAM. The software used to control the 

equipment, and also to read from the data acquisition system was 

LabVIEW version 7.0 (National Instruments, Texas, USA).  

2.2 Procedure 
The experimental procedure consisted of two parts and for the sake of 

convenience; the experimental procedure will be discussed as two parts. 

The first phase or part, which was the pre-measurement phase, will be 

called the assembly and equilibration phase, and the second phase will 

be called the measurement phase. These phases are explained below. 

2.2.1 Assembly and equilibration phase 

As the name implies, this phase deals partly with the assembly of the 

system and components. If the system had been disassembled for 

whatever reason, then it was necessary to perform this phase, but if the 

system was not disassembled and all necessary connections were made 

then this phase was omitted. 
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The reference electrolyte vessels shown in Figure 2.5 were filled with 

reference electrolyte solution. The reference electrolyte was filled to the 

brim of the electrolyte storage vessels, and thereafter the silver rods were 

screwed into the electrolyte storage vessels. Filling the electrolyte storage 

vessels to the brim ensured that there were no air bubbles in the 

reference electrodes.  

Thereafter the reference electrodes were screwed into the 

electrochemical cell detector bodies and connected to the potentiostats 

via shielded electrode cables. Similarly, the working electrodes were 

screwed into the electrochemical cell detector bodies and at this stage 

were not yet connected to the potentiostats. Lastly, the auxiliary electrode 

was screwed into the electrochemical cell detector body (for the flow by 

cell design) and then the auxiliary electrodes were connected to the 

potentiostats via shielded electrode cables.  

Then all tubing and electrical connections were made, i.e. the system was 

assembled as depicted in Figures 2.1 and 2.2 or 2.3.  

Thereafter the background electrolyte pump was started and background 

electrolyte was delivered to the cells at a certain flow rate. The data-

recording program was switched on, the potentiostats were set to the 

standby mode and the potentiometers located on the VA 791 

potentiostats were adjusted such that the display on the personal 

computer read zero (or close to zero) current. Once the display on the 

personal computer read zero (or close to zero) current, the polarization 

voltage (Eappl) was set on both the potentiostats to 300 mV, and the 

working electrodes were connected to the potentiostats via shielded 

electrode cables. The potentiostats were then set to the measure mode 

and the current recorded as a function of time was then monitored. This 

phase is called the equilibration phase. The working electrodes are said to 

be equilibrated when the current recorded did not vary substantially with 

time, i.e. a stable baseline current was obtained. If the steady baseline 
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current value was not zero (or close to zero) it was adjusted to zero (or 

close to zero) using the potentiometers located on the potentiostats. 

It has been observed from experiments that the time required for the 

working electrodes to equilibrate was several hours, when the apparatus 

was assembled for the first time, or after the electrodes were removed 

from the cells and then reinserted into the cell bodies. However if the 

electrodes were not removed from the cell bodies, the time required for 

equilibration was approximately 10 to 20 minutes or even shorter when 

performing measurements the next day. Measurements were performed 

only after the working electrodes have reached a stable or steady 

baseline current. 

2.2.2 Measurement phase 

Background electrolyte was continuously pumped towards the 

electrochemical cell detectors. After a steady baseline current was 

observed, the six port loop valve was switched to the load position. A 

volume of approximately 1 to 2 ml of electroactive sample was pumped 

through the sample loop, using the sample pump, in order to flush the 

sample loop. After flushing of the sample loop, the six port loop valve was 

set to the inject position. The background electrolyte now flowed through 

the sample loop, carrying with it the injected sample. The current as a 

function of time was recorded on both detectors. After a steady baseline 

was reached on both detectors, the system was again pulsed with 

electroactive species.  

2.3 Reagents 
The background electrolyte or carrier stream was 0.05 M analytical grade 

tetrabutylammonium hexafluorophosphate (Sigma-Aldrich, Steinheim, 

Germany) dissolved in analytical grade acetonitrile (Sigma-Aldrich, 

Steinheim, Germany).  

Silver nitrate dissolved in background electrolyte was used as the 

reference electrolyte. The silver nitrate concentration was 0.05 M. The 
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silver nitrate salt used was analytical grade (Saarchem, Merck, 

Darmstadt, Germany). The reference electrolyte was prepared by first 

dissolving tetrabutylammonium hexafluorophosphate salt in acetonitrile; 

thereafter the silver nitrate salt was added.  

Ferrocene (Sigma-Aldrich, Steinheim, Germany) dissolved in background 

electrolyte was used as the tracer. A stock solution of 1000 mg/l ferrocene 

in background electrolyte was prepared by first dissolving 

tetrabutylammonium hexafluorophosphate salt in acetonitrile, then adding 

the required mass of ferrocene.  
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3 PRESENTATION AND DISCUSSION OF RESULTS  
3.1 Calibration 
One of the requirements for a successful pulse test is that the recorded 

signal should be linearly proportional to the tracer concentration. Standard 

solutions of 1 mg/l, 2 mg/l, 25 mg/l, 50 mg/l, 100 mg/l and 200 mg/l 

ferrocene in background electrolyte were prepared by dilution of the 1000 

mg/l stock solution. These solutions were injected in increasing strength 

of the tracer solution. From these injections a plot of signal area vs. tracer 

concentration was obtained. From the calibration plot shown below it is 

clear that a linear relation is observed up to concentrations of about 75 

mg/l for both input and output detectors. It is also clear from the 

calibration plot that as the concentration increased the difference in areas 

between the input and output signals increased. The output detector 

signal area was greater than the input detector signal area. An 

explanation for this will be discussed below. However at low 

concentrations (1 mg/l) the difference between areas of the input and 

output signals were negligible (approx 1% difference). It is for this reason, 

solutions with concentrations of 1 mg/l or 2 mg/l ferrocene were chosen in 

experimental runs where the residence time distribution of the system was 

determined. 
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Figure 3.1: Calibration plot � Plot of signal area vs. tracer concentration. --♦-- input 

electrochemical cell detector signal and --■-- output electrochemical 
cell detector signal. Both detectors were wall jet cell detectors.  

 
The concentration signals that are measured are converted into electronic 

signals as shown in the scheme below [15]. 
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Figure 3.2: General scheme of signal recording 

Ri(t) and Ro(t) are the recorded input and output signals respectively. It is 

required that the recorded signal is proportional to the concentration of 

tracer. Therefore the relationship between the recorded signal and 

concentration may be expressed by:  
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             3-1 )()( tCKtR iii =

 
)()( tCKtR ooo =  3-2 

 
where Ci is defined as the tracer inlet � the reading from the input       
 detector                

Co is defined as the tracer outlet � the reading from the output  
detector                
Ki and Ko are the input and output signal proportionality factors 

respectively. 

t is time 

These proportionality factors are not always the same, since no two 

detectors are exactly the same. The area under the curve of the recorded 

signals is the integral of equations 3-1 and 3-2 i.e. 
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The proportionality factors can be placed outside the integrals since these 

are not a function of time. Now for the system under review the amount of 

tracer injected into the system must be equal to the amount of tracer 

leaving the system, hence . Therefore it can be concluded 

that the difference between the input and output signal areas was due to 

the different proportionality factors. 
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3.2 Pulse testing experimental results 
Experimental runs were performed using four different lengths of tubing 

between the input and output detectors. The lengths used were 0.25, 0.5, 

0.8 and 1 m. Five different flow rates were tested for each length. These 

flow rates were 0.5, 0.75, 1.0, 1.5 and 2.0 ml/min. These twenty runs were 

performed using two wall jet cell detectors as the input and output 

detectors and these twenty runs were repeated, this time the input 

detector was a flow by cell detector and the output detector was a wall jet 

cell detector. It was believed, based on the design of the flow by detector, 

that the flow by detector caused less dispersion of tracer than the wall jet 

cell detector.    

For the sake of clarity when presenting the results a system or convention 

will be adhered to. Runs A refer to tests performed where both detectors 

were the wall jet cell detectors and Runs B refer to tests when the other 

combination was used. The convention that will be adhered to is as 

follows. First the type of detectors used is stated then the length of the 

tubing between the detectors and lastly the flow rate of fluid is stated. For 

example A0.25-1.5 means a run where two wall jet cell detectors were 

used, the length of tubing between the detectors was 0.25 m and the flow 

rate was 1.5 ml/min.  

The input and output detector readings for all experimental runs are 

tabulated in Appendix I (stiffy diskette).  

A typical set of results is shown in Figures 3.3 and 3.4 below. These runs 

were randomly selected and the results are representative of the 

behaviour of the systems.   
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Figure 3.3: Plot of current vs. time for run A0.8-0.5. --- Input signal and --- output 
signal.  
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Figure 3.4: Plot of current vs. time for run B0.8-0.5. --- Input signal and --- output 
signal.  
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As expected, the output signals in Figures 3.3 and 3.4 show relatively 

broader peaks. Both the input and output curves are fairly smooth, 

indicating that dispersion of the tracer is relatively uniform within the 

system.  

From Figure 3.4 above it is noted that the output signal has a greater 

peak height than the corresponding input signal. This fact illustrates a 

very important factor regarding the two different cell detectors. It indicates 

that the cell detector based on the wall jet design has a greater sensitivity 

than the cell detector based on the flow by design.    

Shown in Figures 3.5 and 3.6 is the relationship between the input, output 

functions and the system response or system residence time distribution 

for the abovementioned runs.  
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Figure 3.5: Graphical representation of input, output functions and system 

response for Run A0.8-0.5. --- Input function, --- output function and                 
--- system response or system residence time distribution.  
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Figure 3.6: Graphical representation of input, output functions and system 
response for Run B0.8-0.5. --- Input function, --- output function and               
--- system response or system residence time distribution. 

 
The input and output functions shown in Figures 3.5 and 3.6 are 

normalized functions. The equations used for normalization of the input 

and output signals are shown below: 
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where θi(t) is defined as the input function 

θo(t) is defined as the output function  

The experimentally determined system responses or system residence 

time distributions shown in Figures 3.5 and 3.6 were obtained using the 

frequency analysis technique, which is explained in Section A.3.2.  
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( )

The system response was calculated from a Fourier series of the form: 

( )∑
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nn tbtat ωωE 3-7 

 
 
where E(t) is the system residence time distribution 

an and bn are Fourier coefficients of the system response or the 

system residence time distribution  

T
nπω =  is frequency 

 n is the coefficient number 

T is a constant (T has units of time and has to be carefully selected, 

as discussed in Section A.3.2)  

The Fourier coefficients an and bn were obtained using the following 

equations:  
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where pn and qn are Fourier coefficients of the input function 

 un and vn are Fourier coefficients of the output function 

The coefficients pn, qn, un and vn were obtained using the following 

equations: 
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The integrals in equations 3-10 to 3-15 were evaluated using a numerical 

technique. The numerical technique chosen was Simpson�s rule.  

The number of coefficients to be used in Equation 3-7 is set by the 

amplitude of the noise in the signal. A signal may be conceived as being 

made up of the true signal and noise. In the frequency spectrum of a 

signal, noise appears as irregular sharp pulses. As the frequency (or 

number of coefficients) increases, the amplitude ratio, An, of the signal 

drops below the amplitude of the noise.  

The amplitude ratio, An, of the system response or system residence time 

distribution (called the system amplitude ratio) is defined by the following 

equation:  

3-16 22
nnn baTA +=

 
By examining plots of the system amplitude ratio vs. frequency, noise can 

be easily distinguished from the true signal. This is clearly evident from a 

plot of the logarithm of the system amplitude ratio against frequency as 

shown in Figure 3.7 below. In order to avoid the inclusion of noise in the 

calculation of the system residence time distribution, the Fourier series 

should be truncated at the point where the system amplitude falls below 

the level of the noise. According to Turner [13], by truncating at this point a 
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major portion of the noise is eliminated and truncation of the Fourier 

series at this point performs smoothing of the signal. Appendix C contains 

a program that was used to determine the system amplitude ratio and 

system response or system residence time distribution from the input and 

output detector readings. 
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Figure 3.7: Plot of amplitude ratio vs. frequency.  

 
Shown below in Figures 3.8 and 3.9 are plots of various system residence 

time distributions. In these cases the length of tubing between the 

injection and detection points was kept constant, but the flow rate of 

carrier solution was varied.  
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Figure 3.8: Plot of system residence time distributions for Runs A. The length of 
tubing between the injection and detection points was 1 m.                                  
--- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min, --- 1.5 ml/min and                                    
--- 2.0 ml/min. 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 3.9: Plot of system residence time distributions for Runs B. The length of 
tubing between the injection and detection points was 1 m.                                  
--- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min, --- 1.5 ml/min and                                
--- 2.0 ml/min. 
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From Figures 3.8 and 3.9 above, the effect of varying the flow rate of 

carrier solution on injected sample can be clearly seen. It is noted from 

these diagrams that as the flow rate increased, the system residence time 

distributions became sharper and narrower, indicating that the dispersion 

of the injected sample decreased as the flow rate of carrier solution 

increased. The effect of varying the flow rate on the dispersion of injected 

sample has been illustrated for Runs A and B, when the length of tubing 

between the injection and detection points was 1 m. However this finding 

is also applicable to the runs where the lengths of tubing were 0.25, 0.5 

and 0.8 m.  

Similarly the effect of varying the length of tubing between the injection 

and detection points, at a fixed flow rate, on the extent of injected sample 

dispersion was obtained by examining the shapes of the residence time 

distributions. For the sake of brevity this plots will not be shown.  

It was noted that for a fixed flow rate, as the length of tubing between the 

injection and detection points increased, the system residence time 

distributions became broader and flatter, implying that as the tubing length 

increased so too did the dispersion of injected sample. 

3.3 Moment analysis 
Using the input and output detector readings, it was possible to determine 

the moments of the input and output functions. The moments of the input 

and output functions were obtained using the following equations: 
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where αni is the nth moment, about the origin, of the input function  

αno is the nth moment, about the origin, of the output function  
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Using the moments of the input and output functions, it was possible to 

determine the analyser system mean residence time and distribution 

variance using the following equations:  

3-19 
io τττ −=

 
222
io σσσ −=

3-20 

where iττ , and oτ are the system, input function and output function mean     

           residence times respectively,  

22 , iσσ and are the system, input function and output function 

distribution variances respectively. 

2
oσ

A comprehensive derivation of the above equations is presented in 

Section A.2.3. The integrals in equations 3-17 and 3-18 were evaluated 

using a suitable numerical integration technique. The technique used was 

Simpson�s rule. Appendix E contains a program that was used for the 

calculation of the system mean residence time and variance of the 

distribution from the moments of the input and output functions. 

The system distribution variance, σ2, is a direct measure of peak width. As 

the system distribution variance, σ2, increases, so too does the dispersion 

of injected sample [20]. Using the values of σ2 calculated under various 

conditions, comparisons on the extent of sample dispersion could be 

made. Shown below in Figures 3.10 and 3.11 are plots of the system 

distribution variances, σ2, vs. flow rate for both Runs A and B.   
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Figure 3.10: Plot of system distribution variance (σ2) vs. flow rate for Runs A.              

! � 0.25 m, " � 0.5 m, ▲ � 0.8 m and x � 1 m. 

 
Both Figures 3.10 and 3.11 indicate that the system distribution variances, 

σ2, are dependent on the flow rate of the carrier solution. For both Runs A 

and B, as the flow rate increased, the system distribution variances, σ2, 

decreased. The findings from both Figures 3.10 and 3.11 imply that the 

dispersion of injected sample decreased as the flow rate of carrier 

solution increased. These findings are in agreement with the earlier 

findings of Section 3.2. From both Figures 3.10 and 3.11, it appears that 

the system distribution variance, σ2, and hence the dispersion of injected 

sample is linearly dependent on the carrier solution flow rate. 
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Figure 3.11: Plot of system distribution variance (σ2) vs. flow rate for Runs B.              

! � 0.25 m, " � 0.5 m, ▲ � 0.8 m and x � 1 m. 

 
Shown below in Figures 3.12 and 3.13 are plots of system distribution 

variances, σ2, vs. length of tubing between the injection and detection 

points for both Runs A and B.   

From both Figures 3.12 and 3.13 it is clear that the system distribution 

variance, σ2, shows no dependence on the length of tubing between the 

injection and detection points. The independence of the system 

distribution variance, σ2, with respect to length of tubing situated between 

the injection and detection points, implies that the length of tubing 

between the injection and detection points does not affect the dispersion 

of injected sample. It has been shown above in Section 3.2, by examining 

the system response curves or the system residence time distributions 

that the dispersion of sample increased as the length of tubing between 

the injection and detection points increased. Rů�ička and Hansen in their 

work [2-4] have also found that the dispersion of sample increased as the 

length of tubing between the injection and detection points increased.  

There exists a discrepancy between the earlier findings of Section 3.2 and 
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the findings from Figures 3.12 and 3.13.  It is a well known fact that there 

are large errors associated in calculating higher moments, especially due 

to tailing [23, 24], and the discrepancy between the findings could be 

attributed to the errors in calculating moments. This discrepancy between 

the experimental findings highlights the disadvantages of moment 

analysis, where the tail of the signals is disproportionately weighted to the 

rest of the signal, resulting in erroneous calculations. The results obtained 

from frequency analysis confirm the results obtained in Section 3.2. The 

results obtained from frequency analysis are more reliable than the results 

obtained from moment analysis, since frequency analysis is less sensitive 

to the tail portion of the signals [13]. The results obtained from frequency 

analysis are shown in Section 3.4. 

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1 1.2

Length (m)

σ
2  (s

2 )

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Plot of system distribution variance (σ2) vs. tubing length for Runs A.              

! � 0.5 ml/min, " � 0.75 ml/min, ▲ � 1.0 ml/min, x � 1.5 ml/min and                  

# � 2.0 ml/min. 
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Figure 3.13: Plot of system distribution variance (σ2) vs. tubing length for Runs B.              

! � 0.5 ml/min, " � 0.75 ml/min, ▲ � 1.0 ml/min, x � 1.5 ml/min and                

# � 2.0 ml/min. 

3.4 Frequency analysis 
The relationship between the amplitude ratio of the input signal, output 

signal and system response or system residence time distribution is 

shown below in Figure 3.14. The distances A and C are the same. The 

distance A is an indication of how far the input signal deviates from an 

ideal impulse, since the amplitude ratio of an ideal pulse is equal to one 

for all frequencies [23]. The distance indicated by B is an indication of how 

far the flow in the analyser system deviates from the amplitude ratio of an 

ideal pulse or plug flow. In general, as the distance B increases, the flow 

in the analyser system deviates further from plug flow.  
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Figure 3.14: Plot of amplitude ratio vs. frequency. --- Input signal, --- output signal 

and --- system response. 

 
Therefore by examining how the amplitude ratio varies with frequency 

deductions can be made how the dispersion of sample changes as the 

length of tubing between the injection and detection points and the flow 

rate of carrier solution is varied. Shown in Figures 3.15 and 3.16 are plots 

of the system amplitude ratio vs. frequency, at a fixed flow rate, for 

various tubing lengths between the injection and detection points for both 

Runs A and B.  
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Figure 3.15: Plot of system amplitude ratio vs. frequency for Runs A. The flow rate 
was 1 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m and --- 1m. 

 

 
Figure 3.16: Plot of system amplitude ratio vs. frequency for Runs B. The flow rate 

was 1 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m and --- 1m. 
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Clearly the above figures indicate that for a particular flow rate as the 

tubing length between the injection and detection points increased the 

system amplitude ratios, at the truncation frequency, deviated further from 

an ideal pulse amplitude ratio or plug flow. This indicates that the 

dispersion of sample increased as the length of tubing between the 

injection and detection points increased. Plots of the system amplitude 

ratio vs. frequency for various lengths of tubing between the injection and 

detection points have been shown only for the case where the flow rate 

was 1 ml/min. The results shown above are also generally applicable to 

the cases where other flow rates were tested. Plots of the system 

amplitude ratio vs. frequency for all the experimental runs are shown in 

Appendix D. 

The above finding is in agreement with and confirms the finding from 

Section 3.2, where it was found that as the tubing length increased, the 

dispersion of injected sample increased. Both these findings prove that 

the deduction drawn from moment analysis results is incorrect. The 

results from moment analysis indicated that the dispersion of sample was 

independent of the length of tubing between the injection and detection 

points.    

By examining how the amplitude ratio varies with frequency at a fixed 

tubing length and for various flow rates, the effect of flow rate on sample 

dispersion can be obtained. Shown below in Figures 3.17 and 3.18 are 

plots of the system amplitude ratio vs. frequency for a fixed length of 

tubing between the injection and detection points for various flow rates, 

for both Runs A and B.    
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Figure 3.17: Plot of system amplitude ratio vs. frequency for Runs A. The length of 
tubing was 0.5 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,                                        
--- 1.5 ml/min and --- 2.0 ml/min. 
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Figure 3.18: Plot of system amplitude ratio vs. frequency for Runs B. The length of 
tubing was 0.5 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,                              
--- 1.5 ml/min and --- 2.0 ml/min. 



 63

The results from frequency analysis illustrate that for a particular tubing 

length as the flow rate of background electrolyte increased, the system 

amplitude ratios, at the truncation frequency, approached the amplitude 

ratio of an ideal pulse or plug flow. This indicates that the dispersion of 

sample decreased as the flow rate of carrier solution increased. Using this 

method it was found, for each of the lengths of tubing tested for various 

carrier solution flow rates, that the sample dispersion decreased as the 

flow rate increased. For the sake of brevity, plots of the system amplitude 

ratio vs. frequency for various carrier solution flow rates were presented 

only for the case when the tubing length between the injection and 

detection points was 0.5 m. Plots of the system amplitude ratio vs. 

frequency for all the experimental runs are shown in Appendix D. 

A comparison of the dispersion of injected sample caused by the different 

detectors designs can be made by examining plots of the amplitude ratio 

vs. frequency of the input signals only, for cases when the flow rates were 

the same. This comparison can be made, since the connection from the 

injection valve to the input detectors was the same. The connection from 

the injection valve to the input detectors was in any case very short, and 

its contribution to the dispersion of injected sample can be considered 

negligible. Shown below in Figure 3.19 is a plot of the input signal 

amplitude ratios vs. frequency for the wall jet cell and flow by cell 

detectors when the flow rate was 0.5 ml/min. For the sake of brevity this 

plot has been shown only for the case when the flow rate was 0.5 ml/min. 

The trend shown in Figure 3.19 was also observed for the cases when the 

flow rates were 0.75, 1.0, 1.5 and 2.0 ml/min.    
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Figure 3.19: Plot of input signal amplitude ratios. --- wall jet cell detector and                     
--- flow by cell detector. The flow rate was 0.5 ml/min.  

 
From Figure 3.19 above it can be seen that, at the truncation frequencies, 

the input signal amplitude ratio of the wall jet cell detector is closer to the 

amplitude ratio of an ideal pulse or plug flow than the input signal 

amplitude ratio of the flow by cell detector. This implies that the wall jet 

cell detector caused less dispersion of the injected sample compared to 

the flow by cell detector, however the difference was small.  
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4 MATHEMATICAL MODELLING OF RESULTS 
4.1 The dispersion model 
The dispersion model or the axially dispersed plug flow model is a 

commonly used model for the description of the flow in flow injection 

analyser systems [2, 3, 18, 25-27].  

For the experimental setup and conditions under consideration, the axially 

dispersed plug flow model is given by the following equation [28, 29, 30]:  
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where D is the axial dispersion coefficient  

L is the length of tubing between the injection and detection points 

  u is the mean velocity  

The derivation of equation 4-1 is presented in Section A.4.  

The transfer function in the Laplace domain of the axially dispersed plug 

flow model for the experimental conditions under consideration is given by 
[31, 32]:  
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where s is the Laplace transform variable 

4.1.1 Moment analysis of the dispersion model 

In order to evaluate the moments or cumulants of the dispersion model, 

use is made of equation A-14. Using equation A-14 the following 

expressions are obtained for the system mean residence time τ and 

distribution variance σ2:  
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The expressions derived above are consistent with the results obtained by 

Bischoff [33], Bischoff and Levenspiel [34] and Michelsen and Østergaard 
[31].  

From equations 4-3 and 4-4 above it is noted that both τ and σ2 are 

proportional to the length of tubing between the injection and detection 

points. Therefore if the flow or dispersion of sample in the analyser 

system can be represented by the axially dispersed plug flow model, plots 

of τ and σ2 against L should be straight lines. Shown below in Figures 4.1 

and 4.2 are plots of the system mean residence time τ against L for both 

Runs A and B.  
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Figure 4.1: Plot of system mean residence time τ vs. tubing length for Runs A.                           

! � 0.5 ml/min, " � 0.75 ml/min, ▲ � 1.0 ml/min, x � 1.5 ml/min and               

# � 2.0 ml/min. 

 
 

 

 

 

 

 

 

 

 

 

Figure 4.2: Plot of system mean residence time τ vs. tubing length for Runs B.                           

! � 0.5 ml/min, " � 0.75 ml/min, ▲ � 1.0 ml/min, x � 1.5 ml/min and                

# � 2.0 ml/min. 
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From the above figures it is noted, for Runs A for the cases when the flow 

rate was 0.5 ml/min, 0.75 ml/min and 1 ml/min linearity was observed 

when the tubing length was greater than 0.5 m. For Runs B for the cases 

when the flow rate was 0.5 ml/min, 0.75 ml/min and 1 ml/min linearity was 

observed for lengths shorter than 1 m. For Runs A and B for the cases 

when the flow rate was 1.5 ml/min and 2 ml/min, linearity was observed 

for the whole range of lengths tested.  

It has been shown above in Section 3.3 (see Figures 3.14 and 3.15) that 

the system distribution variances σ2 are independent of the length of 

tubing between the injection and detection points. This was the case for 

all the flow rates that were tested.  

4.1.2 Frequency analysis of the dispersion model 

The transfer function given in equation 4-2 can be transformed into the 

frequency domain [13, 23], and is given by the following equation. 
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where i is the imaginary variable 

 

Now 2
41
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The derivation of equation 4-6 is shown in Appendix F. Now substituting 

equation 4-6 into equation 4-5 and multiplying out, gives 
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Equation 4-7 is now in the form of ( )Φ− iAexp , where A is the amplitude 

ratio and Φ is the phase lag.  

The experimentally determined system amplitude ratio An and system 

phase lag Φn are calculated from the following equations:  
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Plots of the experimentally determined system amplitude ratio and phase 

lag are shown in Appendix D.  

Therefore from equation 4-7 the theoretical amplitude ratio and phase lag 

are given by: 
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By multiplying out both equations 4-10 and 4-11 and substituting for θ  it is 

easy to show that 
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It is of value to obtain the flow model parameters D and u as functions of 

frequency, since this information is used to test the validity of the chosen 

model. By using a non-linear least squares fit algorithm it is possible to 

simultaneously fit equations 4-12 and 4-13 to the experimentally 

determined values of the amplitude ratio and phase lag to obtain the flow 

parameters D and u as functions of frequency. This procedure is used 

since the flow model parameters cannot be explicitly expressed in terms 

of frequency. It has been reported by Turner [13] that the log (natural log) 

of the amplitude ratio should be used, instead of the amplitude ratio, since 

the convergence is quicker. The non-linear least squares algorithm and 

the non-linear least squares fit program are presented in Appendix G. 

The validity of the chosen model, the axially dispersed plug flow model, is 

tested by investigating how the parameters, the mean velocity (u) and the 

dispersion coefficient (D), vary with frequency. If the parameters show no 

variation with frequency, then the chosen model is an accurate 

representation of the flow characteristics in the analyser system. Shown 

below in Figures 4.3 and 4.4 are randomly selected plots of the mean 

velocity and dispersion coefficient vs. frequency for Runs A and B. For the 

sake of brevity, the results of only one experiment each from Runs A and 

B are shown below. Plots of the mean velocity and dispersion coefficient 

vs. frequency for all experimental runs are shown in Appendix H. The 

deductions obtained from these plots are presented below.    
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Figure 4.3: Plot of (a) mean velocity and (b) dispersion coefficient vs. frequency for 
Runs A. The flow rate was 0.5 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m and      
--- 1m. 
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Figure 4.4: Plot of (a) mean velocity and (b) dispersion coefficient vs. frequency  
for Runs B. The flow rate was 0.5 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m 
and --- 1m. 
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From Figures H.1 to H.10 (all shown in Appendix H), it is noted that for 

Run A0.25-2.0 and B0.25-2.0 both the parameters show the least 

variation with frequency. It may therefore be said that the axially 

dispersed plug flow model best fits the data For Runs A0.25-2.0 and 

B0.25-2.0. From the figures shown in Appendix H it appears that the 

axially dispersed plug flow model fits the data better when the flow rates 

are high and the length of tubing between the injection and detection 

points is short. The results from frequency analysis showed that for short 

tubing lengths and high flow rates, the flow pattern in the analyser system 

is closely approximated by plug flow. Therefore the axially dispersed plug 

flow model is a fair representation of the flow characteristics in the 

analyser system when the tracer dispersion is small.  
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5 CONCLUSIONS 
 
From the experimental results shown in Section 3, it was concluded that 

the recorded signals were proportional to the tracer concentration up to 

about 75 mg/l.  

By simply examining plots of the actual input and output detector readings 

vs. time on the same set of axes, it was observed that uniform dispersion 

of the injected sample occurred. Also by simply examining plots of the 

actual input and output detector readings, a very important factor 

regarding the different detector types became apparent. For Runs B, 

where the input detector was a flow by cell detector, and the output 

detector was a wall jet cell detector, the output signals had greater peak 

heights (and areas) than the corresponding input signals. This implied that 

the detector based on the wall jet cell design had a greater sensitivity than 

the detector based on the flow by design.  

From the normalized input and output functions, the Fourier coefficients of 

the input and output signals were obtained. Using these coefficients it was 

possible to determine the coefficients of the experimental system 

response. Once the Fourier coefficients of the system response were 

determined, it was easy to obtain the system residence time distribution 

itself, the system amplitude ratio and system phase lag.  The number of 

coefficients that were used in the Fourier series to calculate the system 

response was limited by the amplitude of noise in the system. The level of 

noise was easily determined by examining plots of the system amplitude 

ratio vs. frequency. In order to avoid the inclusion of noise in the system 

response, the Fourier series was truncated at the frequency where the 

signal dropped below the noise level. Truncation of the Fourier series at 

this point performed smoothing of the signal.  

The effect of varying the length of tubing between the injection and 

detection points was obtained by comparing the system responses for 

cases where the flow rate was kept constant, but the length of tubing 

between the injection and detection points was varied. It was noted that 



 75

as the length of tubing between the injection and detection points 

increased, the system responses became broader and flatter. It was 

therefore concluded that the dispersion of injected sample increased as 

the length of tubing between the injection and detection points increased.  

In a similar manner the effect of varying the flow rate on the injected 

sample was obtained. Plots of the system responses were compared for 

cases where the length of tubing was kept constant, but the flow rate was 

varied. From these plots it was evident that as the flow rate increased, the 

system responses became narrower and sharper, from which it was 

concluded that the dispersion of injected sample decreased as the flow 

rate increased.   

The moments of the system residence time distribution were obtained 

from the experimental moments of the input and output signals. The 

system distribution variance σ2 was found to vary linearly with the flow rate 

of carrier solution. It was also found that as the flow rate of carrier solution 

increased, the system distribution variance σ2 decreased. This implied that 

the dispersion of sample decreased as the flow rate increased.  

The results from moment analysis indicated that the system distribution 

variance σ2 was independent of the length of tubing between the injection 

and detection points. This meant that the dispersion of sample was 

unaffected by the length of tubing between the injection and detection 

points. This finding from moment analysis was shown to be incorrect, 

using results obtained by examining the system responses and results 

obtained from frequency analysis.  

The results obtained from frequency analysis were used to compare the 

extent of dispersion occurring under different conditions. This was 

achieved by comparing the system response amplitude ratios for various 

runs from which it was deduced that the dispersion of sample was 

dependent on both the flow rate of background electrolyte in the analyser 

system and the length of the tubing. To summarise, the results from 

frequency analysis indicated that the sample dispersion decreased as the 
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flow rate increased and tubing length between the injection and detection 

points decreased.  

The results obtained from frequency analysis were also used to compare 

the extent of dispersion caused by the different detector cells themselves. 

This was achieved by comparing only the input signal amplitude ratios for 

Runs A and B for cases when the flow rates were the same. It was 

discovered from these comparisons that the detector cell based on the 

wall jet design caused less dispersion of sample than the flow by cell 

design, however the difference was small.   

The model chosen to represent the flow pattern within the analyser 

system was the axially dispersed plug flow model. Very simple 

expressions for the theoretical mean residence time and system 

distribution variance were obtained from the system transfer function. The 

theoretical functions of the mean residence time and system distribution 

variance obtained from moment analysis of the dispersion model showed 

that the mean residence time and system distribution variance are linearly 

related to the length of tubing between the injection and detection points. 

However most of the plots of the experimentally determined system mean 

residence time τ vs. tubing length were not linear. Linearity was only 

observed for cases when the flow rates were greater than 1.5 ml/min for 

both Runs A and B. Plots of the experimentally determined system 

distribution variance σ2 vs. tubing length for both Runs A and B did not 

show a linear relation with respect to tubing length. These plots showed 

that the system distribution variance σ2 was independent of tubing length 

for all flow rates tested for both Runs A and B. 

In evaluating the validity of the dispersion model, using frequency analysis 

and a non-linear least squares fit, it was revealed that the dispersion 

model best fitted data for Runs A0.25-2.0 and B0.25-2.0. Overall the 

parameters u and D showed variation with frequency, the variation 

reduced as the flow rate increased and tubing length decreased. In 

general the parameter D showed more variation with frequency than the 
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parameter u. It was concluded that the axially dispersed plug flow model 

fitted the data better at high flow rates and short tubing lengths. This 

means that the dispersion model is a fair representation of the flow 

characteristics in the analyser system when the tracer dispersion is small 

or when the flow is close to plug flow. It is not surprising that the 

dispersion model did not accurately represent the flow characteristics of 

the analyser systems. The deviation from the dispersed plug flow model 

could be attributed to the entrance and exit effects caused by the flow 

channels and electrodes of the detectors. Other models like the gamma 

distribution model; also known as the tanks in series model, could be 

evaluated for the purpose of describing the tracer dispersion in the 

analyser system.  

Finally it may be recommended that high flow rates and short tubing 

lengths should be used in the Sasol analyser. High flow rates and short 

tubing lengths are recommended, since the findings from this study 

indicated that the tracer dispersion is small for these conditions. High flow 

rates and short tubing lengths also imply that the analysis time would be 

shorter. Also integration of sharp signals is more accurate than the 

integration of signals with long tails. However very high flow rates should 

be avoided, since very high flow rates could result in overpressure, 

causing electrodes to disengage from the cell block. Furthermore very 

high flow rates should be avoided since reagent consumption would 

increase.  
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A APPENDIX A - THEORY 

A.1 Residence time distribution function E(t) 

Consider a continuous flow system, which is at steady state. Assume that 

a fluid, which does not undergo any reaction and with constant density 

flows through the system as illustrated below. Fluid elements enter the 

system, remain within the system for some period (referred to as ageing) 

and eventually leave the system. According to Bryson [23], a fluid element 

has a volume much smaller than the system but still large enough to 

contain sufficient molecules so that properties such as density and 

concentration can be defined. 

 

 

 

 

Figure A.1: Continuous flow system. 

 

The residence time of a fluid element is defined as the time an element 

spends within the system. Fluid elements do not follow the same path or 

route through the system; therefore these fluid elements will spend 

different amounts of time within the system and will leave the system at 

different times. As a result a distribution of residence times occurs. The 

mathematical function describing this distribution is called the residence 

time distribution function denoted by E(t). 

It is convenient to represent the residence time distribution in a manner 

such that the area under the curve is equal to one. This statement 

represented mathematically is:   

             

                                                                                      A-1 

 

 

System 
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The fraction of fluid that spent time less than t1 in the system is:  

 

A-2 

 

and the fraction of fluid that spent time between t and t + dt is: 

         A-3 

 

It is obvious that the fraction of fluid that spent time longer than t1 in the 

system is:  

A-4 

 

Knowledge of the residence time distribution of the fluid flowing through a 

system can be used to describe the type of flow occurring within that 

system. 

Experimentally the residence time distribution is determined by 

techniques termed stimulus – response techniques. In these techniques 

the stimulus is a tracer input and the response is a time record of the 

tracer leaving the system. According to Bryson [23] and Levenspiel [35] a 

tracer is any material that has very similar properties to the fluid material 

flowing through the system, must be non reactive, must not be adsorbed 

by the surfaces within the system, must be detectable at low 

concentrations and must not disrupt the flow pattern. There should be a 

linear relationship between the tracer concentration and the recorded 

signal. The tracer input signal can be a pulse input, step input, periodic 

input or even a random input signal. The input signal chosen for this work 

was the pulse input. The output signal and the corresponding system 

response signal are also pulse shaped. The pulse input was chosen, 

since no complicated apparatus is required to achieve this input signal, 

the time required for pulse input testing is shorter than that of sinusoidal 

input testing and furthermore the same amount of information that can be 
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obtained from a whole range of sinusoidal input testing, is obtained from 

one pulse input test [13, 15]. By injecting a pulse, the system is excited with 

all frequencies at the same time [13, 15].  

A.2 Characterization of E(t) by moment analysis 

A.2.1 Definition of moments 

The nth moment (αn) about the origin of the E(t) curve is defined by the 

following equation:   

 

A-5 

 

where n = 0, 1, 2 … . Radeke [36] has defined non-integer and negative 

moments using equation A-5; however these non-integer and negative 

moments are infrequently used. The zeroth moment about the origin is 

equal to one and the first moment about the origin is called the mean or 

mean residence time, denoted byτ . The nth moment about the mean, 

which is also called a cumulant [12, 28], is defined by the following equation:    

  

A-6 

 

Cumulants that are frequently used are the second and third cumulants. 

The second cumulant is called the variance of the distribution, denoted 

by 2σ , whilst the third cumulant is called the skewness. The second 

cumulant can also be expressed by the following equation: 

A-7 
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A.2.2 Moments and cumulants from the transfer function 

The Laplace transform of a function f(t) is defined as:  

   

A-8 

 

where s is the transform variable.  

Using equation A-8, the Laplace transform of E(t) is: 

 

A-9 

 

)(s
−
E  is also called the system transfer function. 

The exponential term in equation A-9 can be expressed using the 

following expansion: 

 

  A-10 

 

 

Substituting equation A-10 into equation A-9 results in the following: 

 

A-11 

The moments can be obtained from equation A-11 above or by 

differentiating and evaluating the differential as the limit of s tends to zero, 

as shown below in equation A-12. 

 

A-12 
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The cumulants can be obtained by taking the natural logarithm of 

equation A-11. The cumulants are the coefficients of s, shown in the 

equation below.  

 

A-13 

 

 

Analogously, differentiating )(ln s
−
E  and evaluating the differential, as the 

limit of s tends to zero gives the cumulants of the function. 

 

 A-14 

 

 

A.2.3 Input - Output relation 

It has been stated above (see Section A.1) that the residence time 

distribution of a flow system can be determined by means of stimulus –

response techniques. In early reported work on stimulus – response 

techniques [29, 37]; it was assumed that the stimulus was a perfect pulse or 

a dirac delta function. The dirac delta function is a mathematical 

idealization, and injection of tracer as a perfect pulse can never be 

achieved experimentally. The theory by Aris [38], which was later extended 

by Bischoff [33] and Bischoff and Levenspiel [34], showed that by measuring 

the tracer concentration at two points, it was not necessary to inject the 

tracer as a perfect pulse. The tracer should be injected upstream of the 

test section or flow system and the first measuring point should also be 

located upstream of the test section. The second measuring point may be 

located either downstream of the test section or within the test section [34, 

30]. This method is referred to as the imperfect pulse method. The points 

mentioned above are illustrated below. 

 

 



 88

 

System 

A 

B - Ci(t)  C - Co(t) 

( )
n

i

n

s

n

ni
ds

sd )(
lim1

0

−

→
−=

θ
α

( )
n

o

n

s

n

no
ds

sd )(
lim1

0

−

→
−=

θ
α

dttC

tC
t

i

i
i

)(

)(
)(

0

∫
∞=θ

dttC

tC
t

o

o
o

)(

)(
)(

0

∫
∞=θ

 

 

 

 

 

Figure A.2: A continuous flow system.  A – tracer input location, B – input signal 

measuring point and C – output signal measuring point. 

 

In the figure above Ci(t) is defined as the tracer inlet or input 

concentration, and Co(t) is defined as the tracer outlet or output 

concentration. Also θi(t) is defined as the input function, E(t) is the system 

residence time distribution and θo(t) is defined as the output function. The 

functions θi(t) and θo(t) are normalized concentration functions. These 

normalized functions are obtained using the following equations. 

 

A-15 

 

A-16 

 

Using equation A-8, )(si

−

θ  is the Laplace transform of θi(t) and )(so

−

θ  is the 

Laplace transform of θo(t). Analogous relations to equation A-12 can be 

defined for the input and output functions. These relations are shown 

below. 

 

A-17 

 

 

A-18 
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where niα  and noα are the nth moments for the input and output functions 

respectively. 

Bischoff [39] showed that the system transfer function )(s
−
E  is related to 

)(si

−

θ  and )(so

−

θ  by the following equation: 

 A-19 

     

Equation A-19 can be rearranged to give: 

 

A-20 

 

Taking the derivative of equation A-20, and also evaluating the limit as s 

tends to zero, results in the following: 

 

A-21 

 

Using equations A-12, A-17 and A-18 gives the desired result, shown 

below. 

 A-22 

or by rearranging                                                                                                   

A-23 

where iττ , and oτ are the system, input function and output function mean 

residence times respectively.  

Similarly taking the second derivative of equation A-20, evaluating the 

limit as s tends to zero and using equations A-12, A-15 and A-16 gives: 

 A-24 

 

io τττ −=

222

io σσσ −=
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where 22 , iσσ and 2

oσ are the system, input function and output function 

distribution variances respectively. 

Therefore the system mean residence time and distribution variance are 

obtained from the input and output function moments and cumulants 

using equations A-23 and A-24. The moments and cumulants of the input 

and output functions are obtained from equations, which are similar to 

equations A-5 and A-6. These equations are shown below. 

  

A-25 

 

A-26 

 

A-27 

 

A-28 

 

A.3 Characterization of E(t) by frequency analysis 

A.3.1 Fourier series representation 

Suppose any arbitrary function, f(x), is a periodic function of period 2π. 

This arbitrary function can be represented by a trigonometric series of the 

form: 

 

A-29 

 

This trigonometric series is also referred to as a Fourier series. The 

coefficients an and bn in equation A-29 are called Fourier coefficients, and 

these coefficients are obtained from Euler’s formulae shown below. 
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A-30 

 

 

A-31 

 

 

 A-32 

 

However there are many functions that have arbitrary period, periods 

other than 2π. For a function f(t), with period 2T, it can be shown (see 

Appendix B 2and 2Kreyszig 2

[40]) 2that 2this 2function 2can 2be 2represented 2by 2a 

Fourier series of the form: 

 

A-33 

 

where 
T

nπ
ω =  is the frequency. 

The coefficients an and bn in equation A-33 above are obtained from Euler 

formulae, which have the following form: 

 

A-34 

 

 

A-35 

 

 A-36 

 

The amplitude ratio, An, and the phase lag, Φn, are defined by the following 

equations: 

∫=
π

π

2

0

sin)(
1

dxnxxfan
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A-38 

 

In order for an arbitrary function to be represented as a Fourier series, 

certain conditions must be fulfilled [13, 16]. These conditions are: 

• f(t) is defined at every point in the chosen interval 

• f(t) is a single valued function, finite and sectionally continuous  

• f(t) must not have an infinite number of minima and maxima in the 

chosen interval. 

These conditions are referred to as the Dirichlet conditions [13, 16].    

A.3.2 Input - Output relation 

It was stated above (see Section A.2.3) that Ci(t) is the tracer input 

concentration, and θi(t) is the input function. Co(t) is the output tracer 

concentration and θo(t) the output function. The input function, θi(t), can be 

represented by a Fourier series of the form: 

 

A-39 

 

Similarly the output function and the system residence time distribution 

function can also be represented by Fourier series of the forms: 

 

A-40 

and  

A-41 

 

The coefficients in equations A-39 and A-40 are obtained using the 

equations shown below. 

)arctan(
n

n
n

b

a
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A-42 

 

A-43 

 

A-44 

 

A-45 

 

A-46 

 

A-47 

 

These integrals are evaluated by using a suitable numerical integration 

technique. Once again, the technique employed was Simpson’s rule.   

The functions θi(t), θo(t) and E(t) are transformed into the frequency 

domain using the transform shown in [13, 23]. The transformed functions are 

shown below. 

  

A-48 

 

 

 A-49 

  

and                                                                                                         A-50 
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The relation between the system transfer function and the Laplace 

transform of the input and output functions shown in equation A-19, can 

also be expressed as: 

 

A-51 

 

Substitution of equations A-48, A-49 and A-50 into equation A-51 leads to: 

 

A-52 

 

By equating real and imaginary parts, the coefficients an and bn are 

obtained from the following relations: 

 

A-53 

 

A-54 

 

The real time system response or the experimentally determined system 

response is obtained by substituting the values of an and bn obtained from 

equations A-53 and A-54 into equation A-41 and evaluating this equation 

over the duration of the experiment. The experimental system amplitude 

ratio and phase lag are obtained by substituting the values of an and bn 

obtained from equations A-53 and A-54 into equations A-37 and A-38. 

Appendix C contains 2a 2program 2 that 2was 2used 2 to 2determine 2 the 2system 

amplitude ratio, phase lag and response from the input and output 

functions. 

Questions which may arise at this point are, what the value of T is, how 

should the value of T be chosen and how many coefficients should be 

evaluated. According to Turner [13], T is an arbitrary constant, and thus the 

choice of T is not critical. However T should be chosen large enough to 
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nn
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define an adequate frequency range. Bryson [23] suggests that a value of T 

that is suitable can be calculated from the following expression: 

A-55 

 

Greenberg [16] states that the flow model parameters are independent of T 

so long as the value of T is chosen such that the tail region of the (output) 

peak is included. Gangwal et al. [17] state that the value of T should be at 

least two to five times the apparent time the peak tail vanishes. In general, 

the value of T should be large so that a suitable frequency range is 

defined. The value of T chosen in this work was 10 000 (seconds). The 

number of coefficients to evaluate depends on the amplitude of the noise 

in the frequency spectrum. As the frequency (or number of coefficients) 

increases, the amplitude of the signal (input, output or system) drops 

below the amplitude of the noise. This is clearly evident from a plot of the 

logarithm of the signal amplitude ratio against frequency as shown in 

Figure A.3 below. The Fourier series should be truncated at this point, as 

this performs smoothing of the data [13]. The number of data points, up to 

a specific frequency, for both the amplitude ratio and phase lag curves is 

influenced by the value of T. A large value of T gives a large number of 

data points for these curves. This is required in order to obtain reliable 

estimates 2of D 2and u as 2functions 2of 2frequency 2as 2explained 2in 2Appendix 

G. 2A 2value 2of 2T 2= 210 2000 2 (seconds) 2was 2 found 2 to 2be 2adequate 2 for 2 the 

present study.  

 

 

 

 

 

 

 

Figure A.3: Plot of amplitude ratio vs. frequency.  
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A.4 The dispersion model 

The general mathematical form of the dispersion model is given by [15, 28, 

30]. 

 A-56 

 

where u is the mean velocity  

 C(t) is the concentration   

t is time 

))(( tCζ is the reaction rate or source term 

For an isothermal system, with a constant fluid density, no reaction, no 

flow rate changes and fluid flowing in a cylindrical system, equation A-56 

reduces to: 

   

A-57 

 

where z and r are the axial and radial directions respectively   

Dz and Dr are the axial dispersion coefficient and radial dispersion 

coefficient respectively. 

For the system investigated the tubing situated between the injection and 

detection point had an inner diameter much smaller than the length of the 

tubing. As a result the radial dispersion can be neglected in comparison to 

the axial dispersion [15, 30]. Using this fact equation A-57 simplifies to: 

 

 A-58 

 

Levenspiel and Smith [29] solved the axially dispersed plug flow model 

shown above in equation A-58, using the “infinite pipe” conditions for a 

pulse injection. Using these conditions it is assumed that the changes in 
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flow at the entrance and exit of the system are negligible. This means that 

the dispersion at the entrance, exit and within the system are the same. 

The solution to equation A-58, using the “infinite pipe” conditions for a 

pulse input is given below [28, 29, 30]. The axial dispersion coefficient Dz will 

now be denoted by D. 

      

A-59 

 

where L is the length of the tubing situated between the injection and 

detection points. 

Equation A-59 is presented in terms of a dimensionless concentration, 

C’(t), which is C(t)/C’ave(t). According to Levenspiel and Bischoff 
[30] C’ave(t) 

is defined as “the concentration of injected tracer if evenly distributed 

throughout the vessel.” C’(t) in equation A-59 is actually the residence 

time distribution function E(t) [28, 41]. Therefore the left hand side of 

equation A-59 can be replaced by E(t). 

As mentioned in Section A.2.3 above, a perfect pulse can never be 

achieved experimentally. Aris [38] developed a theory, which was later 

extended by Bischoff [33] and Bischoff and Levenspiel [34] that allowed for 

the injection of a non-ideal pulse. This method was referred to as the 

imperfect pulse method. The transfer function of the axial dispersion 

model using the imperfect pulse method is given by the following equation 

[31, 32]:  
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B APPENDIX B – MODIFIED FOURIER SERIES 
 

Suppose f(t) is a function with period 2T. A variable called x is introduced 

such that f(t), as a function of x, has period 2π. Now let  

  

B-1  

 

Therefore                                                                                                                     B-2     

 

Using equations B-1 and B-2, when x = 0, t = 0 and when x = 2π, t = 2T. 

Now f(t), as a function of x, has a Fourier series of the form: 

 

B-3 

 

 

with coefficients an and bn given by: 

 

B-4 

 

 

B-5 

 

 

B-6 

 

Substituting equation B-2, for x, into equation B-3 gives the desired form 

of the Fourier series for f(t).   
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B-7 

 

where 
T

nπ
ω = . 

 

Since t
T

x
π

= , 

B-8 

 

The limits of integration in equations B-4, B-5 and B-6 are transformed 

using equation B-1. 

Equations B-2 and B-8 are substituted into equations B-4, B-5 and B-6 to 

give: 

 

B-9 

 

 

B-10 

 

 

B-11 

 

The coefficients of equation B-7 are obtained from equations B-9, B-10 

and B-11, which are shown above.  
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C APPENDIX C – PROGRAM FOR CALCULATION OF SYSTEM AMPLITUDE RATIO, PHASE 

LAG AND RESPONSE 
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D APPENDIX D – PLOTS OF SYSTEM AMPLITUDE 

RATIOS AND PHASE LAGS VS. FREQUENCY 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1: Plot of system response amplitude ratio vs. frequency for Runs A. The 

length of tubing was 0.25 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,               

--- 1.5 ml/min and --- 2.0 ml/min. 

 

 

 

 

 

 

 

 

 

 

Figure D.2: Plot of system response phase lag vs. frequency for Runs A. The 

length of tubing was 0.25 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,                              

--- 1.5 ml/min and --- 2.0 ml/min.
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Figure D.3: Plot of system response amplitude ratio vs. frequency for Runs A. The 

length of tubing was 0.5 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,           

--- 1.5 ml/min and --- 2.0 ml/min. 

 

 

 

 

 

 

 

 

 

 

Figure D.4: Plot of system response phase lag vs. frequency for Runs A. The 

length of tubing was 0.5 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,                         

--- 1.5 ml/min and --- 2.0 ml/min. 
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Figure D.5: Plot of system response amplitude ratio vs. frequency for Runs A. The 

length of tubing was 0.8 m. -- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,                                 

--- 1.5 ml/min and --- 2.0 ml/min. 

 

 

 

 

 

 

 

 

 

 

 

Figure D.6: Plot of system response phase lag vs. frequency for Runs A. The 

length of tubing was 0.8 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,                                  

--- 1.5 ml/min and --- 2.0 ml/min. 
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Figure D.7: Plot of system response amplitude ratio vs. frequency for Runs A. The 

length of tubing was 1 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,                         

--- 1.5 ml/min and --- 2.0 ml/min. 

 

 

 

 

 

 

 

 

 

 

Figure D.8: Plot of system response phase lag vs. frequency for Runs A. The 

length of tubing was 1 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,                                

--- 1.5 ml/min and --- 2.0 ml/min. 
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Figure D.9: Plot of system response amplitude ratio vs. frequency for Runs B. The 

length of tubing was 0.25 m. --- 0.5 ml/min, --- 0.75 ml/min,                                 

--- 1.0 ml/min, --- 1.5 ml/min and --- 2.0 ml/min. 

 

 

 

 

 

 

 

 

 

 

Figure D.10: Plot of system response phase lag vs. frequency for Runs B. The 

length of tubing was 0.25 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,                                  

--- 1.5 ml/min    and --- 2.0 ml/min. 
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Figure D.11: Plot of system response amplitude ratio vs. frequency for Runs B. 

The length of tubing was 0.5 m. --- 0.5 ml/min, --- 0.75 ml/min,                               

--- 1.0 ml/min, --- 1.5 ml/min and --- 2.0 ml/min. 

 

 

 

 

 

 

 

 

 

 

Figure D.12: Plot of system response phase lag vs. frequency for Runs B. The 

length of tubing was 0.5 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,                           

--- 1.5 ml/min and --- 2.0 ml/min. 
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Figure D.13: Plot of system response amplitude ratio vs. frequency for Runs B. 

The length of tubing was 0.8 m. --- 0.5 ml/min, --- 0.75 ml/min,                              

--- 1.0 ml/min, --- 1.5 ml/min and --- 2.0 ml/min.   

 

 

 

 

 

 

 

 

 

 

Figure D.14: Plot of system response phase lag vs. frequency for Runs B. The 

length of tubing was 0.8 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,                             

--- 1.5 ml/min and --- 2.0 ml/min. 
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Figure D.15: Plot of system response amplitude ratio vs. frequency for Runs B. 

The length of tubing was 1 m. --- 0.5 ml/min, --- 0.75 ml/min,                                 

--- 1.0 ml/min, --- 1.5 ml/min and --- 2.0 ml/min. 

 

 

 

 

 

 

 

 

 

 

Figure D.16: Plot of system response phase lag vs. frequency for Runs B. The 

length of tubing was 1 m. --- 0.5 ml/min, --- 0.75 ml/min, --- 1.0 ml/min,                          

--- 1.5 ml/min and --- 2.0 ml/min. 
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E APPENDIX E – PROGRAM FOR CALCULATION OF SYSTEM MOMENTS 
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F : APPENDIX F – DERIVATION OF EQUATION 4-6 
 

Consider a complex number g. If g is complex, then 

 F-1 

 

where                                                                                                                            F-2 

 

Substituting equation F-2 into equation F-1 results in equation F-3 

 

F-3 

 

Now expressing 
2

4
1

u

D
i
ω

+  in complex notation. Let 
2

4
1

u

D
i
ω

+  = g. By 

comparing with equation F-1 it is easy to see that x = 1 and y =
2

4

u

Dω
. 

Substituting these expressions for x and y into equation F-3 results in: 

 

F-4 

 

 

Therefore 
2

4
1

u

D
i
ω

+ =                                                                                             F-5     

 

Using the relation θθθ iei =+ sincos  equation F-5 can be simplified to 

 

                             F-6 

 

Expanding equation F-6 gives the desired result shown below 

F-7



 114

)()( */*
YYYY −−=ϕ

),( bxf=Y

0=
∂
∂
b

ϕ

G APPENDIX G – NON-LINEAR LEAST SQUARES 

ALGORITHM 
 

Consider any non-linear function or dependant variable Y. Y can be 

represented by an equation of the form:  

G-1 

 

 where b is a vector of parameters.  

            x is the independent variable 

The sum of squared residuals, φ, is given by: 

G-2 

  

where Y * is a vector of experimental observations of the dependant 

variable 

           Y is a vector of calculated values of the dependant variable 

           (Y * - Y ) / is the transpose of (Y * - Y ) 

The least squares method requires that the sum of squared residuals, φ, 

is a minimum, which means that a value of the vector b must be found 

such that the sum of squared residuals, φ, is a minimum. This is achieved 

by solving: 

 

G-3 

 

It will be difficult to obtain a solution for equation G-3 since the dependent 

variable is non-linear with respect to the parameters. In the Gauss-

Newton method Y is linearized by a Taylor series expansion around 

estimates of the parameters. Therefore expanding Y as a Taylor series 

expansion of two terms:  
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G-4 

 

                                                          G-5 

where  m is the iteration counter 

J is the Jacobian matrix of partial derivatives of Y with respect to b, 

evaluated at all points where experimental observations were 

made.                    

The Jacobian matrix is given by the following equation:  

 

G-6 

 

 

 

where 
n
 means a function evaluated at the independent variable value 

for  

           the nth experimental observation       

          n is the number of experimental observations 

          k is the number of parameters 

Substituting equation G-4 into equation G-2 gives: 

 G-7 

 

Equation G-7 is linear with respect to ∆b. So in order to find b, ∆b must 

first be determined such that the sum of squared residuals, φ, is a 

minimum. Taking the partial derivative of φ with respect to ∆b, setting it 

equal to zero and solving for ∆b gives:  

 G-8 

Once has ∆b has been found, b can be found using equation G-5. The 

Gauss-Newton method explained above has been explained for the case 
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where there is only one dependent variable. For the present study there 

were two dependent variables. For the case where there is more than one 

dependent variable the following equations are valid [42].     

 

G-9 

 

where wj is the weighting factor of the j
th dependent variable  

           v is the number of dependent variables  

The weighting factor is calculated by the following equation [42]: 

 

G-10 

 

 

 

where 2

jσ or 2

bσ  is the variance for each curve 

           nb is the number of experimental points for each curve 

For cases where there are v dependent variables, a total number of v 

Jacobian matrices have to be evaluated.  

By taking the partial derivative of φ, given in equation G-9, with respect to 

∆b, setting it equal to zero and solving for ∆b gives [42]: 

 

G-11 

As was for the case of a single dependent variable, once ∆b has been 

found, b can be found using equation G-5. 

Therefore to summarise, the Gauss-Newton method or algorithm for 

multiple non-linear regression consists of the following steps: 

 

1) Assume or guess values for the parameters 

2) Calculate the Jacobian matrices  
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3) Calculate ∆b using equation G-11 and other relevant equations 

4) Calculate the new values of the parameters using equation G-5 

5) Repeat steps 1 to 3 until one or both of the following conditions are 

met 

a. ∆b becomes very small 

b. φ does not change substantially 

The Gauss-Newton method will now be explained in terms of the 

equations for the present study.  

Let Y1 = ln A and Y2 = Ф. For completeness sake these equations are 

repeated here. 

 

G-12 

 

 

 

 

G-13 

 

 

*

1Y and *

2Y  are the experimental values of ln A and Ф respectively. The 

vector b consists of two parameters, which are D and u. So let D = b1 and 

u = b2. The first and second Jacobian matrices are given by: 

  

 

G-14 
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The partial derivatives of ln A and Ф with respect to D and u are given by 

the following equations:  
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Equations G-16 to G-19 are substituted into G-14 and G-15. The Jacobian 

matrices are then evaluated at all points where experimental observations 

were made using estimates or guesses of the parameters D and u. 

Thereafter Y1 and Y2 are calculated using equations G-12 and G-13 also 

where experimental observations were made using estimates or guesses 

of the parameters D and u.  Using the experimental data i.e. *

1Y  and *

2Y , 

the weighting factors are calculated by means of equation G-10. Then ∆b 

is calculated using equation G-11. The sum of squared residuals, φ, is 

calculated using equation G-9.The above mentioned steps are repeated 

until both or one of the following conditions are met: 

a) ∆b becomes very small 

b) φ does not change substantially 

When one or both of the conditions mentioned above are satisfied, then 

the vector b is calculated using equation G-5. The values now obtained 

for the vector b are the desired values. Shown below is the non-linear 

least squares fit program coded in LabVIEW ™ version 7.0. 
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H APPENDIX H – PLOTS OF D AND u VS. 
FREQUENCY 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure H.1: Plot of (a) mean velocity and (b) dispersion coefficient vs. frequency 

for Runs A. The flow rate was 0.5 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m 

and --- 1m. 
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(b) 

Figure H.2: Plot of (a) mean velocity and (b) dispersion coefficient vs. frequency 

for Runs A. The flow rate was 0.75 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m 

and --- 1m. 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure H.3: Plot of (a) mean velocity and (b) dispersion coefficient vs. frequency 

for Runs A. The flow rate was 1 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m and 

--- 1m. 
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(a)          

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

(b) 

Figure H.4: Plot of (a) mean velocity and (b) dispersion coefficient vs. frequency 

for Runs A. The flow rate was 1.5 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m 

and --- 1m. 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure H.5: Plot of (a) mean velocity and (b) dispersion coefficient vs. frequency 

for Runs A. The flow rate was 2 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m and   

--- 1m. 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure H.6: Plot of (a) mean velocity and (b) dispersion coefficient vs. frequency 

for Runs B. The flow rate was 0.5 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m 

and --- 1m. 
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(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure H.7: Plot of (a) mean velocity and (b) dispersion coefficient vs. frequency 

for Runs B. The flow rate was 0.75 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m 

and --- 1m. 
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(b) 

Figure H.8: Plot of (a) mean velocity and (b) dispersion coefficient vs. frequency 

for Runs B. The flow rate was 1 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m and 

--- 1m. 
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(b) 

Figure H.9: Plot of (a) mean velocity and (b) dispersion coefficient vs. frequency 

for Runs B. The flow rate was 1.5 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m 

and --- 1m. 

 



 135

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5

Frequency ωωωω

M
e
a
n
 V

e
lo

c
it
y
 (
c
m

/s
)

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5

Frequency ωωωω

D
is

p
e
rs

io
n
 C

o
e
ff
ic

ie
n
t 
(c

m
2
/s

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure H.10: Plot of (a) mean velocity and (b) dispersion coefficient vs. frequency 

for Runs B. The flow rate was 2 ml/min. --- 0.25 m, --- 0.5 m, --- 0.8 m 

and --- 1m. 
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