THE EFFECT OF CLOMIPHENE CITRATE TREATMENT ON THE EXPRESSION OF THREE SPECIFIC GENES: ESTROGEN RECEPTOR ALPHA, 90kD HEAT SHOCK PROTEIN AND HOXA10 IN THE RAT UTERUS

Karren Judith Thomson

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science

Johannesburg, 2005
DECLARATION

I declare that this dissertation is my own, unaided work. It is being submitted for the Degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

11th day of October 2005
Abstract

Clomiphene citrate (CC), a synthetic estrogen, is an efficient superovulator used in infertility treatment. However, pregnancy rates resulting from CC treatment are low. Research has suggested that this may be due to an aberrant effect on implantation; CC binds to estrogen receptors (ER) and may affect estrogen responsive gene expression and thus implantation. This study investigates the effect of CC on ERα, 90kDa heat shock protein (Hsp90) and Hoxa10 expression in the rat uterus. Hsp90 binds to ERα in the absence of ligand and is involved in inducing a high affinity ligand binding conformation in the ER and in transactivation of the ER. Hoxa10 has been shown to be essential for uterine receptivity to implantation. CC (0.25mg) was given to ovariectomized rats, either alone or prior to a hormonal regime known to induce uterine receptivity for implantation. Expression of ERα, Hsp90 and Hoxa10 was determined by Western blotting, fluorescence immunocytochemistry and reverse transcription polymerase chain reaction. The single dose CC treated rats were compared to the controls as well as to ovariectomized rats treated with 0.5µg 17β estradiol (E2). The CC treated pseudopregnant rats (CCPPPE treated) were compared to 5½ day pregnant and pseudopregnant rats without CC (PPPE treated), to determine CCs effect at implantation. E2 upregulated ERα and Hsp90 expression in the rat uterus compared to controls (p<0.05). The finding for ERα was unexpected as other studies have shown that E2 decreases ERα levels a few hours after administration in the uterus. The present study therefore suggests a biphasic effect of E2 on ERα expression in the rat uterus. The effect of E2 on Hsp90 and ERα also proposes a balance between the levels of these two proteins in the uterus, to keep ERα in its optimal state and suggests that too high and too low a concentration of Hsp90 may both be inhibitory to ERα functioning. No significant difference was found in ERα and Hsp90 expression between the non-receptive (vehicle treated) and the receptive (PPPE treated) rat uteri, suggesting that these two genes are not markers for receptivity. However E2 is known to induce implantation of donor blastocysts in progesterone (P4) primed uteri. Therefore it is still essential for ERα to be present at implantation. It is of interest that CC downregulated ERα levels both in
the absence of ovarian hormones and at implantation in the rat uterus. It is therefore proposed that this antiestrogenic effect would render the uterus less sensitive to the E_2 required to induce implantation, thus accounting for low pregnancy rates with CC use. Although CC did not alter the expression of Hsp90 in this study, the reduction in ERα levels in response to CC may also upset the balance in the expression of these two genes, which may affect the transcriptional activity of ERα, and further prevent implantation. No clear results were obtained for Hoxa10 expression with the Western blots. However based on the ICC results, CC did not appear to affect Hoxa10 expression. Since P_4 and not E_2 is known to have the predominant effect on Hoxa10 expression, it is likely that E_2 analogs, such as CC, would also not affect Hoxa10 expression to a significant degree. Future work will aim to separate the different uterine compartments and to determine the effects of CC on the expression of other implantation specific genes in the uterus.
Dedicated to:
My mom and dad
and to Peter Le Roux
I am forever grateful for their support and encouragement
ACKNOWLEDGEMENTS

The assistance of the following individuals is gratefully acknowledged:

Professor B Kramer and Professor J Maina, who were the Heads of the School of Anatomical Sciences, during the course of this degree.

Dr MJ Hosie and Dr V Clausen, who supervised this work and for their invaluable support and assistance during the course of this degree.

The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF.

To the University of the Witwatersrand Financial Aid and Scholarships for financial assistance during the course of this degree.

To all the technical staff in the School of Anatomical Sciences, including those no longer with the department, for assistance with all techniques used.

Professor Kramer, for the use of her anti-actin antibody.
Miss B Mothoagae, for the use of some of her nitrocellulose.

Professor T Coetzer and the School of Molecular Medicine and Haematology, for the use of their spectrophotometer and gel doc system.

Mrs C Lalkhan, for assistance with the confocal microscope.
Miss C Stewart, for technical assistance and support particularly with PCR, as well as for her invaluable friendship and advice.

Mr P Le Roux, for printing and computer assistance, particularly with the images, as well as for his invaluable support and encouragement.

Finally to my family, for their endless support and encouragement.
CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1. CLOMIPHENE CITRATE
 1.1 Clomiphene as a Selective Estrogen Receptor Modulator (SERM), and the Interaction of SERMs with the Estrogen Receptor (ER)
 1.2 Clomiphene Citrate's Effects on the Uterus and Implantation
 1.3 Estrogen, Estrogen Receptor and HSP90
 1.3.1 Estrogen Signaling Pathway
 1.3.2 Implantation and the Role of 17β Estradiol in Implantation
 1.3.3 Estradiol 17β Associated Uterine Changes for Implantation
 1.3.4 Estrogen Receptor Alpha
 1.3.5 90kDa Heat Shock Protein
 1.4 HOXA10 AND ITS ROLE IN IMPLANTATION
 1.4.1 Homeobox Genes
 1.4.2 The Hoxa Cluster of Homeobox Genes
 1.4.3 Hoxa10 and Implantation
 1.4.4 Hoxa10 and Genes Involved in Implantation
 1.4.5 Hormonal Control of Hoxa10
 1.5 AIM AND OBJECTIVES OF THE STUDY

CHAPTER 2: MATERIALS AND METHODS

2.1 ANIMALS
 2.1.1 Pregnant Animals
 2.1.2 Ovariectomy
2.1.3 Pseudopregnant Animals... 26
2.2 DRUG TREATMENT REGIMES: ... 27
 2.2.1 Clomiphene Citrate Treatment... 27
 2.2.2 17β Estradiol Treatment... 27
 2.2.3 Progesterone Treatment... 28
 2.2.4 Treatment Regimes.. 28
2.3 SACRIFICE OF ANIMALS... 30
2.4 WESTERN BLOTTING.. 31
 2.4.1 Protein Extraction... 31
 2.4.2 Protein Concentration (Bradford Assay)... 31
 2.4.3 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-
 PAGE).. 35
 2.4.3.1 Gel preparation... 35
 2.4.3.2 Sample preparation.. 35
 2.4.3.3 Electrophoresis (gel running).. 35
 2.4.3.4 Staining of molecular weight markers... 36
 2.4.4 Transfer onto Nitrocellulose Membrane... 38
 2.4.5 Quantifying Western Blot Data and Statistics.................................. 41
2.5 LIGHT MICROSCOPY.. 42
 2.5.1 Preparation of Tissue.. 42
 2.5.2 Cryosectioning of Tissue... 42
2.6 HAEMATOXYLIN AND EOSIN (H&E) STAIN...................................... 42
2.7 FLUORESCENCE IMMUNOCYTOCHEMISTRY.................................... 43
2.8 REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION...... 45
 2.8.1 RNA Extraction... 45
 2.8.2 RNA Integrity and Concentration Determination............................ 46
 2.8.3 Complementary DNA (cDNA) Synthesis (Reverse Transcription Step)... 50
 2.8.4 Polymerase Chain Reaction (PCR).. 51
 2.8.5 1.6% Agarose Gel.. 53

CHAPTER 3: RESULTS.. 54
3.1 EFFECT OF CC ON ERα AND HSP90 EXPRESSION IN THE RAT UTERUS54
3.1.1 Effect of a Single Dose of CC or E_2 on the Expression of ERα and Hsp90 in the Ovariectomized Rat Uterus 24 Hours after its Administration 54
 3.1.1.1 Western blotting analysis of ERα and Hsp90 protein expression in the ovariectomized rat uterus 24 hours after a single dose of CC or E_2 54
 3.1.1.2 Histology of ovariectomized rat uteri 24 hours after a single dose of E_2 or CC .. 58
 3.1.1.3 Fluorescence Immunocytochemistry of ERα and Hsp90 protein expression in the ovariectomized rat uterus 24 hours after a single dose of E_2 or CC .. 62
 3.1.1.4 Reverse Transcription Polymerase Chain Reaction (RT-PCR) of ERα mRNA expression in the ovariectomized rat uterus 24 hours after a single dose of E_2 or CC .. 69

3.1.2 Effect of CC on the Expression of ERα and Hsp90 in the Pseudopregnant Rat Uterus in Relation to Implantation ... 73
 3.1.2.1 Western blot analysis of the ERα and Hsp90 protein expression, in the pseudopregnant rat uterus, at the time of implantation 73
 3.1.2.2 Histology of pseudopregnant and pregnant rat uteri at the time of implantation ... 77
 3.1.2.3 Fluorescence ICC of ERα and Hsp90 protein expression in the pseudopregnant rat uterus at the time of implantation 81
 3.1.2.4 Reverse Transcription-Polymerase Chain Reaction of ERα mRNA expression, in the pseudopregnant rat uterus, at the time of implantation 86

3.2 EFFECT OF CC ON HOXA10 EXPRESSION IN THE RAT UTERUS........ 89
 3.2.1 Effect of a Single Dose of E_2 or CC on the Expression of Hoxa10 in the Ovariectomized Rat Uterus 24 Hours after its Administration 89
 3.2.2 Effect of CC on Hoxa10 Protein Expression in the Pseudopregnant Rat Uterus in Relation to Implantation ... 94

CHAPTER 4: DISCUSSION .. 97
4.1 IMPORTANCE OF OVARIAN HORMONES ON RECEPTIVITY TO IMPLANTATION IN THE UTERUS ... 97
 4.1.1 Histological Changes between the 5½ Day Pregnant and PPPE Treated Rat Uteri ... 97
4.1.2 Similarity in Expression of ERα, Hsp90 and Hoxa10 between the 5½ Day Pregnant and PPPE Treated Rat Uteri... 99

4.2 ESTROGEN RECEPTOR ALPHA EXPRESSION IN THE RAT UTERUS .. 100
4.2.1 Effect of a Single Nidatory Dose of E₂ on ERα Expression in the Rat Uterus .. 100
 4.2.1.1 Mechanism of E₂ induced biphasic regulation of ERα in the uterus .. 101
4.2.2 Estrogen Receptor Alpha Expression During Uterine Receptivity to Implantation in the Rat Uterus ... 102
 4.2.2.1 Effect of P₄ on ERα expression .. 102
 4.2.2.2 Estrogen Receptor Alpha levels at implantation in the rat uterus... 103
 4.2.2.3 Biphasic regulation of ERα and implantation 104
4.2.3 Changes in ERα Immunolocalization and Changes in Uterine Histology in Response to P₄ and/or E₂ Treatment .. 105
 4.2.3.1 Histological changes, in response to E₂ treatment, in the luminal epithelium of ovarietomized and pseudopregnant rat uteri, are brought about by the predominant expression of ERα in these cells 105
 4.2.3.2 Effect of P₄ on luminal closure in the rat uterus 108
4.2.4 Effect of CC on ERα Expression in the Rat Uterus 109
 4.2.4.1 Clomiphene downregulates ERα levels in the rat uterus 109
 4.2.4.2 Influence of P₄ and/or E₂ on CC's effect on ERα expression 110
 4.2.4.3 Decreased ERα could lead to decreased implantation and pregnancy rates, in response to CC ... 111
 4.2.4.4 Decreased ERα, in response to CC, affects other estrogen regulated effects in the uterus ... 115
 4.2.4.5 Estrogenic effects of CC in the luminal epithelium 116
4.3 HSP90 EXPRESSION IN THE RAT UTERUS .. 119
4.3.1 Effect of Ovarian Hormones on Hsp90 Expression in the Rat Uterus 119
 4.3.1.1 17β Estradiol on Hsp90 ... 119
 4.3.1.2 Effect of P₄ on Hsp90 ... 119
4.3.2 Hsp90 and ERα ... 120
 4.3.2.1 Hsp90-ERα balance at implantation .. 122
4.3.3 Effect of CC on Hsp90 Expression in the Rat Uterus 123
4.3.3.1 Mechanism of CC action on Hsp90 expression in the rat uterus... 123
4.3.3.2 Influence of CC on ERα functioning through changes in Hsp90
expression.. 125
4.3.4 Conclusion to CC's Effect on ERα and Hsp90 Expression in the Rat
Uterus .. 126
4.4 HOXA10 EXPRESSION IN THE RAT UTERUS.. 127
4.4.1 Effect of a Nidatory Dose of E2 on Hoxa10 Expression in the Rat Uterus.. 128
4.4.2 Effect of P4 on Hoxa10 Expression Levels in the Rat Uterus............ 129
4.4.3 Effect of Ovarian Hormones on the Location of Hoxa10 in the Rat Uterus. 131
4.4.4 Effect of CC on Hoxa10 Expression in the Rat Uterus................... 133
4.5 FUTURE DIRECTIONS FOR THIS STUDY... 135

REFERENCES.. 137

APPENDIX... 156
1. SOLUTIONS AND RECIPES... 156
5.1 Vaginal Smears... 156
 5.1.1 Shorr's staining solution... 156
5.2 Miscellaneous.. 156
 5.2.1 Phosphate Buffered Saline (PBS) pH7.5......................... 156
 5.2.2 1X Tris Buffered Saline (TBS) pH8................................. 156
5.3 Western Blotting... 157
 5.3.1 Homogenizing buffer pH7.5... 157
 5.3.2 30%T 2.7%C Acrylamide monomer stock solution......... 157
 5.3.3 10% SDS-polyacrylamide separating gel..................... 157
 5.3.4 4% SDS-polyacrylamide stacking gel.......................... 158
 5.3.5 2X Sample buffer pH6.8... 158
 5.3.6 Electrophoresis tank buffer... 158
 5.3.7 Coomassie Blue staining solution................................. 158
 5.3.8 Destaining solutions... 158
 5.3.9 Transfer buffer pH 8.3... 159
 5.3.10 Primary antibody solutions for Western Blotting......... 159
 5.3.11 Secondary antibody solutions for Western Blotting.. 159
5.3.12 Diaminobenzidine solution .. 160
5.4 Light Microscopy and Fluorescence Immunocytochemistry 161
 5.4.1 2% 3-Aminopropyl-triethoxysilane in acetone treated slides 161
 5.4.2 Haematoxylin staining solution .. 161
 5.4.3 Eosin staining solution ... 161
 5.4.4 PBS-BSA-Triton-X .. 161
5.5 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 162
 5.5.1 50X Tris Acetate EDTA (TAE) buffer pH8 162
 5.5.2 1.2% Agarose gel in 1X TAE buffer pH8 162
 5.5.3 10X Tris Borate EDTA (TBE) buffer pH8.3 162
 5.5.4 1.6% Agarose gel in 1X TBE buffer pH8.3 162
II CALCULATIONS .. 163
 5.6 Example of Calculating Protein Concentration and Loading Volume from Absorbance Values ... 163
 5.7 Calculating RNA Concentration and Purity from Absorbance Values 164
 5.8 Calculation to Dilute All RNA Extract Samples to the Same Concentration for RT-PCR ... 164
III STATISTICS FOR WESTERN BLOTTING .. 165
 5.9 ERα Protein Expression for Single Dose Treatments (Samples A-E) 165
 5.9.1 Raw data from scans of Western blots 165
 5.9.2 Summaries of statistics tests for significant differences between the mean ERα protein expression in the untreated and vehicle treated controls 166
 5.9.3 Summaries of statistics tests for significant differences in the mean ERα protein expression between the single dose treatment groups 167
 5.9.4 Summaries of statistics tests for significant differences in the mean raw volumes of actin bands in the ERα Western blots between the single dose treatment groups ... 168
 5.10 Hsp90 Protein Expression for Single Dose Treatments (Samples A-E) .. 169
 5.10.1 Raw data from scans of Western blots 169
 5.10.2 Summaries of statistics tests for significant differences between the mean Hsp90 protein expression in the untreated and vehicle treated controls. .. 170
5.10.3 Summaries of statistics tests for significant differences between the mean Hsp90 protein expression in the single dose treatment groups............. 171
5.10.4 Summaries of statistics tests for significant differences between the mean raw volumes of actin bands in the Hsp90 Western blots in the single dose treatment groups... 172

5.11 ER\(\alpha\) Protein Expression for the Pseudopregnant and Pregnant Rat Uteri at the Time of Implantation (Samples A, F-I).. 173
5.11.1 Raw data from scans of Western blots... 173
5.11.2 Summaries of statistics tests for significant differences between the mean ER\(\alpha\) protein expression in the untreated and vehicle treated (SOOO) control groups... 174
5.11.3 Summaries of statistics tests for significant differences between the mean expression of ER\(\alpha\) protein in pregnant and pseudopregnant rat uteri, with or without CC treatment... 175
5.11.4 Summaries of statistics tests for significant differences between the mean raw volumes of actin bands in the ER\(\alpha\) Western blots in the pregnant and pseudopregnant treatment groups.. 176

5.12 Hsp90 Protein Expression for the Pseudopregnant and Pregnant Rat Uteri at the Time of Implantation (Samples A, F-I).. 177
5.12.1 Raw data from scans of Western blots... 177
5.12.2 Summaries of the statistics tests for significant differences between the mean Hsp90 protein expression in the untreated and vehicle treated (SOOO) control groups... 178
5.12.3 Summaries of statistics tests for significant differences between the mean Hsp90 protein expression in pregnant and pseudopregnant rat uteri, with or without CC treatment.. 179
5.12.4 Summaries of statistics tests for significant differences between the mean raw volumes of actin bands in the Hsp90 Western blots in the pregnant and pseudopregnant treatment groups.. 180
LIST OF FIGURES

<table>
<thead>
<tr>
<th>CHAPTER 1: INTRODUCTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1: Molecular Structure of 17β Estradiol (estrogen) (A) and Clomiphene citrate (CC) (B)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2: MATERIALS AND METHODS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1: Standard curve for the absorbance at 595nm of Bovine Serum Albumin (BSA) at known concentrations in mg/ml (regression line: y=0.9412x+0.0588) for samples A2-E2</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.2: Gels representing protein present in the different treatment samples A-I</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.3: Diagram representing the Western blot process</td>
<td>40</td>
</tr>
<tr>
<td>Figure 2.4: Flow diagram showing procedure for fluorescence immunocytochemistry</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.5: 1.2% Agarose gel showing RNA samples extracted using the Qiagen RNeasy Mini Kit</td>
<td>47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 3: RESULTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.1: Western blots representing expression of ERα (I) and Hsp90 (III) protein in the ovariectomized rat uterus 24 hours after a single treatment</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.2: Graphs representing Mean ± SEM (Standard Error of the Mean) of ERα (I) Hsp90 (II) and actin (III) protein expression in ovariectomized rat uteri, 24 hours after a single treatment, as obtained from scans of the Western blots</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.3: Light microscopy images representing crossections of ovariectomized rat uteri 24 hours after a single treatment and stained with Haematoxylin and Eosin</td>
<td>59-60</td>
</tr>
<tr>
<td>Figure 3.4: Fluorescence Immunocytochemistry (ICC) confocal images representing ERα protein expression in the ovariectomized rat uterus 24 hours after a single treatment</td>
<td>63-64</td>
</tr>
<tr>
<td>Figure 3.5: Fluorescence ICC confocal images representing Hsp90 protein expression in the ovariectomized rat uterus 24 hours after a single treatment</td>
<td>65-66</td>
</tr>
</tbody>
</table>
Figure 3.6: Agarose gel representing results of RT-PCR showing expression of ERα mRNA, in the ovariectomized rat uterus, 24 hours after a single treatment.

Figure 3.7: Western blots representing expression of ERα (I) and Hsp90 (II) protein in the ovariectomized, pregnant or pseudopregnant rat uterus with or without treatment with CC.

Figure 3.8: Graphs representing Mean ± SEM of ERα (I); Hsp90 (II) and actin (III) protein expression in the ovariectomized, pregnant or pseudopregnant rat uterus and the effect of CC on their expression, at the time of implantation, as obtained from scans of the Western blots.

Figure 3.9: Light microscopy images representing crossections of ovariectomized, pregnant or pseudopregnant rat uteri at the time of implantation with or without treatment with CC and stained with Haematoxylin and Eosin.

Figure 3.10: Fluorescence ICC confocal images representing ERα protein expression, in the ovariectomized, pregnant or pseudopregnant rat uterus, at the time of implantation, with or without treatment of CC.

Figure 3.11: Fluorescence ICC confocal images representing Hsp90 protein expression, in the ovariectomized, pregnant or pseudopregnant rat uterus, at the time of implantation, with or without treatment of CC.

Figure 3.12: Agarose gel representing results of RT-PCR showing expression of ERα mRNA, in the ovariectomized, pregnant or pseudopregnant rat uterus, at the time of implantation, with or without CC treatment.

Figure 3.13: Western blot representing expression of Hoxa10 protein in the rat uterus.

Figure 3.14: Immunofluorescence confocal images representing Hoxa10 protein expression in the ovariectomized rat uterus 24 hours after a single treatment.

Figure 3.15: Fluorescence ICC confocal images representing Hoxa10 protein expression in the ovariectomized, pregnant or pseudopregnant rat uterus at the time of implantation with or without CC treatment.
LIST OF TABLES

CHAPTER 2: MATERIALS AND METHODS..26
Table 2.1: Treatment regime for the single dose treated samples..................29
Table 2.2: Treatment regime for the pseudopregnant and pregnant samples..29-30
Table 2.3: Absorbance readings, final concentration in µg/µl and Loading
Volume of protein extracts...33-34
Table 2.4: RNA absorbance values, concentration and purity......................48-50
Table 2.5: Reagents and volumes used per sample in Master Mix for cDNA
synthesis..50
Table 2.6: Reagents and volumes used per sample in PCR Master Mix..........52

CHAPTER 3: RESULTS..54
Table 3.1: Table representing semiquantitative results from RT-PCR agarose
gels showing expression of ERα 24 hours after a single treatment..............71
Table 3.2: Table representing semiquantitative results from RT-PCR agarose gels
representing the expression of ERα mRNA in the pregnant and pseudopregnant
rat uteri and the effect CC has on its expression at the time of implantation....86

APPENDIX..156
Table 5.1: Example of BSA standard concentrations and absorbencies at
595nm to determine the standard curve for samples A3-E3.......................163
Table 5.2: Raw volumes of ERα and Actin bands and the quantities of ERα
protein expression in ovariectomized rat uteri treated with a single dose of CC
or E₂, as obtained from Western blot scans...165
Table 5.3: Means and standard deviations of control groups (for ERα protein
expression in single dose treatment regime)...166
Table 5.4: Tests for homogeneity of the data (equality of variance) in the
control groups for ERα protein expression using the O'Brien's and Bartlett's
tests at the 5% level of significance (single dose treatment regime)...........166
Table 5.5: One-way analysis of variance test for significant differences between
the mean ERα protein expression in the control groups (single dose groups).166
Table 5.6: Means and standard deviations of ERα protein expression in the different groups treated with a single dose of CC or E₂................................. 167

Table 5.7: Tests for homogeneity of the data in the single dose treatment groups for ERα protein expression using the O'Brien's and Brown-Forsythe tests..... 167

Table 5.8: One-way analysis of variance test for significant differences between the mean ERα protein expression in the single dose treatment groups........... 167

Table 5.9: Means and standard deviations of the raw volume of Actin bands in the ERα Western blots in the different single dose treatment groups............ 168

Table 5.10: Tests for homogeneity of data of the raw volume of Actin bands in the ERα Western blots in the single dose treatment groups using the O'Brien's and Bartlett's tests... 168

Table 5.11: Welch ANOVA test for significant differences between the mean raw volume of Actin bands in the ERα Western blots in the single dose treatment groups... 168

Table 5.12: Raw volumes of Hsp90 and Actin bands and the quantities of Hsp90 protein expression in ovariectomized rat uteri treated with a single dose of CC or E₂, as obtained from Western blot scans.. 169

Table 5.13: Means and standard deviations of control groups (for Hsp90 protein expression in single dose treatment regime).. 170

Table 5.14: Tests for homogeneity of the data in the control groups for Hsp90 protein expression using the O'Brien's and Bartlett's tests (single dose treatment regime).. 170

Table 5.15: Welch ANOVA test for significant differences between the mean Hsp90 protein expression in the control groups (single dose treatment groups). 170

Table 5.16: Means and standard deviations of Hsp90 protein expression in the different groups treated with a single dose of CC or E₂............................. 171

Table 5.17: Tests for homogeneity of the data in the single dose treatment groups for Hsp90 protein expression using the O'Brien's, Brown-Forsythe's and Bartlett's tests... 171

Table 5.18: Welch ANOVA test for significant differences between the mean Hsp90 protein expression in the single dose treatment groups.......................... 171

Table 5.19: Means and standard deviations of the raw volume of Actin bands in the Hsp90 Western blots in the single dose treatment groups....................... 172
Table 5.20: Tests for homogeneity of the raw volume of Actin protein data in the Hsp90 Western blots in the single dose treatment groups using the O'Brien's and Bartlett's tests at the 5% level of significance 172

Table 5.21: Welch ANOVA test for a significant difference between the mean raw volume of Actin bands in the Hsp90 Western blots in the single dose treatment groups at the 5% level of significance .. 172

Table 5.22: Raw volumes of ERα and Actin bands and the quantities of ERα protein expression in pseudopregnant and pregnant rat uteri with or without CC treatment, as obtained from Western blot scans ... 173

Table 5.23: Means and standard deviations of control groups (for ERα protein expression in pregnant and pseudopregnant treatment regime) .. 174

Table 5.24: Tests for homogeneity of the data in the control groups for ERα protein expression using the O'Brien's and Bartlett's tests at the 5% level of significance (pregnant and pseudopregnant treatment regime) ... 174

Table 5.25: Welch ANOVA test for significant differences between the mean ERα protein expression in the control groups at the 5% level of significance (pregnant and pseudopregnant treatment regime) ... 174

Table 5.26: Means and standard deviations of ERα protein expression in the pregnant and pseudopregnant rat uteri with or without CC treatment 175

Table 5.27: Tests for homogeneity of the data in the pregnant and pseudopregnant treatment groups for ERα protein expression using the O'Brien's and Bartlett's tests at the 5% level of significance 175

Table 5.28: Welch ANOVA test for significant differences between the mean ERα protein expression in the pregnant and pseudopregnant treatment groups at the 5% level of significance .. 175

Table 5.29: Means and standard deviations of the raw volume of Actin bands in the ERα Western blots in the pregnant and pseudopregnant treatment groups. 176

Table 5.30: Tests for homogeneity of the raw volume of Actin protein data in the ERα Western blots in the pregnant and pseudopregnant treatment groups using the O'Brien's and Bartlett's tests .. 176
Table 5.31: Welch ANOVA test for significant differences between the mean raw volume of Actin bands in the ERα Western blots in the pregnant and pseudopregnant treatment groups... 176

Table 5.32: Raw volumes of Hsp90 and Actin bands and the quantities of Hsp90 protein expression in pseudopregnant and pregnant rat uteri with or without CC treatment, as obtained from Western blot scans.......................... 177

Table 5.33: Means and standard deviations of control groups (for Hsp90 protein expression in pregnant and pseudopregnant treatment regime)......... 178

Table 5.34: Tests for homogeneity of the data in the control groups for Hsp90 protein expression using the O'Brien's and Bartlett's tests at the 5% level of significance (pregnant and pseudopregnant treatment regime)..................... 178

Table 5.35: Welch ANOVA test for significant differences between the mean Hsp90 protein expression in the control groups at the 5% level of significance (pregnant and pseudopregnant treatment regime)... 178

Table 5.36: Means and standard deviations of Hsp90 protein expression in the pregnant and pseudopregnant rat uteri with or without CC treatment........... 179

Table 5.37: Tests for homogeneity of the data in the pregnant and pseudopregnant treatment groups for Hsp90 protein expression using the O'Brien's and Bartlett's tests at the 5% level of significance... 179

Table 5.38: Welch ANOVA test for significant differences between the mean Hsp90 protein expression in the pregnant and pseudopregnant treatment groups at the 5% level of significance.. 179

Table 5.39: Means and standard deviations of the raw volume of Actin bands in the Hsp90 Western blots in the pregnant and pseudopregnant treatment groups...
... 180

Table 5.40: Tests for homogeneity of the raw volume of Actin protein data in the Hsp90 Western blots in the pregnant and pseudopregnant treatment groups using the O'Brian's and Bartlett's tests at the 5% level of significance......... 180

Table 5.41: Welch ANOVA test for a significant difference between the mean raw volume of Actin bands in the Hsp90 Western blots in the pregnant and pseudopregnant treatment groups at the 5% level of significance................. 180
LIST OF ABBREVIATIONS

α \hspace{1cm} \text{alpha}
α=0.05 \hspace{1cm} \text{statistics tests performed at the 5\% level of significance}
β \hspace{1cm} \text{beta}
-/- \hspace{1cm} \text{homozygous mutant}
-RT \hspace{1cm} \text{minus reverse transcriptase control}
A \hspace{1cm} \text{untreated ovariectomized control sample}
A_{260} \hspace{1cm} \text{Absorbance at 260nm}
A_{280} \hspace{1cm} \text{Absorbance at 280nm}
ACE \hspace{1cm} \text{Associated Chemical Enterprises}
AF \hspace{1cm} \text{activation function}
ANOVA \hspace{1cm} \text{one-way analysis of variance}
APS \hspace{1cm} \text{ammonium persulfate}
B \hspace{1cm} \text{saline treated (vehicle control) sample}
bp \hspace{1cm} \text{base pairs}
BSA \hspace{1cm} \text{bovine serum albumin}
C \hspace{1cm} \text{oil treated (vehicle control) sample}
C_1 \hspace{1cm} \text{initial concentration}
C_2 \hspace{1cm} \text{final concentration}
CC \hspace{1cm} \text{clomiphene citrate}
CCPPPPE \hspace{1cm} \text{treatment regime: 0.25mg clomiphene citrate on 1st day followed by 5mg progesterone on the 2nd and 3rd days and then 5mg progesterone and 0.5\mu g 17\beta estradiol on the 4th day}
cDNA \hspace{1cm} \text{complementary deoxyribonucleic acid}
conc \hspace{1cm} \text{concentration}
COX \hspace{1cm} \text{cyclooxygenase}
D \hspace{1cm} \text{0.25mg CC treated sample (single treatment)}
DAB \hspace{1cm} \text{diaminobenzidine}
DBD \hspace{1cm} \text{DNA binding domain}
DF \hspace{1cm} \text{degrees of freedom}
DF NUM \hspace{1cm} \text{degrees of freedom of the numerator}
DF DEN \hspace{1cm} \text{degrees of freedom of the denominator}
dH\textsubscript{2}O \hspace{1cm} \text{distilled water (autoclaved)}
DNase deoxyribonuclease

dNTPs deoxynucleotide triphosphate mix

DTT dithiothreitol

E 0.5µg 17β estradiol treated sample

E2 17β estradiol

EDTA ethylenediamine tetraacetate

ELISA enzyme linked immunosorbant assay

EP3 and EP4 prostaglandin E2 receptor subtypes

ER estrogen receptor

ERα estrogen receptor alpha

ERβ estrogen receptor beta

ERE estrogen response element

F SOOO treated (vehicle control) sample

Fig. Figure

FITC fluorescein isothiocyanate

FSH follicle stimulating hormone

G 5½ day pregnant sample

GE glandular epithelium

GIFT gamete intra-fallopian tube transfer

gl glands

GnRH gonadotropin-releasing hormone

GR glucocorticoid receptor

GST glutathione-S-transferase

H PPPE (pseudopregnant) sample

H&E Haematoxylin and Eosin stain

H12 helix 12 of the estrogen receptor structure

H2O2 hydrogen peroxide

HeLa uterine cervical adenocarcinoma

Hox homeobox

Hsps heat shock proteins

Hsp70 70kDa heat shock protein

Hsp90 90kDa heat shock protein

I CCPPPE (CC treated pseudopregnant) sample
Prob probability
RBC red blood cells
RNase ribonuclease
rpm revolutions per minute
rRNA ribosomal ribonucleic acid
RT-PCR reverse transcription polymerase chain reaction
S saline treatment
sc subcutaneous
SDS sodium dodecyl sulphate
SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis
SEM Standard Error of the Mean
SERM selective estrogen receptor modulator
SOOO treatment regime: saline on 1st day; oil on the following 3 days
Std Dev standard deviation
str stroma
TAE Tris acetate EDTA
TBE Tris borate EDTA
TBS Tris buffered saline pH8
TBS-Tween Tris buffered saline with 0.05% Tween-20®
TEMED tetramethylethylenediamine
TGF-β transforming growth factor beta
TM melting temperature
UV ultraviolet light
V₁ initial volume
V₂ final volume
VEGF vascular endothelial growth factor