*** PROOF OF YOUR ARTICLE ATTACHED, PLEASE READ CAREFULLY ***

After receipt of your corrections your article will be published initially within the online version of the journal.

PLEASE NOTE THAT THE PROMPT RETURN OF YOUR PROOF CORRECTIONS WILL ENSURE THAT THERE ARE NO UNNECESSARY DELAYS IN THE PUBLICATION OF YOUR ARTICLE

☐ READ PROOFS CAREFULLY

ONCE PUBLISHED ONLINE OR IN PRINT IT IS NOT POSSIBLE TO MAKE ANY FURTHER CORRECTIONS TO YOUR ARTICLE

β This will be your only chance to correct your proof
β Please note that the volume and page numbers shown on the proofs are for position only

☐ ANSWER ALL QUERIES ON PROOFS (Queries are attached as the last page of your proof.)

β List all corrections and send back via e-mail to the production contact as detailed in the covering e-mail, or mark all corrections directly on the proofs and send the scanned copy via e-mail. Please do not send corrections by fax or post

☐ CHECK FIGURES AND TABLES CAREFULLY

β Check sizes, numbering, and orientation of figures
β All images in the PDF are downs sampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article
β Review figure legends to ensure that they are complete
β Check all tables. Review layout, titles, and footnotes

☐ COMPLETE COPYRIGHT TRANSFER AGREEMENT (CTA) if you have not already signed one

β Please send a scanned signed copy with your proofs by e-mail. **Your article cannot be published unless we have received the signed CTA**

☐ OFFPRINTS

β 25 complimentary offprints of your article will be dispatched on publication. Please ensure that the correspondence address on your proofs is correct for dispatch of the offprints. If your delivery address has changed, please inform the production contact for the journal – details in the covering e-mail. Please allow six weeks for delivery.

Additional reprint and journal issue purchases

β Should you wish to purchase a minimum of 100 copies of your article, please visit http://www3.interscience.wiley.com/aboutus/contact_reprint_sales.html
β To acquire the PDF file of your article or to purchase reprints in smaller quantities, please visit http://www3.interscience.wiley.com/aboutus/ppv-articleselect.html. Restrictions apply to the use of reprints and PDF files – if you have a specific query, please contact permreq@wiley.co.uk. Corresponding authors are invited to inform their co-authors of the reprint options available
β To purchase a copy of the issue in which your article appears, please contact cs-journals@wiley.co.uk upon publication, quoting the article and volume/issue details
β Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic or print form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permreq@wiley.co.uk
Structural and Stereochemical Studies of a Tetralin Norsesquiterpenoid from *Ligularia kangtingensis*

GUANGBO XIE,1* JIN TIAN,1 KATALIN E. KÖVÉR,2 ATTILA MÁNDL3 AND TIBOR KURTÁN3*

1Department of Biotechnology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
2Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary
3Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary

ABSTRACT A chiral tetralin norsesquiterpenoid, ligukangtinol, was isolated from the plant *Ligularia kangtingensis*. Its planar structure was determined by extensive analysis of spectroscopic data (MS, IR, and NMR), and (1S,3R) absolute configuration of the tetralin ring was established by TDDFT-ECD calculations of the solution conformers. Conformational analysis and ECD calculations proved that the semiempirical helicity rules of 6-hydroxytetralins correlating the \(\Delta_6 \) Cotton effect and \(P/M \) helicity of the fused carbocyclic ring correctly predicts the absolute configuration and thus can be used for the configurational assignment of related substituted tetralin derivatives. *Chirality* 00:000–000, 2014. © 2014 Wiley Periodicals, Inc.

KEY WORDS: chiral tetralin; inverse tetralin helicity rule; TDDFT-ECD calculation; *Ligularia kangtingensis*; norsesquiterpenoid

INTRODUCTION The genus *Ligularia* belongs to the Senecioneae tribe of the Compositae family, and comprise ca. 100 species in China. More than 20 species in this genus have been used for a long time as folk remedies for their antibiotic, antiphlogistic, and antitumor activities. Phytochemical research on many species of *Ligularia* have been reported by different groups, which established that this genus is an important source of sesquiterpenes, many of which show antibacterial and antitumor bioactivities. *Ligularia kangtingensis* S.W. Liu is an indigenous plant in the Sichuan province of China living in the grass slopes at an altitude of near 4000 m. Herein we report the struc
tural elucidation of a new chiral tetralin norsesquiterpenoid, ligukangtinol (1), isolated from *L. kangtingensis*.

MATERIALS AND METHODS

General and Instrumentation Optical rotation was measured on a JASCO E1020 polarimeter. The infrared (IR) spectrum was recorded on a Bruker (Billerica, MA) Tensor 27 FT-IR spectrometer (KBr). Electronic circular dichroism (ECD) spectra were obtained on a J-810 spectropolarimeter. High-resolution electrospray ionization, mass spectrometry (HRESI-MS) was measured on a Waters Q-TOF Premiere. Nuclear magnetic resonance (NMR) (1D and 2D) spectra were recorded on Varian Unity 400/54 instrument and Bruker-AMX 500.

Plant Materials and Isolation The whole plant of *Ligularia kangtingensis* was collected from Kangding County, Sichuan Province, People's Republic of China, in August, 2010. The plant was identified by Qin-Mao Fang, Institute of TCM Medicinal Resources and Cultivation, Sichuan Academy of Chinese Medicine Sciences. A voucher specimen (No. LK1008) was deposited in the School of Life Science and Technology, University of Electronic Science and Technology of China. Powdered whole plants of *L. kangtingensis* (5 kg) were extracted with 95% ag. ethanol under reflux. The extracts were concentrated in vacuo to yield a residue, which was suspended in H₂O and then extracted with petroleum ether and EtOAc, respectively. The petroleum ether extract (185 g) was chromatographed over a silica gel column (2000 g, 100-200 mesh, Qingdao marine chemical factory), eluted with a gradient solvent system [CHCl₃-MeOH (90:1-2:1)] to give 12 fractions (Fr.1-12). Fr. 4 (2.9 g) was chromatographed over a silica gel column (200-300 mesh, 60 g) eluted with solvent systems of petroleum ether-acetone (5:1) and cyclohexane-EtOAc (4:1) to afford compound 1 (24 mg).

Computational Section Mixed torsional/low mode conformational searches were carried out on the (1S,3R,S) and (1S,3S,S) diastereomers of 1 by means of the Macromodel 9.9.223 software (Schrödinger, New York, NY) using a Merck Molecular Force Field (MMFF) with an implicit solvent model for chloroform. Geometry reoptimizations at B3LYP/6-31G(d) in vacuo and B3LYP/TZVP levels of theory applying a Polarizable Continuum Model (PCM) solvent model for acetonitrile followed by time-dependent Density Functional Theory (TDDFT) calculations using various functionals (B3LYP, BH&HLYP, PBE0) and TZVP basis set were performed with the Gaussian 09 package. ECD spectra were generated as the sum of Gaussians with 3000 cm⁻¹ half-height width (corresponding to ca. 13 nm at 210 nm), using dipole-velocity computed rotational strengths. Boltzmann distributions were estimated from the ZPVE corrected B3LYP/6-31G(d) energies in the gas phase calculations and from the B3LYP/TZVP energies in the solvated ones. The MOLEKEL software package was used for visualization of the results.

RESULTS AND DISCUSSION Ligukangtinol (1) was isolated as colorless oil with specific rotation \(\Delta [\alpha]_{D}^{20} +46 = 0.0035, \text{MeOH} \). Its molecular formula was determined as \(\text{C}_{14}\text{H}_{20}\text{O}_{3} \) on the basis of HRESI-MS peak of \([M+K]^{+} \) at 275.1028 (calcd. 275.4099), indicating five Deducted to Prof. Dr. Sándor Antus on the occasion of his 70th birthday.

*Correspondence to: Guangbo Xie, Department of Biotechnology, School of Life Science and Technology, University of Electronic Science and Technology of China, No 4, Section 2, North Jianshe Rd., Chengdu 610054, P.R. China. gxie@uestc.edu.cn; Tibor Kurtán, Department of Organic Chemistry, University of Debrecen, P.O.B. 20, H-4010 Debrecen, Hungary. E-mail: kurtan.tibor@science.unideb.hu

Received for publication 19 December 2013; Accepted 11 February 2014 DOI: 10.1002/chir.22320 Published online in Wiley Online Library (wileyonlinelibrary.com).

© 2014 Wiley Periodicals, Inc.
TABLE 1. ¹H and ¹³C NMR data (400/100 MHz) for compound 1 in CDCl₃

<table>
<thead>
<tr>
<th>Position</th>
<th>δc</th>
<th>δh (multi, J in MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70.6 (CH)</td>
<td>4.67 (1H, br s)</td>
</tr>
<tr>
<td>2</td>
<td>25.7 (CH₂)</td>
<td>1.50 (1H, d, 13.0)</td>
</tr>
<tr>
<td>3</td>
<td>30.8 (CH)</td>
<td>2.12 (1H, m)</td>
</tr>
<tr>
<td>4</td>
<td>34.7 (CH₂)</td>
<td>2.66 (1H, d, 18.0)</td>
</tr>
<tr>
<td>5</td>
<td>120.7 (C)</td>
<td>2.95 (1H, dd, 18.0, 6.9)</td>
</tr>
<tr>
<td>5a</td>
<td>133.5 (C)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>153.2 (C)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>112.8 (CH)</td>
<td>6.65 (1H, d, 8.0)</td>
</tr>
<tr>
<td>8</td>
<td>128.2 (CH)</td>
<td>6.96 (1H, d, 8.0)</td>
</tr>
<tr>
<td>8a</td>
<td>127.0 (C)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>36.0 (CH)</td>
<td>1.59 (1H, m)</td>
</tr>
<tr>
<td>10</td>
<td>62.8 (CH₂)</td>
<td>3.19 (1H, d, 12.0)</td>
</tr>
<tr>
<td>11</td>
<td>18.7 (CH₃)</td>
<td>1.26 (3H, d, 7.6)</td>
</tr>
<tr>
<td>12</td>
<td>10.7 (CH₃)</td>
<td>2.14 (3H, s)</td>
</tr>
</tbody>
</table>

degrees of unsaturation. The IR spectrum showed absorption bands characteristic of hydroxyl groups (3421 cm⁻¹) and a benzene ring (1593, 1462 cm⁻¹).

The ¹H NMR data (CDCl₃, Table 1) showed distinct signals for two methyls [δH 2.14 (3H, s); δH 1.26 (3H, d, J = 7.6 Hz)] and two ortho aromatic protons [δH 6.65 (1H, d, J = 8.0 Hz); δH 6.96 (1H, d, J = 8.0 Hz)]. The ¹³C NMR data (CDCl₃, Table 1) revealed 14 carbon resonances that were distinguished via DEPT and HMOC data to be two methyls, three methylenes (including one oxygenated carbon), five methines (including one oxygenated and two aromatic carbons), and four aromatic quaternary carbons (including one oxygenated carbon). The data mentioned above accounted for 4 out of 5 degrees of unsaturation, indicating one additional ring in the structure of 1.

The planar structure for 1 was constructed by 2D NMR data (Fig. 1). ¹H⁻¹H COSY data indicated the existence of a proton spin system of -O(CH₂CH₂CH(CH₃)CH₂OH)₂-, H-1/C-3, C-5a, C-5, C-6; H-1/C-3, C-5, C-6; H-2/C-4, C-5a, C-5, C-8a. From the data above, together with the chemotaxonomy of genus Ligularia, a phenoic norsesquiterpenoid skeleton, the same as that of ligudinatol, could be deduced for compound 1.

In HMBC spectrum, correlations between downfield aromatic carbon (δc 153.2) and H-7 (δH 6.65), H-8 (δH 6.96), H-12 (δH 2.14) indicated the position of the phenolic OH (positive color test with ethanolic ferric chloride) as ortho to C-5 methyl group. The other two hydroxyl groups, which were deduced from the HRESI-MS and NMR data, were placed at C-1 and C-10 based on the HMBC data. Thus, the planar structure of 1 was determined as shown in Figure 1 and it was named lugikangatinol.

The relative configuration of 1 was determined by nuclear Overhauser effect spectroscopy (NOESY) measurement and ³JHH data supported by computational conformational analysis. The 1-H proton showed NOE correlations with 8-H and both 2-H protons and it has a broad singlet signal in the ¹H-NMR spectrum suggesting its equatorial orientation. Thus, the 1-OH group adopted an axial orientation, by which it can reduce the unfavorable van der Waals repulsion with the peri 8-H proton. The absence of characteristic NOE correlations between 1-H and 3-H suggested the trans relative configuration of the 1-H and 3-H, which was also confirmed by conformational analysis and ECD calculations of trans-(1S,3R,9S)-1 and the epimeric cis-(1S,3S,9S)-1. The conformational analysis of trans-(1S,3R,9S)-1 using an initial MMFF conformational search followed by reoptimization at the B3LYP/TZVP level of theory with PCM solvent model for acetonitrile revealed that in all the conformers the 1-OH is axial, while the C-3 substituent is equatorial. A similar analysis of the cis-(1S,3S,9S)-1 showed that all the conformers but one had cis dihedral orientation for the 1- and 3-H protons, which should give NOE correlations between the latter protons. The 3-H had NOE correlation with the 3-H and it has 18.0 and 6.9 Hz ³JHH values for the geminal and vicinal couplings, respectively. The vicinal coupling of the α-H could not be resolved (<1 Hz) and it gave NOE with the C-5 methyl group. These data indicated that the C-4 methylene group is shifted upward, which distorted the half-chair conformation of the fused carbocyclic ring and moved the β-H to a quasi-axial position. This distortion also moves the 3-H toward the equatorial orientation, which is reflected in the small ³J2H,3α coupling constant (4.0 Hz). The lack of NOE correlation between α-2-H and α-4-H supported that the half-chair conformation is distorted by flipping C-4 upward. Interestingly, the conformational analysis of cis- or trans-1 did not indicate any distortion of the half-chair conformation even using the PCM solvent model. Due to the relatively free rotation of the C-3 substituent, the relative configuration of the C-9 chirality center could not be assigned and it was arbitrarily defined as (9S) for the conformational analysis.

Compound 1 contains a substituted chiral tetralin chromophore, the absolute configuration of which can be determined by the 3Lb band Cotton effect (CE) of the fused benzene chromophore in the ECD spectrum. In chiral tetralin derivatives having no substituents on the fused aromatic ring, the 3Lb CE is determined mainly by the P or M helicity of the fused nonaromatic chiral ring defined by the ω⁶C₈=α, C₁, C₂, C₃ torsional angle, which in turn is directed by the absolute configuration of the fused ring (Fig. 2). Snatzke and Ho developed a so-called helicity rule for the benzene chromophore of chiral tetralin derivatives (Fig. 2), according to which if the benzene ring is not further substituted, P helicity of the nonaromatic ring leads to a positive CE within the 3Lb band and, vice versa, M helicity is manifested in a negative one.

Snatzke et al. also showed that achiral substituents of the benzene ring with large spectroscopic moment (e.g. q₀Mesityl = +21 [(cm mol)/L]¹/²) in specific positions inverted the helicity rule. This inversion was attributed to the change of the direction of the sum spectroscopic moment vector...
which gives the electric transition moment vector (μ); i.e., the translation of the electron charge during the transition. In Snatzke's terminology, achiral ring substituents can induce the inversion of the original helicity rule, which is the consequence of rotating the electric transition moment by approximately 30°. Figure F3 shows a polarization diagram of the tetralin chromophore in which the addition of the spectroscopic moments oriented the electric transition moment along the direction of the C-2 axis of the chromophore, which gives a positive 1Lb-band CE for P helicity of the nonaromatic ring (helicity rule of unsubstituted tetraline). In contrast, when tetralin has only one methoxy or hydroxy group at C-6, the sum of the spectroscopic moments rotates the electric transition moment by approximately 30°, which leads to a sign inversion as shown in Figure 3b. It was demonstrated that 5,8- and 6,7-disubstituted and 5,6,7-trisubstituted tetralins follow the same helicity rule as the unsubstituted tetralin, while 6-monosubstituted, and 5,6- and 5,7-disubstituted tetralins obey the inverse one (Fig. 4).13,14

Since the C-5 methyl group has low spectroscopic moment and it does not interfere with the helicity rule, compound 1

Fig. 3. Polarization diagram of the 1Lb band, direction of the overall spectroscopic moment and helicity rule of (a) tetralin, (b) 6-hydroxytetralin.

Fig. 4. Effect of achiral ring substituents of large spectroscopic moment (e.g., OMe) on the tetralin helicity rule.

Fig. 5. Low-energy conformers (>1%) of trans-(1S,3R,9S)-1 optimized at B3LYP/TZP level of theory with PCM model for MeCN.
should follow the same inverse helicity rule as chiral 6-hydroxy tetralins. Thus, the measured positive \(^1L_b \) band CE derives from \(M \) helicity of the fused carbocyclic ring and \(\text{trans} \) relative configuration of the equatorial C-3 substituent and the axial 1-OH implies \((1S,3R)\) absolute configuration. The remote C-9 chirality center has negligible influence on the ECD spectrum and hence it does not disturb the helicity rule.

In order to confirm the application of the inverse tetralin helicity rule for the configurational assignment of 1, TDDFT ECD calculations were carried out on the computed solution

![Fig. 6. Experimental and B3LYP/TZVP ECD spectra of (a) \(\text{trans-}(1S,3R,9S)-1 \) and (b) \(\text{cis-}(1S,3S,9S)-1 \) obtained as the Boltzmann-weighted average of the computed low-energy solution conformers. Bars represent rotational strength of the lowest-energy conformer.](image)

![Fig. 7. Low-energy conformers (>1%) of \(\text{cis-}(1S,3S,9S)-1 \) optimized at B3LYP/TZP level of theory with PCM model for MeCN.](image)
conformers of trans-(1S,3R,9S)-1. Above 2% population, nine conformers of trans-(1S,3R,9S)-1 were identified after reoptimization at the B3LYP/TZVP level of theory with PCM solvent model for F5 acetonitrile (Fig. 5). In all the conformers, the fused carbocyclic ring had M helicity ($\omega_{C-8a,C-1,C-2,C-3} = -48.4^\circ$ for the lowest-energy conformers) with axial 1-OH and equatorial C-3 substituent. The conformers differed in the orientation of the C-3 substituent. Then ECD spectra of the conformers were calculated using various functionals (B3LYP, BH&HLYP, PBE0) and the TZVP basis set, which consistently reproduced the experimental solution ECD spectrum including the characteristic positive $^{1}L_{a}$ band of trans-(1S,3R,9S)-1 (Fig. 6). Thus, the (+)-(1S,3R) absolute configuration of 1 and the effect of the C-6 hydroxyl group on the $^{1}L_{a}$ band CE of 1 was unambiguously confirmed.

Since solution conformers of cis-(1S,3S,9S)-1 had been already computed to aid the assignment of the relative configuration, their TDDFT-ECD calculations were also performed (Fig. 5). Above 1.0% population, 10 conformers were obtained, in all of which the C-3 substituent was equatorial and except for conformer F (5.3%), the 1-OH also adopted the equatorial position (Fig. 7). Thus, except for conformer F, the fused carbocyclic ring of the conformers had P helicity with $\omega_{C-8a,C-1,C-2,C-3} = 49.9^\circ$ for the lowest-energy conformer (35.8%). In accordance with the inverse tetraline helicity rule, the Boltzmann-weighted TDDFT-ECD spectra of cis-(1S,3S,9S)-1 produced a negative $^{1}L_{a}$ band CE, opposite to that of the experimental one, while positive CEs were computed in the 250 – 200 nm range ($^{1}L_{a}$ and ^{1}B) but their relative intensities were different from the experimental ones.

CONCLUSIONS

The TDDFT-ECD calculations of (+)-lugikangtinol (1) confirmed that the sign of the $^{1}L_{a}$ band CE is characteristic of the helicity and hence the absolute configuration of the fused nonaromatic ring and the semiempirical helicity rules of chiral substituted tetralins are useful in determining the absolute configuration when the effect of the aromatic substitution pattern on the sign of the $^{1}L_{a}$ band CE is properly considered. The substituted chiral tetralin chromophore is found in pharmacologically active derivatives, the absolute configuration of which could have been readily determined by means of the tetralin helicity rules.19–24

ACKNOWLEDGMENTS

This work was financially supported by the Fundamental Research Funds for the Central Universities (ZYGX2010J102). T.K. thanks the Hungarian National Research Foundation (OTKA K105871). The research of A. M was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TAMOP-4.2.4.A/2-11/1-2012-0001 “National Excellence Program.”

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at the publisher’s web-site.

LITERATURE CITED

Chirality DOI 10.1002/chir
Regular Article

Structural and Stereochemical Studies of a Tetralin Norsesquiterpenoid from *Ligularia kangtingensis*

Guangbo Xie, Jin Tian, Katalin E. Kövér, Attila Mándi and Tibor Kurtán
Author Query Form

Journal: Chirality
Article: chir_22320

Dear Author,

During the copyediting of your paper, the following queries arose. Please respond to these by annotating your proofs with the necessary changes/additions.

- If you intend to annotate your proof electronically, please refer to the E-annotation guidelines.
- If you intend to annotate your proof by means of hard-copy mark-up, please refer to the proof mark-up symbols guidelines. If manually writing corrections on your proof and returning it by fax, do not write too close to the edge of the paper. Please remember that illegible mark-ups may delay publication.

Whether you opt for hard-copy or electronic annotation of your proofs, we recommend that you provide additional clarification of answers to queries by entering your answers on the query sheet, in addition to the text mark-up.

<table>
<thead>
<tr>
<th>Query No.</th>
<th>Query</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>AUTHOR: As per journal instruction, all author names must be listed in the reference list. Please provide all author names for reference 7.</td>
<td></td>
</tr>
</tbody>
</table>
USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Required software to e-Annotate PDFs: Adobe Acrobat Professional or Adobe Reader (version 7.0 or above). (Note that this document uses screenshots from Adobe Reader X)
The latest version of Acrobat Reader can be downloaded for free at: http://get.adobe.com/uk/reader/

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:

This will open up a panel down the right side of the document. The majority of tools you will use for annotating your proof will be in the Annotations section, pictured opposite. We’ve picked out some of these tools below:

1. Replace (Ins) Tool – for replacing text.
 Strikethrough (Del) Tool – for deleting text.

 How to use it
 • Highlight a word or sentence.
 • Click on the Replace (Ins) icon in the Annotations section.
 • Type the replacement text into the blue box that appears.

 How to use it
 • Highlight a word or sentence.
 • Click on the Strikethrough (Del) icon in the Annotations section.

2. Add note to text Tool – for highlighting a section to be changed to bold or italic.

 How to use it
 • Highlight the relevant section of text.
 • Click on the Add note to text icon in the Annotations section.
 • Type instruction on what should be changed regarding the text into the yellow box that appears.

3. Add sticky note Tool – for making notes at specific points in the text.

 How to use it
 • Click on the Add sticky note icon in the Annotations section.
 • Click at the point in the proof where the comment should be inserted.
 • Type the comment into the yellow box that appears.
5. **Attach File Tool** – for inserting large amounts of text or replacement figures.

 Inserts an icon linking to the attached file in the appropriate place in the text.

 How to use it
 - Click on the Attach File icon in the Annotations section.
 - Click on the proof to where you’d like the attached file to be linked.
 - Select the file to be attached from your computer or network.
 - Select the colour and type of icon that will appear in the proof. Click OK.

6. **Add stamp Tool** – for approving a proof if no corrections are required.

 Inserts a selected stamp onto an appropriate place in the proof.

 How to use it
 - Click on the Add stamp icon in the Annotations section.
 - Select the stamp you want to use. (The Approved stamp is usually available directly in the menu that appears).
 - Click on the proof where you’d like the stamp to appear. (Where a proof is to be approved as it is, this would normally be on the first page).

7. **Drawing Markups Tools** – for drawing shapes, lines and freeform annotations on proofs and commenting on these marks.

 Allows shapes, lines and freeform annotations to be drawn on proofs and for comment to be made on these marks.

 How to use it
 - Click on one of the shapes in the Drawing Markups section.
 - Click on the proof at the relevant point and draw the selected shape with the cursor.
 - To add a comment to the drawn shape, move the cursor over the shape until an arrowhead appears.
 - Double click on the shape and type any text in the red box that appears.

For further information on how to annotate proofs, click on the Help menu to reveal a list of further options: