A Synthesis and Study of AlMgB$_{14}$

Richard Bodkin

A thesis presented to the University of the Witwatersrand in
fulfilment of the requirements for the degree of Doctor of Philosophy

2005
A Synthesis and Study of AlMgB\textsubscript{14}

by

Richard Bodkin
DECLARATION

I, Richard Bodkin declare that this thesis is my own work. It is being submitted for the degree of Doctor of Philosophy at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other university.

Richard Bodkin

This ________ day of _________, 2005
Abstract

This project is specifically concerned with the processing, densification and mechanical properties of hot-pressed AlMgB$_{14}$, a hard ceramic material. In order to gain a better understanding of the processing and densification of AlMgB$_{14}$, it was necessary to investigate the Al-Mg-B ternary phase diagram. The study conducted indicated that the continuous solid solution that exists at 900°C between AlB$_2$ and MgB$_2$ recedes towards MgB$_2$ as the temperature is increased from 900°C to 1400°C. The position of the boundary was quantified using X-Ray diffraction and linear regression analysis to estimate the lattice constants. The results obtained using this method were confirmed by a Rietveld method. The final quantification of the solid solution boundary was done using the Rietveld results.

From the phase diagram studies it was shown that aluminium rich compositions of the elemental powders Al, Mg and B could be used to produce AlMgB$_{14}$. Specifically, composites that had a 3 wt.% excess of aluminium were found to produce the densest samples with the lowest porosities. As stated above samples were produced by hot-pressing. Hot-pressing was done on elemental powders of aluminium, magnesium and boron, at various loads between 20 and 75 MPa, temperatures between 900 and 1900°C, soak times of 1 hour and heating rates between 10 and 100°C/min.

It was found that for elemental powders, milled in a planetary ball mill with a WC milling media, of Al, Mg and B in the mole ratio of 1:1:14 did not produce AlMgB$_{14}$ at temperatures of less than 1200°C. For compositions richer in aluminium AlMgB$_{14}$ could be produced at temperatures of 1000°C. This suggests that the presence of the aluminium liquid phase aids with mass transport and thus the formation of AlMgB$_{14}$ is facilitated. Pure AlMgB$_{14}$ was not produced by this method and the predominant impurity was MgAl$_2$O$_4$ (\approx 10 wt.%).

It was found that this impurity phase is formed as a result of the oxide content in the starting elemental powders. The amount of MgAl$_2$O$_4$ can be limited by removal of the B$_2$O$_3$ from the starting powders. This is achieved by milling the starting powders in an
alcohol, specifically, methanol. B_2O_3 reacts with the methanol to produce boron esters which volatilise during evaporation of the milling solvent under a reduced pressure. It was also demonstrated that the milling of magnesium and aluminium in a planetary ball mill at 200-250 rpm did not further oxidise the aluminium and magnesium starting powders.

The optimum hot pressing parameters for producing dense AlMgB$_{14}$ were found to be at a temperature of 1600°C, heating rate of 100°C/min, a pushing force of 75 MPa and a soak time of 1 hour. However, samples produced from elemental powders were found to have a preferred orientation perpendicular to the hot-pressing direction. This is not uncommon for hot-pressed materials in which there exists a liquid phase. It was also found that equally dense AlMgB$_{14}$ could also be produced from micron sized pre-reacted elemental powders at the optimum hot-pressing conditions as those for the elemental powders. Pre-reacted powders were produced at 1400°C, 20 MPa, 10°C/min and 1 hour soak time. Compacts produced from the pre-reacted elemental powders were found to have no preferential alignment of homogeneous microstructure after hot-pressing at 1600°C, 75 MPa, 100°C/min. Samples prepared from the pre-reacted powders contain W$_2$B$_5$ as a secondary phase due to wear associated with WC milling media.

Pre-reacted powders were admixed separately with the compounds TiB$_2$, TiC, TiN, Si and WC. Additionally, a compact containing TiB$_2$ and WC was also produced. Because of the reaction of the carbides and nitride with boron containing compounds, additional boron was added to those composites with the added nitrides and carbides in an attempt to minimise the reaction of those nitrides and carbides with the already formed boride phases in the pre-reacted powder. All the composites produced were found to contain only closed porosity (< 3%). The hardness and fracture toughness of these composites were measured from Vickers indents made at a 10 kg loading. The addition of TiB$_2$ (29.5 GPa), TiC (32.1 GPa), TiB$_2$ + WC (29.1 GPa) and Si (31.2 GPa) to the baseline material, AlMgB$_{14}$, were found to increase the hardness of the baseline material (24 GPa). The addition of TiN did not increase the hardness of the baseline material.
WC was found to react with boron and/or boride phases to form platelet-like W_2B_5 grains. The formation of W_2B_5 was prevalent in all the compacts because of the introduction of WC from the milling media and vessel. In the composites with Ti-based additions a solid solution $(Ti,W)B_2$ formed. In composites produced with TiB_2 a core-rim structure was observed by SEM. Composites based on the additions of TiC and TiN or those with additional boron were found to have no core-rim structure.

Composites produced from $TiB_2 + WC +$ additional B increased the hardness of the baseline material from 24.0 GPa to 33.8 GPa and the fracture toughness from 7.7 MPa\text{$m^{\frac{1}{2}}$} to 9.8 MPa\text{$m^{\frac{1}{2}}$}.
Dedication

It is over! Thank God, Mathias and Candice.
Acknowledgements

I would like to extend my gratitude and thanks to the following people:

School of Chemistry
Neil, Marcus, Mike, Barry, Steve, Ewa, Jo, Charles, Martha, Agnes, Amanda, Colleen, Pat, Demi, Dave, Manuel and Paul.

School of Engineering
Jack, Silvana, Graham, Theo, Aubrey, Bruce and Charmaine.

School of Physics
John, Kurt, Shuan, Andrew and Charles.

Council for Scientific and Industrial Research
Sara and Loukie.

Fraunhofer IKTS Dresden
Mathias, for so much!

Element 6
Hester, Brett, Peter, Lucas, Festus, Rod, Cheryl, Nick, Lex, James, Derrick, Lelanie and the company for a generous scholarship.

Colleagues and friends
John and James.

Family
Mom, Dad and Keith

Personal
Candice, for your patience, love, and above all, your understanding.
TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1: Background and Motivation
 1

1.2: Project Overview
 3

CHAPTER 2: LITERATURE REVIEW

2.1: Hard Materials
 4
 2.1.1 Hardness
 4
 2.1.2: The traditional paradigm for a hard material
 8

2.2: Boride-based hard materials
 9
 2.2.1: Chemical bonding and structure types of some borides
 10
 2.2.2: The structure of AlMgB$_{14}$
 11
 2.2.3: The production of dense polycrystalline AlMgB$_{14}$ and associated impurity phases
 13
 2.2.4: Electrical, Thermal and Magnetic Properties of AlMgB$_{14}$
 14
 2.2.5: The microhardness of polycrystalline AlMgB$_{14}$
 16
 2.2.6: Elastic constants of polycrystalline AlMgB$_{14}$
 19
 2.2.7: Thermal Expansion of polycrystalline AlMgB$_{14}$
 21
 2.2.8: Applications of AlMgB$_{14}$
 23
 2.2.9: Binary and Ternary Phase systems of interest
 25

CHAPTER 3: EXPERIMENTAL

3.1: Chemicals
 26

3.2: Equipment
 27
 3.2.1: Furnaces
 27
 3.2.1.1: The Tube Furnace
 27
 3.2.1.2: The Hot Isostatic Press
 27
 3.2.1.3: The Uniaxial Hot Press
 28
 3.2.1.4: Pyrolysis Furnace
 31
 3.2.2: The Planetary Mill
 32

3.3: The Reaction Procedure
 32
 3.3.1: Preparing the Starting Powders
 32
CHAPTER 5: LIMITING THE OXIDE PHASE

5.1: Introduction

5.1.1: Conventional Methods for Limiting Oxide Phase Formation
5.1.2: Measuring the Oxygen Content
5.1.3: Limiting the Formation of the Spinel Phase in AlMgB₁₄ materials
 5.1.3.1: The MgAl₂O₄ system
 5.1.3.2: The AlMgB₁₄ compound
5.1.4: Boron Oxide as an oxidising agent
5.1.5: Boron as a reducing agent
5.1.6: Boron oxide and the formation of boron esters

5.2: Experimental

5.2.1: Solvent Properties
5.2.2: TEM analysis

5.3: Results and Discussion

5.3.1: Carbothermal Reduction
5.3.2: X-ray diffraction techniques
 5.3.2.1: The baseline material
 5.3.2.2: Washing the boron powder versus milling the boron powder in the solvent
 5.3.2.3: The effect of milling Al, Mg and B in various solvents
 5.3.2.4: Predicting the amount of spinel phase present in AlMgB₁₄ samples milled in alcohol
5.3.3: EDS analysis performed by TEM on boron powders milled in hexane and methanol
5.3.4: TEM analysis of the starting Mg and Al powders

5.4: Summary

CHAPTER 6: PROCESSING ALMGB₁₄

6.1: Introduction

6.1.1: The Ti-B-C Ternary Phase System
6.1.2: The Ti-B-N Ternary Phase System
6.1.3: The W-B-C Ternary Phase System

6.2: Experimental

6.3: Results and Discussion

6.3.1 Preliminary investigations of the formation of AlMgB₁₄
6.3.2: A synthesis of AlMgB₁₄ from AlB₁₂ and MgB₂
6.3.3: Additives in AlMgB₁₄

6.3.3.1 AlMgB₁₄ + 30 wt.% TiB₂
6.3.3.2: AlMgB₁₄ + 20 wt.% TiN
6.3.3.3: AlMgB₁₄ + 20 wt.% TiC
6.3.3.4: AlMgB₁₄ + 20 wt.% TiCN
6.3.3.5: AlMgB₁₄ + 20 wt.% WC

6.3.4: The Production of Dense AlMgB₁₄

6.3.4.1: The Effect of Particle Size
6.3.4.2: The Effect of Composition
6.3.4.3: The Effect of Temperature
6.3.4.4: The Effect of Pressure
6.3.4.5: Pre-Reacted Powder versus Elemental Powders

6.3.5: Microstructure and Mechanical Properties of compacts based on AlMgB₁₄

6.3.5.1: The hardness of composites produced from pre-reacted AlMgB₁₄
6.3.5.2: The PR₃CS system
6.3.5.3: PR₃CS + 30 wt.% TiB₂
6.3.5.4: PR₃CS + 5 wt.% Si
6.3.5.5: PR₃CS + 25.8 wt.% TiC
6.3.5.6: PR₃CS + 26.7 wt.% TiN
6.3.5.7 PR₃CS + WC
6.3.5.8: PR₃CS + 30 wt.% TiB₂ + 30 wt.% WC
6.3.5.9: The hardness and fracture toughness of the prepared composites

6.4: Summary
LIST OF FIGURES

FIGURE 2.1.1: THE SCATTERING OF THE VICKERS HARDNESS MEASUREMENTS FOR VARIOUS HARD MATERIALS WHEN COMPARED WITH THEIR CORRESPONDING BULK (GREY AREA) AND SHEAR (BLUE AREA) MODULI10 5

FIGURE 2.1.2: A COMMON LOAD-HARDNESS RELATIONSHIP12 6

FIGURE 2.1.3: HV1 FOR A FINE-GRAINED SINTERED ALUMINA CERAMIC PREPARED BY A SOL-GEL APPROACH STARTING WITH BOEHMITE13 7

FIGURE 2.2.1: A TYPICAL FIVE-FOLD SYMMETRIC ICOSAHEDRON 10

FIGURE 2.2.2: THE STRUCTURE OF B4C IN THE CHAIN OR POLAR STRUCTURES21 11

FIGURE 2.2.3: CRYSTAL STRUCTURE OF ALMGB14 PROJECTION ON THE AB PLANE 12

FIGURE 2.2.5 B: A PLOT OF THE ELECTRICAL RESISTIVITY IN ALMGB14 AS A FUNCTION OF THE TOTAL VOLUME PERCENT OF AL2MGO4, FE3O4 AND FEB IMPURITY PHASES27 15

FIGURE 2.2.6: A PLOT OF THE MEAN MICROHARDNESS AS A FUNCTION OF THE TOTAL VOLUME PERCENT OF AL2MGO4, FE3O4 AND FEB IMPURITY PHASES IN ALMGB14. ERROR BARS INDICATE ONE STANDARD DEVIATION. NO LOAD HAS BEEN SPECIFIED FOR THE MICROHARDNESS MEASUREMENT27 17

FIGURE 2.2.7: PART OF THE STRUCTURE OF ALMGB14 SHOWING THE LOCATIONS OF AL AND MG RELATIVE TO THE B ICOSAHEDRA4 20

FIGURE 2.2.8: CRACK DEFLECTION AROUND TIB2 PARTICLES IN A B4C MATRIX34 22

FIGURE 2.2.9: FLANK AND NOSE WEAR VS. CUTTING TIME FOR UNCOATED AND COATED TOOLS IN DRY MACHINING36 24

FIGURE 3.2.1: THE UNIAXIAL HOT PRESS 28

FIGURE 3.2.2: HOT-ZONE COMPONENTS USED IN THE UNIAXIAL HOT PRESS 29

FIGURE 3.2.3: CALIBRATION OF THE HOT PRESS’ OPTICAL PYROMETER WITH AN HOT WIRE PYROMETER 30

FIGURE 3.2.3: A THERMO-GRAVIMETRIC PROFILE FOR ALMGB14 + 3 WT.% PARAFFIN AND 5 WT. % STEARIC ACID IN ARGON, HEATING RATE 5°C/MIN 31

FIGURE 4.1.1: THE ALUMINIUM-BORON BINARY PHASE DIAGRAM REPRODUCED FROM THE REVIEW OF THE AL-B SYSTEM GIVEN BY O. N. CARLSON49 41

FIGURE 4.1.2: THE MAGNESIUM-BORON BINARY PHASE DIAGRAM50 43

FIGURE 4.1.3: THE AL-MG BINARY PHASE DIAGRAM53 45

FIGURE 4.1.4: AN ISOTHERMAL SECTION OF THE AL-MG-B TERNARY PHASE DIAGRAM AT 900°C57 47

FIGURE 4.2.1: XRD PATTERN FOR COMPOSITION 1 AT 900°C WITH 5 WT% SILICON AS AN INTERNAL STANDARD 50
FIGURE 4.2.2: LINEAR EQUATION FOR THE SHIFTING OF THE DIFFRACTOGRAM FOR COMPOSITION 1 51
FIGURE 4.3.1: COMPOSITIONS FOR THE STUDY OF THE AL-MG-B TERNARY PHASE DIAGRAM 54
FIGURE 4.3.2 A: DIFFRACTOGRAM FOR COMPOSITION 1 AT 900°C 56
FIGURE 4.3.2 B: DIFFRACTOGRAM FOR COMPOSITION 1 AT 1000°C 56
FIGURE 4.3.2 C: DIFFRACTOGRAM FOR COMPOSITION 1 AT 1200°C 57
FIGURE 4.3.2 D: DIFFRACTOGRAM FOR COMPOSITION 1 AT 1400°C 57
FIGURE 4.3.3: COMPARISON OF THE DIFFRACTOGRAMS FOR COMPOSITION 1 58
FIGURE 4.3.4: COMPARISON OF THE DIFFRACTOGRAMS FOR COMPOSITION 2 59
FIGURE 4.3.5: COMPARISON OF THE DIFFRACTOGRAMS FOR COMPOSITION 3 60
FIGURE 4.3.6: COMPARISON OF THE DIFFRACTOGRAMS FOR COMPOSITION 8 65
FIGURE 4.3.7: COMPARISON OF THE DIFFRACTOGRAMS FOR COMPOSITION 10 66
FIGURE 4.3.8 A: COMPOSITION 4 HEATED FOR 1 HOUR AND 5 HOURS AT 900°C 68
FIGURE 4.3.8 B: COMPOSITION 5 HEATED FOR 1 HOUR AND 5 HOURS AT 900°C 69
FIGURE 4.3.8 C: COMPOSITION 6 HEATED FOR 1 HOUR AND 5 HOURS AT 900°C 69
FIGURE 4.3.8 D: COMPOSITION 9 HEATED FOR 1 HOUR AND 5 HOURS AT 900°C 70
FIGURE 4.3.8 E: COMPOSITION 8 PREPARED AT 1200°C FOR 1 HOUR AND REHEATED FOR 5 HOURS AT 900°C 71
FIGURE 4.3.9: SCHEMATIC OF THE EQUILIBRIUM PHASES PREDICTED FOR COMPOSITIONS 1, 4 AND 8 AT THE 1000°C AND 1200°C TEMPERATURES 72
FIGURE 4.3.10: SHIFTED COMPOSITIONS 1, 4 AND 8 IN THE TERNARY PHASE DIAGRAM 75
FIGURE 4.3.11: TESTING VEGARD'S LAW FOR THE CHANGE IN THE ‘A’ AND ‘C’ PARAMETER FOR PURE MGB₂ AND PURE ALB₂ 76
FIGURE 4.3.12 A: RIETVELD AND METHOD 1 DETERMINATION OF THE %ALB₂ IN THE SOLID SOLUTION FROM COMPOSITION 4 AT 900, 1000, 1200 AND 1400°C 79
FIGURE 4.3.12 A: RIETVELD AND METHOD 1 DETERMINATION OF THE %ALB₂ IN THE SOLID SOLUTION FROM COMPOSITION 8 AT 900, 1000, 1200 AND 1400°C 79
FIGURE 4.3.13: COMPOSITION OF THE SOLID SOLUTION BASED ON THE RIETVELD REFINEMENT DATA FOR COMPOSITION 4 80
FIGURE 4.3.14: SHIFTED COMPOSITION 9 DETERMINED FROM THE COMPOSITION OF THE SOLID SOLUTION 81
FIGURE 4.3.15: TIE LINES DRAWN IN THE ISOTHERMAL SECTION OF THE AL-MG-B TERNARY PHASE DIAGRAM FOR COMPOSITION 4 AT 1000°C 83
FIGURE 4.4.1: A CROSS SECTION AT 66 AT.% B IN THE AL-MG-B TERNARY PHASE DIAGRAM 84
FIGURE 4.4.2 A: ISOTHERMAL SECTION OF THE AL-MG-B TERNARY PHASE DIAGRAM AT 1000°C 85
FIGURE 4.4.2 B: ISOTHERMAL SECTION OF THE AL-MG-B TERNARY PHASE DIAGRAM AT 1200°C 85
FIGURE 4.4.2 C: ISOTHERMAL SECTION OF THE Al-Mg-B TERNARY PHASE DIAGRAM AT 1400°C

FIGURE 5.1.1: THE STRUCTURE OF MgAl2O4 THE GREY COLOURED ATOMS ARE MAGNESIUM CATIONS, THE GREEN COLOURED ATOMS ARE THE ALUMINIUM CATIONS AND THE RED ATOMS ARE THE OXYGEN ANIONS

FIGURE 5.3.1: OXYGEN CONTENT IN MG POWDER DETERMINED BY CARBOETHERMAL REDUCTION

FIGURE 5.3.2: X-RAY DIFFRACTOGRAM FOR RIETVELD ANALYSIS OF PHASE CONTENT

FIGURE 5.3.3: RIETVELD ANALYSIS DIFFRACTOGRAM

FIGURE 5.3.4: X-RAY DIFFRACTOGRAMS FOR SAMPLES PREPARED BY DIFFERENT METHODS HOT-PRESSED AT 1400°C, 20 MPA, 1 HOUR

FIGURE 5.3.5: DIFFRACTOGRAM FOR THE MILLED SAMPLE HOT-PRESSED AT 1400°C, 20 MPA, 1 HOUR

FIGURE 5.3.6 A: RATIO OF BORIDE/OXIDE VS. SOLVENT

FIGURE 5.3.6 B: RATIO OF BORIDE/OXIDE VS. ALCOHOL SOLVENT POLARITY

FIGURE 6.1.1: AN ISOTHERMAL SECTION AT 1400°C FOR THE Ti-B-C TERNARY PHASE DIAGRAM

FIGURE 6.1.2: AN ISOTHERMAL SECTION AT 1500°C FOR THE Ti-B-N TERNARY PHASE DIAGRAM

FIGURE 6.1.3: AN ISOTHERMAL SECTION AT 1500°C FOR THE W-B-C TERNARY PHASE DIAGRAM

FIGURE 6.3.1: A COMPARISON OF THE DIFFRACTOGRAMS FOR AlMgB14 PRODUCED IN THE TUBE, HIP AND UNIAXIAL HOT PRESS FURNACES AT 1400°C

FIGURE 6.3.2: MICROSTRUCTURE OF AlMgB14 MADE AT 1400°C AND 20 MPA IN A HOT PRESS

FIGURE 6.3.3: DIFFRACTOGRAM FOR AlB12 + MgB2 PREPARED AT 1400°C FOR 1 HOUR

FIGURE 6.3.4A: IDENTIFIED PHASES IN AlMgB14 + 30 WT.% TiB2

FIGURE 6.3.4 B: AlMgB14 + 30 WT.% TiB2 EXPANDED 2Θ REGION. THE EXPERIMENTAL DATA ARE COMPARED TO A SIMULATED SCAN FROM THE JCPDS DATA

FIGURE 6.3.4 C: THE MICROSTRUCTURE OF AlMgB14 + 30 WT.% TiB2

FIGURE 6.3.5 A: IDENTIFIED PHASES IN AlMgB14 + 20 WT.% Ti

FIGURE 6.3.5 B: AlMgB14 + 20 WT.% Ti EXPANDED 2Θ REGION. THE EXPERIMENTAL DATA ARE COMPARED TO A SIMULATED SCAN FROM THE JCPDS DATA

FIGURE 6.3.5 C: THE MICROSTRUCTURE OF AlMgB14 + 20 WT.% Ti

FIGURE 6.3.6 A: IDENTIFIED PHASES IN AlMgB14 + 20 WT.% TiC

FIGURE 6.3.6 B: AlMgB14 + 20 WT.% TiC EXPANDED 2Θ REGION. THE EXPERIMENTAL DATA ARE COMPARED TO A SIMULATED SCAN FROM THE JCPDS DATA

FIGURE 6.3.6 C: THE MICROSTRUCTURE OF 20 WT.% TiC + AlMgB14
FIGURE 6.3.7 A: IDENTIFIED PHASES IN ALMGB$_{14}$ + 20 WT.% TICN

FIGURE 6.3.7 B: IDENTIFIED PHASES IN ALMGB$_{14}$ + 20 WT.% TICN. THE EXPERIMENTAL DATA ARE COMPARSED TO A SIMULATED SCAN FROM THE JCPDS DATA

FIGURE 6.3.7 C: THE MICROSTRUCTURE OF ALMGB$_{14}$ + 20 WT.% TICN

FIGURE 6.3.8: COMPARISON OF THE DIFRACTOGRAMS OBTAINED FOR ALL THE COMPOSITES PREPARED FROM THE TI BASED ADDITIONS TO ALMGB$_{14}$

FIGURE 6.3.9 A: IDENTIFIED PHASES IN ALMGB$_{14}$ + 20 WT.% WC

FIGURE 6.3.9 B: THE MICROSTRUCTURE OF ALMGB$_{14}$ + 20 WT.% WC

FIGURE 6.3.10: MASS PERCENT OF TUNGSTEN VERSUS MILLING TIME FOR PRE-REACTIONED POWDERS

FIGURE 6.3.11: COMPARISON OF ELEMENTAL AND PRE-REACTIONED ALMGB$_{14}$ (6 HOURS MILLING) WITH W$_{2}$B$_{3}$

FIGURE 6.3.12: A COMPARISON OF ALMGB$_{14}$ AND ALMGB$_{14}$ + COMPENSATION FOR THE SPINEL PHASE

FIGURE 6.3.13 A: COMPARISON OF THE XRD PATTERNS FOR ALMGB$_{14}$ PREPARED AT 900, 1200, 1400, 1600 AND 1700$^\circ$C

FIGURE 6.3.13 B: X-RAY DIFRACTOGRAM FOR ALMGB$_{14}$ PREPARED AT 1600$^\circ$C

FIGURE 6.3.14 A: A MICROSCOPE IMAGE TAKEN FOR A COMPACT PRODUCED FROM THE ELEMENTAL STARTING POWDER WITH COMPOSITION A + CS + 3 WT.% AL AT 1600$^\circ$C AND 75 MPA IN AN UNIAXIAL HOT-PRESS

FIGURE 6.3.14 B: A MICROSCOPE IMAGE TAKEN AT FOR A COMPACT PRODUCED FROM THE PRE-REACTIONED STARTING POWDER WITH COMPOSITION A + CS + 3 WT.% AL AT 1600$^\circ$C AND 75 MPA IN AN UNIAXIAL HOT-PRESS

FIGURE 6.3.15A: DIFRACTOGRAM FOR PR$_{3}$CS REACTED AT 1600$^\circ$C, HEATING RATE 100$^\circ$C/MIN, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA

FIGURE 6.3.15 B: A COMPARISON OF UNREACTIONED PR$_{3}$CS WITH REACTIONED PR$_{3}$CS

FIGURE 6.3.15 C: AN SEM IMAGE FOR PR$_{3}$CS

FIGURE 6.3.16 A: DIFRACTOGRAM FOR PR$_{3}$CS + 30 WT.% TIB$_{2}$ REACTED AT 1600$^\circ$C, HEATING RATE 100$^\circ$C/MIN, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA

FIGURE 6.3.16 B: AN SEM IMAGE FOR PR$_{3}$CS + 30 WT.% TIB$_{2}$

FIGURE 6.3.17 A: DIFRACTOGRAM FOR PR$_{3}$CS + 5 WT.% SI REACTED AT 1600$^\circ$C, HEATING RATE 100$^\circ$C/MIN, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA

FIGURE 6.3.17 B: A COMPARISON OF UNREACTIONED PR$_{3}$CS + 5 WT.% SI WITH REACTED PR$_{3}$CS + 5 WT.% SI

FIGURE 6.3.17 C: AN SEM IMAGE FOR PR$_{3}$CS + 5 WT.% SI

FIGURE 6.3.18 A: DIFRACTOGRAM FOR PR$_{3}$CS + 25.8 WT.% TIC REACTED AT 1600$^\circ$C, HEATING RATE 100$^\circ$C/MIN, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA

FIGURE 6.3.18 B: A COMPARISON OF UNREACTIONED PR$_{3}$CS + 25.8 WT.% TIC WITH REACTED PR$_{3}$CS + 25.8 WT% TIC
FIGURE 6.3.18 C: A COMPARISON OF REACTED $\text{PR}_{3\text{CS}} + 25.8 \text{ WT.}\% \text{TIC}$ WITH REACTED $\text{PR}_{3\text{CS}} + 25.8 \text{ WT.}\% \text{TIC} + 21.8 \text{ WT.}\% \text{B}$

FIGURE 6.3.18 D: A PHASE ANALYSIS OF REACTED $\text{PR}_{3\text{CS}} + 25.8 \text{ WT.}\% \text{TIC}$ WITH REACTED $\text{PR}_{3\text{CS}} + 25.8 \text{ WT.}\% \text{TIC} + 21.8 \text{ WT.}\% \text{B}$

FIGURE 6.3.18 E: AN SEM IMAGE FOR $\text{PR}_{3\text{CS}} + 25.8 \text{ WT.}\% \text{TIC}$

FIGURE 6.3.18 F: AN SEM IMAGE FOR $\text{PR}_{3\text{CS}} + 25.8 \text{ WT.}\% \text{TIC} + 21.8 \text{ WT.}\% \text{B}$

FIGURE 6.3.19 A: DIFFRACTOGRAM FOR $\text{PR}_{3\text{CS}} + 26.7 \text{ WT.}\% \text{TIN}$ REACTED AT 1600°C, HEATING RATE $10^0\text{C}/\text{MIN}$, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA

FIGURE 6.3.19 B: A COMPARISON OF UNREACTED $\text{PR}_{3\text{CS}} + 26.7 \text{ WT.}\% \text{TIN}$ WITH REACTED $\text{PR}_{3\text{CS}} + 26.7 \text{ WT.}\% \text{TIN}$

FIGURE 6.3.19 C: A COMPARISON OF REACTED $\text{PR}_{3\text{CS}} + 26.7 \text{ WT.}\% \text{TIN}$ WITH REACTED $\text{PR}_{3\text{CS}} + 26.7 \text{ WT.}\% \text{TIN} + 15.7 \text{ WT.}\% \text{B}$

FIGURE 6.3.19 D: AN SEM IMAGE FOR $\text{PR}_{3\text{CS}} + 26.7 \text{ WT.}\% \text{TIN}$

FIGURE 6.3.19 D: AN SEM IMAGE FOR $\text{PR}_{3\text{CS}} + 26.7 \text{ WT.}\% \text{TIN} + 15.7 \text{ WT.}\% \text{B}$

FIGURE 6.3.20 A: DIFFRACTOGRAM FOR $\text{PR}_{3\text{CS}} + 30 \text{ WT.}\% \text{WC}$ REACTED AT 1600°C, HEATING RATE $100^0\text{C}/\text{MIN}$, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA

FIGURE 6.3.20 B: A COMPARISON OF $\text{PR}_{3\text{CS}} + 15 \text{ WT.}\% \text{WC}$ AND $\text{PR}_{3\text{CS}} + 30 \text{ WT.}\% \text{WC}$ REACTED AT 1600°C, HEATING RATE $10^0\text{C}/\text{MIN}$, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA

FIGURE 6.3.20 C: A COMPARISON OF REACTED $\text{PR}_{3\text{CS}} + 30 \text{ WT.}\% \text{WC}$ WITH REACTED $\text{PR}_{3\text{CS}} + 30 \text{ WT.}\% \text{WC} + 17.7 \text{ WT.}\% \text{B}$

FIGURE 6.3.20 D: AN SEM IMAGE FOR $\text{PR}_{3\text{CS}} + 15.0 \text{ WT.}\% \text{WC}$, HEATING RATE $10^0\text{C}/\text{MIN}$

FIGURE 6.3.20 E: AN SEM IMAGE FOR $\text{PR}_{3\text{CS}} + 15.0 \text{ WT.}\% \text{WC}$, HEATING RATE $100^0\text{C}/\text{MIN}$

FIGURE 6.3.20 F: AN SEM IMAGE FOR $\text{PR}_{3\text{CS}} + 30.0 \text{ WT.}\% \text{WC}$, HEATING RATE $10^0\text{C}/\text{MIN}$ AND $100^0\text{C}/\text{MIN}$, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA

FIGURE 6.3.20 G: AN SEM IMAGE FOR $\text{PR}_{3\text{CS}} + 30.0 \text{ WT.}\% \text{WC}$, HEATING RATE $100^0\text{C}/\text{MIN}$

FIGURE 6.3.20 H: AN SEM IMAGE FOR $\text{PR}_{3\text{CS}} + 30.0 \text{ WT.}\% \text{WC}$, HEATING RATE $10^0\text{C}/\text{MIN}$

FIGURE 6.3.20 I: AN SEM IMAGE FOR $\text{PR}_{3\text{CS}} + 30.0 \text{ WT.}\% \text{WC}$, HEATING RATE $100^0\text{C}/\text{MIN}$

FIGURE 6.3.20 J: AN SEM IMAGE FOR $\text{PR}_{3\text{CS}} + 30.0 \text{ WT.}\% \text{WC} + 17.7 \text{ WT.}\% \text{B}$, HEATING RATE $100^0\text{C}/\text{MIN}$

FIGURE 6.3.21 A: DIFFRACTOGRAM FOR $\text{PR}_{3\text{CS}} + 30 \text{ WT.}\% \text{TIB}_2 + 30 \text{ WT.}\% \text{WC}$ REACTED AT 1600°C, HEATING RATE $100^0\text{C}/\text{MIN}$, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA

FIGURE 6.3.21 B: THE PHASES PRESENT IN REACTED $\text{PR}_{3\text{CS}} + 30 \text{ WT.}\% \text{TIB}_2 + 30 \text{ WT.}\% \text{WC}$ AND REACTED $\text{PR}_{3\text{CS}} + 30 \text{ WT.}\% \text{TIB}_2 + 30 \text{ WT.}\% \text{WC} + 14.2 \text{ WT.}\% \text{B}$

FIGURE 6.3.21 C: AN SEM IMAGE OF $\text{PR}_{3\text{CS}} + 30 \text{ WT.}\% \text{TIB}_2 + 30 \text{ WT.}\% \text{WC}$

FIGURE 6.3.21 D: AN SEM IMAGE OF $\text{PR}_{3\text{CS}} + 30 \text{ WT.}\% \text{TIB}_2 + 30 \text{ WT.}\% \text{WC} + 14.2 \text{ WT.}\% \text{B}$

FIGURE 6.3.22: A TYPICAL VICKERS INDENT AT A 10 KG LOADING
LIST OF TABLES

TABLE 2.1: DENSITY, HARDNESS, BULK AND SHEAR MODULI OF SELECTED HARD MATERIALS\(^2\) 18
TABLE 2.2: COEFFICIENT OF THERMAL EXPANSION OF SOME IMPORTANT HARD MATERIALS 21
TABLE 3.1.1: CHEMICALS USED FOR PROCESSING 26
TABLE 4.1.1: STRUCTURAL DATA FOR PHASES IN THE AL-B SYSTEM 42
TABLE 4.1.2: STRUCTURAL DATA FOR THE PHASES IN THE MG-B SYSTEM 43
TABLE 4.1.3: STRUCTURAL DATA FOR THE PHASES IN THE AL-MG BINARY PHASE DIAGRAM 45
TABLE 4.1.4: STRUCTURAL DATA OF ALMGB\(_{14}\) 47
TABLE 4.2.1: 2 THETA PEAKS FOR ALB\(_2\), MGB\(_2\) 50
TABLE 4.2.2: VALUES OF 1/D\(^2\) CALCULATED AND 1/D\(^2\) EXPERIMENTAL 52
TABLE 4.3.1: ATOMIC PERCENT FOR THE COMPOSITIONS 55
TABLE 4.3.2: SUMMARY OF THE MAJOR PHASES FOR COMPOSITION 9 62
TABLE 4.3.3: THE SHIFT IN D-SPACE FOR COMPOSITION 9 AT THE DIFFERENT TEMPERATURES 62
TABLE 4.3.4: SUMMARY OF THE MAJOR PHASES FOR COMPOSITIONS 1-3 63
TABLE 4.3.5: SUMMARY OF THE MAJOR PHASES FOR COMPOSITIONS 4-6 63
TABLE 4.3.6: SUMMARY OF THE MAJOR PHASES IDENTIFIED FOR COMPOSITION 8 AND 10 66
TABLE 4.3.7: RIETVELD ANALYSIS DATA FOR THE DETERMINATION OF THE PHASE CONTENT IN COMPOSITION 1, 4 AND 8 73
TABLE 4.3.8: ATOMIC PERCENT FOR UNSHIFTED AND SPINEL SHIFTED COMPOSITIONS 74
TABLE 4.3.9: THE CALCULATED CELL PARAMETERS FROM THE RIETVELD REFINEMENT 77
TABLE 4.3.10: CALCULATED LATTICE PARAMETERS USING METHOD 1 78
TABLE 4.3.11: COMPOSITION OF THE SOLID SOLUTION DETERMINED BY METHOD 1 AND THE RIETVELD METHOD 78
TABLE 4.3.12: CONCENTRATION OF ALB\(_2\) IN (ALB\(_2\))\(_{30}\) FOR COMPOSITION 9 DETERMINED BY METHOD 1 81
TABLE 4.3.13: COMPOSITION OF PHASES THAT CONTAIN ALL OF AL, MG AND B ONLY FOR COMPOSITION 4 FROM RIETVELD ANALYSIS AND CALCULATED FROM THE STARTING COMPOSITIONS 82
TABLE 5.2.1: PROPERTIES OF SOME ORGANIC COMPOUNDS 95
TABLE 5.2.2: THE CORRESPONDING BORON ESTERS 96
TABLE 5.3.1: TABLE OF PHASE CONTENT OF BASELINE ALMGB\(_{14}\) DETERMINED BY RIETVELD ANALYSIS 102
TABLE 5.3.2: VALUES USED IN FIGURES 5.3.6A-B 105
TABLE 5.3.3: THE PERCENTAGE BY MASS OF THE SPINEL PHASE 107
TABLE 5.3.4: OXYGEN CONTENT IN THE POLYMER COATING 108
TABLE 5.3.5: MASS PERCENT OF OXYGEN IN BORON 108
TABLE 6.1.1: STRUCTURAL DATA FOR THE PHASES IN THE TI-B-C TERNARY PHASE DIAGRAM 112
TABLE 6.1.2: STRUCTURAL DATA FOR THE PHASES IN THE TI-B-N TERNARY PHASE DIAGRAM 114
TABLE 6.1.3: STRUCTURAL DATA FOR THE PHASES IN THE W-B-C TERNARY PHASE DIAGRAM 115
TABLE 6.3.1: PHASES, DENSITY AND POROSITY FOR ALMGB\textsubscript{14} PREPARED THE THREE DIFFERENT FURNACES 117
TABLE 6.3.2: DENSITY AND POROSITY OF ALB\textsubscript{12}, MGB\textsubscript{2} AND THE COMPOSITE ALB\textsubscript{12} + MGB\textsubscript{2} 121
TABLE 6.3.3: DENSITY, POROSITY AND MAJOR PHASES FOR ALMGB\textsubscript{14} COMPOSITES 122
TABLE 6.3.4 A: PROPERTIES OF ELEMENTAL POWDERS HOT-PRESSED AT 1400\textdegree C, 20 MPa, 1 HOUR 136
TABLE 6.3.4 B: PROPERTIES OF PRE-REACTIONED POWDERS HOT-PRESSED AT 1400\textdegree C, 20 MPa, 1 HOUR 136
TABLE 6.3.5: THE DENSITIES, POROSITIES AND THEORETICAL DENSITIES FOR ELEMENTAL ALMGB\textsubscript{14} PREPARED WITH EXCESS MAGNESIUM AND/OR ALUMINIUM AND HOT PRESSED AT 1400\textdegree C, 20 MPa AND 1 HOUR 139
TABLE 6.3.6: DENSITY, RELATIVE DENSITY AND POROSITY FOR ALMGB\textsubscript{14} PREPARED AT 900\textdegree C, 1200\textdegree C, 1400\textdegree C, 1500\textdegree C, 1600\textdegree C AND 1700\textdegree C 143
TABLE 6.3.7: THE DENSITY, POROSITY AND ALMGB\textsubscript{14}:MGA\textsubscript{2}O\textsubscript{4} MAJOR PEAK RATIO FOR SAMPLES PREPARED AT 20 MPa AND 75 MPa AT 1600\textdegree C 144
TABLE 6.3.8: A COMPARISON OF THE DENSITIES OBTAINED FROM PRE-REACTIONED POWDERS AND ELEMENTAL POWDERS AT 1400\textdegree C AND 20 MPa 145
TABLE 6.3.8: DENSITIES, POROSITIES FOR ELEMENTAL AND PRE-REACTIONED POWDERS PREPARED AT 1600\textdegree C AND 75 MPa 146
TABLE 6.3.9: THE KNOOP HARDNESS OF COMPOSITES PREPARED IN TABLE 6.3.8 AT A 500 G LOAD 149
TABLE 6.3.10: A SUMMARY OF THE CRYSTALLINE PHASES IDENTIFIED BY XRD IN THE COMPOSITES 174
TABLE 6.3.10: DENSITY, POROSITY, VICKERS HARDNESS AND FRACTURE TOUGHNESS FOR THE COMPOSITES 176
TABLE 6.3.11: COMPARISON OF THE CHANGE IN HARDNESS 177
TABLE 1: COMPOSITIONS FOR THE PHASE DIAGRAM 191
TABLE 2: MASS AND ATOMIC PERCENTS FOR ALMGB\textsubscript{14} 191
TABLE 3: COMPOSITIONS FOR THE COMPOSITES PREPARED AT 1600\textdegree C 192