Early postoperative changes in hematological, erythrocyte aggregation and blood coagulation parameters after unilateral implantation of polytetrafluoroethylene vascular graft in the femoral artery of beagle dogs

Csaba Toth, Zoltan Klarik, Ferenc Kiss, Eniko Toth, Zoltan Hargitai, Norbert Nemeth

DOI: http://dx.doi.org/10.1590/S0102-86502014000500006

ABSTRACT

PURPOSE: The failure of small-caliber vascular grafts still means a serious problem. Concerning the early postoperative complications we aimed to investigate the hemostaseological and hemorheological aspects of this issue in a canine model.

METHODS: In the Control group only anesthesia was induced. In the Grafted group under general anesthesia a 3.5-cm segment was resected unilaterally from the femoral artery and replaced with a PTFE graft (diameter: 3 mm). On the 1st-3rd-5th-7th and 14th postoperative days the skin temperature of both hind limbs was measured, and blood sampling occurred for hematological, hemostaseological and hemorheological tests.

RESULTS: The skin temperature of the operated versus intact limbs did not differ. In the Grafted group leukocyte count was elevated by the 1st postoperative day, while platelet count increased over the entire follow-up period. Fibrinogen concentration rose on the 1st-5th days, activated partial thromboplastin time increased on the 3rd-7th days. Erythrocyte aggregation was enhanced significantly on the 1st-5th days. In specimens taken on the 14th day, histologically we found matured thrombus narrowing the graft lumen.

CONCLUSIONS: Small-caliber PTFE graft implantation into the femoral artery caused significant changes in several hemostaseological and hemorheological parameters. However, better clarifying the factors leading to early thrombosis of these grafts needs further studies.

Early postoperative changes in hematological, erythrocyte aggregation and blood coagulation parameters after unilateral implantation of polytetrafluoroethylene vascular graft in the femoral artery of beagle dogs

Introduction

Open surgical procedures, such as bypass operations still have an important role in today’s vascular surgery. For the bypass implants, the patient’s superficial vein or artificial vascular graft is used, what can be made of polyethylene terephthalate (PTFE, Dacron®) or polytetrafluoroethylene (PTFE). However, bypass surgeries made with the patients’ own veins are statistically proved to have twice as more patency rates than the artificial grafts.

During the last 10-15 years a reduction in the number of infrainguinal bypass operations can be observed. The reasons are not well known but risk factor reduction, modification, early referral and the improvement of the endovascular techniques (even for TASC C,D lesions) could be a reason for that. However, by surgeons’ opinion the open surgery remains the first choice for TASC D lesions. The greater saphenous vein (GSV) is the gold standard for infrainguinal bypasses at any level. If the GSV is of poor quality or has been removed (for example CABG or varicectomy was performed), the use of the contralateral GSV has to be considered, rather than arm veins, which have lower patency rates. In case of the surgeries above the knee the implantation of an artificial graft is chosen since with progression of the underlying disease it might be the necessary to do surgery below the knee, where veins are preferred for the bypass.

In absence of vein a prosthetic graft should be used. In this case a vein cuff recommended at the distal anastomosis. The Joint Vascular Research Group RCT of Miller vein cuff versus non-cuff for femoro-distal PTFE grafts demonstrated significantly higher patency rates for prosthetic graft with vein segment at P III level. The number of prosthetic grafts, used for intermittent claudication/critical limb ischemia has fallen. Poor patency rate and the concerns about graft infections are the main reasons for that.

The first couple of postoperative days are always critical. The problem of early thrombosis in case of small-diameter artificial vascular conduits still means a serious question in vascular surgery. The wall of the artificial graft is more rigid, the arterial three-phased blood flow pattern cannot be observed. After the implantation of an artificial vascular graft, we may see several early and late complications. Early: suture insufficiency, hemorrhage, graft infection, wound infection, vascular and nerve injuries, early obstruction of the graft. Late: pseudoaneurysm formation due to suture insufficiency, obstruction of the graft, stenosis caused by neointima formation or occlusion, graft infection. The blood flow characteristics change at the anastomoses, the cells may suffer mechanical injury - here the formation of deposits usually leads to another operation. Although it is not completely clarified that from which point the flow properties of the altered vascular geometry can lead to thrombotic complications later.

The aim our study was to investigate the effect of the presence of unilaterally implanted PTFE graft into the femoral artery in a canine model, focusing on the early postoperative changes in general haematological parameters, red blood cell aggregation and general blood coagulation parameters.

Methods

The experiments were approved and registered by the University of Debrecen Committee of Animal Research (permission Nr.: 20/2011. UD CAR), in accordance with the relevant Hungarian Animal Protection Act (Law XVIII/1998) and EU directives.

All the surgical interventions were performed under general anesthesia (10 mg/kg ketamin + 0.1 mg/kg xylazin, i.m.) in the Grafted group (n=5): the left femoral artery was gently exposed andatraumatically clamped proximally and distally. A 3.5 cm long segment was excised and replaced with a polytetrafluoroethylene (PTFE) graft (diameter = 3 mm, Atrium Co.) of the same length (3.52 ± 0.48 cm) using end-to-end anastomoses (continuously suture line, 6/0 polypropylene). The time for the necessary clamping of the vessel was 25 ± 3.1 minutes. In the Control group (n=4) only anesthesia was induced and for a 2-hour-period animals were laid on the operative table under the same circumstances as in the Grafted group.

Animals received 1000 IU sodium-heparin intravenously at the beginning of the operation. Postoperatively, on the 1st and 3rd days 500 IU Clexan was given subcutaneously. Intramuscularly 50 µg/kg sodium-metamizole (Algopyrin 1 g/2 ml ampule) was administered for analgesia just after the operation and on the 1st postoperative day. Via puncturing the cephalic vein, blood samples were collected before the operation, on the 1st, 3rd, 5th, 7th and on the 14th postoperative days using Vacutainer® system.

Laboratory tests

For testing hematological parameters we used a Sysmex F-800 microcell counter (TOA Medical Electronics Co. Ltd.,
Toth C et al.

Toth C et al. 3

7.48 284.9

th 1st 6.9 14

10.82 6

7th 229.5

14th Base

Histological investigation

On the 14th postoperative day under general anesthesia
the grafts with intact vessel parts over the anastomoses and
the contralateral, intact femoral arteries were excised. The specimens
were fixed in 10% formalin before the regular dehydration and
embedding protocol, and microtomed into 5 µm sections. Standard
hematoxylin-eosin (H&E) staining, as well as immunohistochemistry
for CD31 was carried out on the specimens.

Statistical analysis

Data are presented as means ± standard deviation (S.D.).
Although the case number was low, for inter-group comparison
student t-test or Mann-Whitney RS test were used, and one-way
ANOVA tests (Dunn’s or Bonferroni method) were carried out for
intra-group comparisons, depending on the data distribution, with
a level of significance of p<0.05.

Results

General postoperative observations

All experimental animals survived the operations and
there was no death during the 2-week postoperative follow-up
period. No surgical complication -neither early, nor late- was
detected. The motion of the animals were normal during the 2-week
follow-up period, there was no sign for hind limb circulatory
problem. The skin temperature values of the non-operated and
operated legs were identical (Figure 1).

Blood coagulation time parameters, such as prothrombin
time (PT [s]), activated partial thromboplastin time (APTT [s]), as
well as fibrinogen concentration (Fbg [g/dl]) were determined by a
Sysmex CA-500 automated coagulometer (TOA Medical Electronics
Co. Ltd., Japan). In this study red blood cell count (RBC [x10⁶/µl]), white
cell count (WBC [x10³/µl]), monocyte-granulocyte ratio
and platelet count (Plt [x10³/µl]) were analyzed (anticoagulant: 1.5 mg/ml K₂-EDTA).

Red blood cell aggregation has been tested by
two methods: the light-transmittance based Myrenne MA-1
erythrocyte aggregometer (Myrenne GmbH, Germany) and the
laser diffraction based LoRRca ektacytometer (Mechatronics BV,
The Netherlands) (anticoagulant: 1.5 mg/ml K₂-EDTA).

Table 1 shows the blood cell count parameters. The red
blood cell count slightly decreased over the 2-week follow-up
period in the Control group (versus base values: p=0.002 on the
1st, p=0.018 on the 7th and p=0.003 on the 14th postoperative day).
The Grafted group showed the same tendency (versus base values:
p=0.021 on the 3rd, p=0.033 on the 5th, p<0.001 on the 7th, and
p=0.038 on the 14th day), and expressed moderately lower values
compared to the Control group (p=0.046 on the 3rd, and p=0.049 on
the 7th day). By the 7th day a definitive decrease in the red blood cell
count was observed, being significant compared to the base values.

Hematological parameters

FIGURE 1 – Relative values of skin temperature: right side (non-operated limb) values to left side (operated limb) values measured at the end of the operation (End-op.) and during the postoperative follow-up period. Means ± S.D.

![Figure 1](image-url)

![Table 1](table-url)
White blood cell count (total leukocyte count) increased by the 1st postoperative day (p<0.001 in both groups), in a larger magnitude in the Grafted group (p=0.002 vs. Control). The cell count normalized in the Control group, but in the grafted it remained elevated until the end of the first postoperative week (compared to base: p=0.019 on the 3rd day, p=0.005 on the 5th day and p=0.016 on the 7th day.) The monocyte-granulocyte ratio remained between 60-70%, except for the 5th and 7th day, when the values were 81.73 ± 3.78 % and 74.3 ± 3.98 %, respectively.

Platelet count of the Grafted group continuously increased over the experimental period. The rise was significant from the 3rd postoperative day compared to the base values (5th day: p=0.015; 7th day: p=0.001; 14th day: p=0.001) and versus the Control group, too (3rd day: p=0.03; 5th day: p=0.046; 14th day: p=0.003).

Blood coagulation parameters

Changes of selected blood coagulation parameters are shown in Table 2. Prothrombin time did not show important changes, however, activated partial thromboplastin time rose twice in the Grafted group: on the 3rd day (p=0.048 vs. base) and on the 7th day (p=0.012 vs. base). Fibrinogen concentration rose by the 1st day (p=0.012) and gradually decreased by the end of the follow-up period. Although it remained in physiological manner, there were significant differences (on the 1st day: p<0.001 vs. base and vs. Control; on the 3rd day: p=0.023 vs. base and p=0.002 vs. Control; on the 5th day: p=0.043 vs. base and p=0.002 vs. Control).

Changes in erythrocyte aggregation

Table 3 presents the parameters tested by the LoRRca device. The aggregation index (AI [arbitrary unit]) represent the magnitude of aggregation over the tested 120-second period, the amplitude shows the heights of the syllectogram curve compared to the initial values (Amp [au], while t1/2 [s] shows the time point when the aggregation process reaches the half of the total aggregation index values. AI values where moderately higher in the Grafted group on the 1st, 3rd and 5th postoperative day, together with increased Amp values (at the 7th day it was significant: p=0.008 vs. Control), while the t1/2 values alluded to a faster aggregation.

TABLE 2 – Changes of prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen concentration (Fbg) in the Control and Grafted groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>Base</th>
<th>1st</th>
<th>3rd</th>
<th>5th</th>
<th>7th</th>
<th>14th</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT [s]</td>
<td>Control</td>
<td>8.96 ± 0.15</td>
<td>8.3 ± 0.7</td>
<td>8.2 ± 0.88</td>
<td>7.37 ± 0.38</td>
<td>8.56 ± 1.49</td>
<td>7.33 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>Grafted</td>
<td>8.0 ± 1.18</td>
<td>7.37 ± 0.93</td>
<td>7.74 ± 1.17</td>
<td>7.04 ± 0.73</td>
<td>7.81 ± 1.23</td>
<td>7.55 ± 0.47</td>
</tr>
<tr>
<td>APTT [s]</td>
<td>Control</td>
<td>10.51 ± 7.67</td>
<td>15.68 ± 12.38</td>
<td>13.18 ± 9.75</td>
<td>9.77 ± 5.92</td>
<td>16.08 ± 9.61</td>
<td>17.11 ± 4.51</td>
</tr>
<tr>
<td></td>
<td>Grafted</td>
<td>9.18 ± 6.93</td>
<td>16.24 ± 9.82</td>
<td>22.12 ± 6.44</td>
<td>22.12 ± 3.52</td>
<td>25.15 ± 10.89</td>
<td>11.43 ± 5.1</td>
</tr>
<tr>
<td>Fbg [g/dl]</td>
<td>Control</td>
<td>1.86 ± 0.08</td>
<td>2.18 ± 0.15</td>
<td>2.2 ± 0.85</td>
<td>1.97 ± 0.21</td>
<td>2.07 ± 0.25</td>
<td>2.07 ± 0.28</td>
</tr>
<tr>
<td></td>
<td>Grafted</td>
<td>2.1 ± 0.44</td>
<td>3.3 ± 0.37</td>
<td>2.87 ± 0.24</td>
<td>2.58 ± 0.32</td>
<td>2.47 ± 0.24</td>
<td>2.03 ± 0.21</td>
</tr>
</tbody>
</table>

Means ± S.D., * p<0.05 vs. base; # p<0.05 vs. Control

TABLE 3 – Changes of red blood cell aggregation parameters aggregation index (AI), amplitude (Amp) and aggregation half-time (t1/2) tested by the LoRRca in blood samples of Control and Grafted groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>Base</th>
<th>1st</th>
<th>3rd</th>
<th>5th</th>
<th>7th</th>
<th>14th</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI [au]</td>
<td>Control</td>
<td>51.35 ± 2.45</td>
<td>48.81 ± 9.68</td>
<td>50.11 ± 4.02</td>
<td>45.2 ± 11.34</td>
<td>49.49 ± 3.27</td>
<td>50.61 ± 5.49</td>
</tr>
<tr>
<td></td>
<td>Grafted</td>
<td>46.27 ± 12.09</td>
<td>55.13 ± 57.63</td>
<td>52.21 ± 4.04</td>
<td>49.51 ± 8.12</td>
<td>48.38 ± 5.64</td>
<td></td>
</tr>
<tr>
<td>Amp [au]</td>
<td>Control</td>
<td>23.82 ± 2.62</td>
<td>20.13 ± 5.08</td>
<td>24.75 ± 2.61</td>
<td>23.71 ± 4.05</td>
<td>23.94 ± 1.57</td>
<td>23.28 ± 2.99</td>
</tr>
<tr>
<td></td>
<td>Grafted</td>
<td>28.71 ± 2.09</td>
<td>24.8 ± 5.17</td>
<td>29.65 ± 2.34</td>
<td>27.88 ± 2.07</td>
<td>30.42 ± 3.16</td>
<td>25.08 ± 5.01</td>
</tr>
<tr>
<td>t1/2 [s]</td>
<td>Control</td>
<td>3.8 ± 0.4</td>
<td>4.46 ± 2.07</td>
<td>4.0 ± 0.71</td>
<td>3.92 ± 0.64</td>
<td>4.07 ± 0.64</td>
<td>3.97 ± 0.91</td>
</tr>
<tr>
<td></td>
<td>Grafted</td>
<td>4.11 ± 2.13</td>
<td>3.55 ± 2.05</td>
<td>2.92 ± 0.63</td>
<td>3.67 ± 0.62</td>
<td>4.26 ± 1.38</td>
<td>4.35 ± 1.03</td>
</tr>
</tbody>
</table>

Means ± S.D., # p<0.05 vs. Control

Erythrocyte aggregation index M 5 s and M 10 s values (tested with Myrenne aggregometer) represent the magnitude of the aggregation at the 5th and 10th second of the process measured at stasis. In the Grafted group these values showed significant increase during the 1st postoperative week, peaking on the 1st and 3rd postoperative days (Figure 2).
The M 5 s values (at 5th second of the aggregation process) increased on the 1st (p=0.011 vs. base, p=0.03 vs. Control), 3rd (p<0.001 vs. base and vs. Control) 5th (p=0.021 vs. base) and 7th day (p<0.001 vs. base and vs. Control). The values of M 10 s (at 10th second of the aggregation process) resulted in larger values and more prominent differences between the experimental groups (on the 1st day: p=0.029 vs. base; on the 3rd day: p<0.001 vs. base and vs. Control; on the 5th day: p=0.006 vs. base and p<0.001 vs., Control; and on the 7th day: p=0.006 vs. base).

Histological investigations

On the 14th day during the biopsy taking, the diameter of the control-side femoral artery was 3.56 ± 0.13 mm, the graft’s one was 3.62 ± 0.17, while the artery segment just above the graft was 3.5 ± 0.41 mm, but below, it was 2.75 ± 0.28 mm in diameter (p<0.001 vs. graft, p=0.024 vs. above graft and p=0.016 vs. control-side artery).

Histologically we found matured thrombus at the anastomoses narrowing the lumen. Imbedded capillary network lined with endothelium was observed in the fibrin web and connective tissue filled with various sized and shaped red blood cells. It seemed to be fixed to the inner side of the arterial intimal layer. At site of the proximal anastomoses the grafts were observed in the scared thickening of the adventitia. The fixture of thrombus inside the grafts was not obvious, here we could see “free” inner layer. Freshly formed thrombotic layers were seen towards the distal segment. At the site of the distal anastomoses we observed scar tissue with foreign body giant cells and mixed inflammatory cells around the surgical suture material in the adventitia, which was present as continuity along a short section of the graft (Figure 3).

![FIGURE 3](representative-histological-photograph-of-the-grafted-vessel-section,showing-matured-thrombus-at-the-anastomoses-narrowing-the-lumen%28H&E-staining,original-magnification-x500%29)

The widening of the internal elastic lamina was observed, but the endothelium lining was not always present. The observed thrombi seem to be the continuity of this widening. In the reticulate wall of the thrombi red blood cells and inflammatory cells were apparent. The endothelialization did not occur during the 2-week period, which was confirmed by the CD31 immunohistochemical examination. However, pseudointima formations made up from thrombotic elements are visible in certain segments. The arterial sections from the control side show regular, intact histological structure.

Discussion

Small-caliber vascular conduits are still an important tool in the surgical management of peripheral vascular diseases. However, the problem of early failure is a serious clinical problem8-11. Since not only the problem of small-caliber vascular conduits must be considered, but the question of biomechanical tissue remodeling is also a key factor with all the shear stress-,
Early postoperative changes in hematological, erythrocyte aggregation and blood coagulation parameters after unilateral implantation of polytetrafluoroethylene vascular graft in the femoral artery of beagle dogs

st 26th 22nd 18-25th 24.30,31

quickly and the 2-peak elongation of coagulation time associated with alterations with hemorheological parameters, week 1st reperfusion on hematological and blood coagulation parameters, we also saw the critical importance of 1 st reperfusion on hematological and blood coagulation parameters, the restitution of vascular wall was completed by the end of the first postoperative month. Hess et al. 26 demonstrated that approximately six months is needed for a 5-cm polyurethane prosthesis for complete endothelialisation. It has also been shown that in a 6-9-cm PTFE graft only in about 60% endothelialisation occurs by the 12 th postoperative month 27.

Clowes et al. 27 in their baboon experiment used 4-mm PTFE grafts with 6-8 cm in length implanted into the common iliac artery. They found that by the end of the 1st postoperative week the luminal surface of the graft was covered by thrombus and some patches of endothelial cells. During the 2nd week the thrombus was replaced and by the 4th-12th week the grafts luminal surface was covered with cells resembling endothelium 27.

Hess et al. 28 used endothelial-cell-seeded or non-seeded 3 mm wide, 5 cm long PTFE grafts in beagles, implanted into the femoral artery. The graft size and location were very similar to our experiment. Without anti-platelet therapy (acetylsalicylic acid or dipyridamole) in the 1 st postoperative week 7 of 8 seeded prostheses were patent, while only 1 of 8 non-seeded one was patent.

In this model we focused on the changes over the first two postoperative weeks providing a relatively frequent investigation protocol during the 1st postoperative week. We found that the majority of the blood coagulation and red blood cell aggregation changes happened during the 1st week. Previously we studied the effect of hind limb ischemia-reperfusion on hematological and blood coagulation parameters, and we also saw the critical importance of 1 st postoperative week 29. Inflammatory processes, acute phase reactions can be associated with alterations with hemorheological parameters, too 30,31. We saw that fibrinogen concentration closed very quickly and the 2-peak elongation of coagulation time parameters with a continuously increasing platelet count might suggest that a thrombotic event could happen in the period of 3rd - 7th postoperative day.

Failure of the graft can be due to complex reasons that include the hemodynamic effect of the small-caliber tube, the surface properties, activation of hemostatic cascades and mechanical damage of blood cells, among others 9-14. Along with the injury of the intima, the inflammatory events induced by the sutures of the anastomoses may contribute to the development of thrombus. Here it may come into play that the vessels incidentally bend and refract above the graft after surgery while positioning the lower limb back into natural position and during the normal everyday movement of the animal. There were no sign of circulatory problems on the operated side, no change in the movement and behavior of the animal, and the skin temperatures were normal; it showed virtually similar values with the contralateral non-operated side. The anastomoses originated from the gluteal region might compensate the circulation of the limb.

Besides the general hematological and blood coagulation time parameters’ changes, we observed an early increase in erythrocyte aggregation values, too. Red blood cell aggregation is determined by cellular (cell morphology, deformability, membrane mechanical properties, composition of the surface glycocalyx) and plasmatic factors (e.g. fibrinogen concentration 30,32,33).

Free radicals deliberating during ischemia-reperfusion and inflammatory processes, mechanical cell damage, changes in red blood cell deformability, alteration in fibrinogen concentration, as well as micro-environmental conditions (pH, osmorality), all may result in altered red blood cell aggregation 30,31. Furthermore, the mechanical properties of the cell membrane also play an important role. In a separate paper we have analyzed the mechanical stability of the red blood cells using various stress conditions in a complex evaluation process 34. An increase in erythrocyte aggregation may have local and even remote effect, too, since this parameter plays an important role in the rheology of the microcirculation. Increased red blood cell aggregation may cause numerous in vivo effects resulting in increased flow resistance, so contributing to disturbances of the tissue perfusion and modifying local hemodynamic profile 35.

Conclusions

The PTFE graft implantation for the replacement of the resected femoral arterial segment caused changes in the coagulation parameters and hemorheological properties, which lowered then equaled to the Control group by the end of the 2-week follow-up.
period. Better clarifying the factors leading to early thrombosis of the small-caliber grafts is a very important issue. Further studies are needed for revealing the optimal conditions on geometry, length, position, hemodynamic and hemorheological factors, moving relations or even impregnated grafts that my decrease the chance for thrombus formation.

References

Acknowledgements

To the technical staff of the Department of Operative Techniques and Surgical Research, and to Eszter Gergely.

Correspondence:
Norbert Nemeth M.D., Ph.D.
Department of Operative Techniques and Surgical Research
Institute of Surgery, Faculty of Medicine
University of Debrecen
H-4032 Debrecen, Nagyerdei krt. 98., P.O.Box: 21., Hungary
Phone/Fax: +36-52-416-915
nemeth@med.unideb.hu

Received: Dec 16, 2013
Review: Feb 19, 2014
Accepted: March 18, 2014
Conflict of interest: none
Financial source: DEOEC Bridging Fund 2012 and Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences

1Research performed at Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Hungary.