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Nomenclature 
COF 
CP-Ti 

Friction Coefficient 
Commercial Pure  Titanium 

Ecorr Corrosion potential 
EDS Energy Dispersive Spectrometry 

EELS EDX spectrometer and a loss of energy 
spectrometer  

FFT Fast Fourier Transform 
FIB Focus Ion beam 
Gr Graphite 
HP Hot Pressing 
Icorr Corrosion current density 
ICP-OES Inductively Coupled Plasma - Optical Emission Spectrometry 
OCP Open Circuit Potential  
PDP Potentiodynamic polarisation 
PSD Particle Sizes and Distribution 
RIR Reference Intensity Ratio 
SEM Scanning Electron Microscope 
SPS Spark Plasma Sintering 
TEM Transmission Electron Microscope 
TMCs Titanium Matrix Composites  
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Titanium and its alloys are well-known throughout engineering applications for their 

combined desirable properties of high specific strength to weight ratio, low density, 

biocompatibility and relatively good corrosion resistance (Welsch et al., 1993). The 

production of bulk titanium involves expensive complex Kroll’s processes such as refining, 

distillation and dissolution (Lütjering et al., 2007a). These processes are performed using 

specific devices in a vacuum environment to avoid contamination by gaseous phases, 

especially oxidation because of titanium high affinity to oxygen (Lütjering et al., 2007a; Shon 

et al., 2014a) .  In addition, the high energy consumption, the initial high cost of titanium 

tetrachloride and that of reducing agents (pure magnesium and sodium) contribute titanium 

high cost and thus its limitation of use in other applications such as automobile (Shon et al., 

2014a; Welsch et al., 1993). The latter product is in form of rolled plates which are further 

processed. Due to the high cost of production, these classes of materials are extensively used 

in high added value industries such as the aerospace, biomedical  and marine applications 

(Zadra et al., 2008).  

 

In comparison to other commonly used engineering materials high purity titanium has a 

melting point of 1668°C, higher than the one of  Fe (1538°C), Al (660°C) and Ni (1455°C) as 

illustrated in Table 1 (Lütjering et al., 2007a).  The much higher melting temperature of 

titanium (1670°C) as compared to aluminum (660°C), the main competitor in light weight 

structural applications, give titanium a definite advantage for application temperatures above 

150°C (Lütjering et al., 2007a). Pure titanium has tensile strength of 240MPa, toughness in 

the range 99-140MPa-m1/2, Vickers hardness of 60HV,  modulus of elasticity of 120GPa and 

high friction coefficient (0.68 - 0.8) (Donachie, 2000). As a result of their light-weight 

coupled with moderately high strength and outstanding corrosion resistance properties, these 

have made titanium and its alloys candidate material for other engineering applications such 

as automotive, offshore, aeronautics and energy industries (Cheng et al., 2012).  However, 

conventional Ti and its alloys exhibit inferior wear resistance and suffer considerable loss in 

mechanical strength  (Balaji et al., 2015).  These limitations prevent titanium in many 

engineering applications were both corrosion and wear may be encountered (Toptan et al., 

2016). 
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Table 1. Material characteristics of titanium compared to other structural metallic materials 
based on Fe, Ni, and Al(Lütjering et al., 2007a) 
 Ti Fe Ni Al 

Melting temperature (°C) 1670 1538 1455 660 
Allotropic transformation (°C) 882 

β → α 
912 
γ →α 

- - 

Crystal structure BCC→HCP FCC→BCC FCC FCC 
Room temperature E(GPa) 115 215 200 72 
Yield stress level (MPa) 1000 1000 1000 500 
Density (g/cm3) 4.5 7.9 8.9 2.7 
Comparative corrosion 
resistance 

Very high Low Medium High 

Comparative reactivity with O2 Very high Low Low High 
Comparative price of metal Very high Low High Medium 
 

 

Incorporation of hard ceramic particles or fibers reinforcements into titanium based matrix 

can significantly improve its wear resistance by direct strengthening effect taking place due to 

the ability of the reinforcing phases to carry the load (Blau et al., 2007; Prakash et al., 2016). 

Also by  indirect strengthening, taking place by alterations on the metallic matrix structure, 

such as induced dislocations, Orowan strengthening, or grain size refinement and 

modification of the matrix microstructure as a consequence of the addition of the reinforcing 

phase (Chawla et al., 2006). The demand for the use of titanium matrix composites (TMCs) is 

attributed to the availability of the ever-evolving sources of relatively inexpensive 

reinforcements and the frequent development of the processing routes which results in 

reproducible microstructures and properties (Ajayan et al., 2006).  Powder metallurgy 

techniques have been found as one of energy efficient ways for production of TMCs or other 

materials.  Several techniques exist to densify but the use of innovative Spark Plasma 

Sintering (SPS) method has been the most favourable. The SPS process combine the effect of 

uniaxial pressure and Joule effect produced from pulsed electric current passing through 

sintering tool and a conductive powder. Thus, faster heating rates can be achieved and 

powders can be rapidly densified within short period of time as reported in literature (Abedi et 

al., 2016; Kus et al., 2016; Locci et al., 2006; Munir et al., 2006; Orru et al., 2009; Zadra et 

al., 2013) 

 

TMCs are traditionally fabricated by ex-situ methods, whereby pure TiB2 and TiC particulates 

are separately prepared and later added to Ti matrix for production of Ti-TiB2/TiB and Ti-TiC 

composites respectively (Ajayan et al., 2006). With this method, undesirable second phases 
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may be formed in the matrix-reinforcement interphase and resulting in poor interfacial 

bonding (Ajayan et al., 2006).  The second phases may act as stress concentrators leading to 

deterioration of mechanical properties.   Moreover, synthesis of TMCs using pure TiB2 and 

TiC which have high melting points of 2970°C and 3054°C respectively, make the sintering 

difficult due to their low self-diffusion coefficients (Wang et al., 2012). However, 

densification of 99% was achieved when the composition ratio was 85%TiB2: 15%TiC, 

processed by high pressure (3GPa) sintering  techniques at higher temperatures (2250-

2500°C)  (Vallauri et al., 2008). 

 

Alternatively TMCs have been commonly fabricated by in-situ methods, most favourably 

using SPS technique. This method involves simultaneous synthesis and densification in one 

step at relatively low temperatures (Dudina et al., 2013). The reinforcing phases synthesized 

in-situ by exothermic reactions between titanium and a constituent element (B4C) often result 

in clean interface and strong interfacial bonding (Ajayan et al., 2006; Campbell, 2010). 

Synthesis of TiC, TiB2 and TiB can be achieved when a complete chemical reaction is 

reached.  

 

Although in-situ  method tends to be favourable in terms of reduced fabrication cost, energy 

consumption and cheap B4C powders, there are challenges encountered during fabrication 

process. These include the ability to control the size of the reinforcement phase because the 

reaction kinetics of the reactants is not the same throughout. Hence, great care must be taken 

on the selection of the reactant’s particles size (considering the high cost), mixing conditions 

and sintering parameters. Such that, when reactants with micron size particles are used in 

SPS, prolonged sintering time and very high temperatures (1100 to 1400°C) are required to 

reduce the amount of unreacted particles, in contrast to sub-micron size particles (<1100°C). 

TMCs fabricated from micro-sized reinforcing phases were reported to be characterized by 

incomplete reaction consisting of B4C, TiB2, TiB, TiB clusters and porosity found around B4C 

agglomerates (Ni et al., 2006; Toptan et al., 2016). These microstructural characteristics may 

have adverse effect on the composites properties.  Porosity may act as stress concentrator, 

high corrosion rates may results from porosity, unreacted B4C may de-attach from matrix 

during rubbing and act as third-body abrasive accelerating wear rates (Toptan et al., 2016). 

 

In contrast to sub-micron sized reactants, the increased of their surface area, compare to the 

micron ones, leads to increased reactions kinetics which requires less periods during sintering 
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and complete reaction may be achieved. In this regard, when proper fabrication variables are 

chosen, the resultant composites have good microstructural characteristics such as clean 

interface between the matrix and reinforcing phase, the intermediate phases are eliminated 

and also good dispersion of reinforcing phase is achieved. 

 

Nevertheless, the synergy effect of TiC, TiB2 and TiB on tensile strength, elongation and 

hardness from in-situ synthesized TMCs has been widely explored (Geng et al., 2008; Li et 

al., 2016; Rahoma et al., 2015). The literature based on corrosion and especially 

tribocorrosion behaviour is however lacking. Owing to the emerging technological 

applications of TMCs in harsh environments, such as automotive, marine, chemical and 

petrochemical industries (Mathew et al., 2009) where corrosion and tribocorrosion are 

encountered, it is important to contribute knowledge on the corrosion and tribocorrosion 

performance of TMCs based on TiC, TiB2 and TiB to this research field. 

 

This work is focused on the elaboration of titanium based composites reinforced with TiC, 

TiB2 and TiB phases by reactive spark plasma sintering. Our work will be focused on the 

optimisation of the densification parameters, on the understanding of the reaction kinetics, 

microstructure evolution, mechanical and tribocorrosion behaviour. 

Thus the objectives are multiple: 

• To simultaneously  synthesize and consolidate TMCs with homogenously distributed 

TiB and TiC phases in the titanium matrix 

• Study a detailed analysis of the in-situ reaction mechanisms and kinetics 

• To improve the  tribocorrosion properties of Ti by TiB and TiC. 

 

The thesis is organised as follows: 

In the first chapter, literature based on sintering of titanium and its composites, obtained 

microstructures and properties is reviewed. The second chapter contain materials of study, 

characterisations, sintering by SPS and tribocorrosion experiments.  The third chapter 

present the results obtained for SPS of pure titanium, the effect of sintering parameters and 

interstitial element are thoroughly discussed. The fourth chapter present the results and 

discussion for densification of titanium matrix composites and reaction kinetics involved 

using reactants with varying particles sizes. The fifth chapter present the results and 
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discussion obtained for corrosion and tribocorrosion experiments of titanium matrix 

composites. 
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1.0 Pure titanium  

1.1. Crystal structure  
The crystal structure of pure titanium from room and temperatures up to 882°C has a 

hexagonal closed packed (HCP) crystal structure also known as alpha (α) phase. Above 

882°C, which defines the transus temperature (Tβ), it transforms to a body centred cubic 

(BCC) crystal structure, the beta (β) phase. The atomic unit cell for the α-Ti and β-Ti with 

their closely packed crystal planes are shown in the Figure 1.1 (Leyens et al., 2003). The 

parameters of α-Ti  and β-Ti phases are listed in Table 2. As shown in Table 2 α-Ti and β-Ti 

have densities of 4.51g/cm3 at 20°C and 4.35g/cm3 at 885oC with atomic packing factors of 

78% and 68% respectively (Callister et al., 2007; Welsch et al., 1993).  As a result, during 

polymorphic transformation occurring at the transus temperature there is a slight volume 

expansion of 3.7% during heating and slight contraction of -3.34% during cooling (Qian et 

al., 2015). 

 

Table 2. Structure characteristics of pure Titanium (Leyens et al., 2003; Welsch et al., 1993).  

Phase Space 
group 

Crystal 
structure 

Atomic 
packing 
factor 

Lattice 
parameters 

Lattice 
angles 

Density 

α-Ti P63/mmc HCP 78% a = b = 0.295nm 
 

c = 0.468nm 
 

c/a=1.58 

α = β = 90° 
 

γ = 120° 

4.51 
g/cm3@ 

20°C 

       
β-Ti lm-3m BCC 68% a = b = c = 0.332 α = β = γ = 

90° 
4.35 

g/cm3 @ 
885°C 
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Figure 1.1. Crystallographic structures of titanium a) HCP (α-Ti)  and  

b) BCC (β-Ti) (Leyens et al., 2003) 
 

1.1.1 Alloying elements for commercial pure titanium  
In the HCP and BCC crystal structures of titanium, the alloying interstitial elements occupy 

tetrahedral and octahedral interstitial sites as shown in Figure 1.2 (Fukai, 2006). HCP crystal 

structure has 4 tetrahedral and 2 octahedral interstitial sites , while BCC crystal structure has 

12 tetrahedral and 6 octahedral interstitial sties (Vasanthakumar et al., 2018). The radius of 

the tetrahedral and octahedral site for the HCP crystal structure are  0.33Å and 0.61Å 

respectively, and for the BCC is 0.44Å for the tetrahedral site (Cordero et al., 2008). 

Interstitial elements H, O, N and C  in increasing order having atomic radii of 0.31, 0.66, 0.71 

and  0.76Å occupy tetrahedral and octahedral interstitial sites respectively, while  Fe atom 

with a larger atomic radius of 1.32Å atom may substitute titanium atoms (radius= 1.6Å) from 

the unit cell (Conrad, 1981; Cordero et al., 2008). Among the alloying elements C, O, N and 

Fe are the α-Ti phase stabilisers and H is the β-Ti phase stabilizer. Oxygen has the highest 

solid solubility of 30at.% in α-Ti  followed by 19at.% of nitrogen, 2at.% of carbon and 8at% 

hydrogen (Conrad, 1981)  according to the binary phase diagrams in Figures (1.3, 1.4, 1.5 & 

1.6). 

 

a
. 

b
. 

https://www.google.fr/search?dcr=0&q=%C3%A5ngstr%C3%B6m+1+%C3%A5+en&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDQ2zinSEi4uttIvT01KS0wuKbYyjE-MT80DAPGVuPMiAAAA&sa=X&ved=0ahUKEwiouaDIoLfYAhUFcRQKHa3XA9oQ6BMIlgEoADAO
https://www.google.fr/search?dcr=0&q=%C3%A5ngstr%C3%B6m+1+%C3%A5+en&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDQ2zinSEi4uttIvT01KS0wuKbYyjE-MT80DAPGVuPMiAAAA&sa=X&ved=0ahUKEwiouaDIoLfYAhUFcRQKHa3XA9oQ6BMIlgEoADAO
https://www.google.fr/search?dcr=0&q=%C3%A5ngstr%C3%B6m+1+%C3%A5+en&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDQ2zinSEi4uttIvT01KS0wuKbYyjE-MT80DAPGVuPMiAAAA&sa=X&ved=0ahUKEwiouaDIoLfYAhUFcRQKHa3XA9oQ6BMIlgEoADAO
https://www.google.fr/search?dcr=0&q=%C3%A5ngstr%C3%B6m+1+%C3%A5+en&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDQ2zinSEi4uttIvT01KS0wuKbYyjE-MT80DAPGVuPMiAAAA&sa=X&ved=0ahUKEwiouaDIoLfYAhUFcRQKHa3XA9oQ6BMIlgEoADAO
https://www.google.fr/search?dcr=0&q=%C3%A5ngstr%C3%B6m+1+%C3%A5+en&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDQ2zinSEi4uttIvT01KS0wuKbYyjE-MT80DAPGVuPMiAAAA&sa=X&ved=0ahUKEwiouaDIoLfYAhUFcRQKHa3XA9oQ6BMIlgEoADAO
https://www.google.fr/search?dcr=0&q=%C3%A5ngstr%C3%B6m+1+%C3%A5+en&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDQ2zinSEi4uttIvT01KS0wuKbYyjE-MT80DAPGVuPMiAAAA&sa=X&ved=0ahUKEwiouaDIoLfYAhUFcRQKHa3XA9oQ6BMIlgEoADAO
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Figure 1.1. Tetrahedral and octahedral interstitial sites in HCP and BCC crystal structures. 

Adapted from (Fukai, 2006) 
 

1.1.1.1 Oxygen 
Titanium has a strong chemical affinity for oxygen and often forms an oxide layer on the 

surface of titanium and enhances corrosion resistance. This oxide layer forms at room 

temperature and thickness rapidly at elevated temperatures when heated in air. At 

temperatures exceeding 500°C the oxidation resistance of titanium decreases rapidly and the 

metal becomes highly susceptible to embrittlement by oxygen. In order to minimise oxygen 

contamination in titanium and its alloys the production has to be performed in a controlled 

atmosphere such as vacuum or inert gas atmosphere (Donachie, 2000). 

 

Oxygen is an α-Ti stabilizer because of its high maximum solubility of 30at.%  at temperature 

above 600°C (Kwasniak et al., 2014) and it increases the α to β allotropic transformation 

temperature as shown in Figure 1.3 (Welsch et al., 1993). It is important to consider oxygen 

content when analysing mechanical properties of α-Ti. Oxygen diffusion in α-Ti modifies 

lattice parameters and this has an effect on the mechanical properties. Baillieux et al. (2015) 

studied the effect of oxygen diffusion on the crystallographic evolution of α-Ti using 

Ti C, H, O and N   

Tetrahedral sites: 

α-Ti (HCP) β-Ti (BCC) 

4 12 

Octahedral sites:  2 6 

β-Ti (BCC) α-Ti (HCP) 
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synchrotron X-ray diffraction at elevated temperature and varied dwell time. They analysed 

the lattice parameters on the cross section area from the oxide layer to the center of a sample 

They observed that the lattice parameters c and a , the ratio c/a and the hardness gradually 

increase as the distance from the oxide metal interface decreases for samples heat-treated in 

air. Moreover due to change in the lattice parameters there is also a slight unit cell volume 

expansion of about 0.00013nm3 (Wasz et al., 1996).  

 

Figure 1.3. Ti-O binary diagram (Welsch et al., 1993) 
 

1.1.1.2 Nitrogen 
Similar effects have been obtained for α-Ti phase stabilisers nitrogen (Figure 1.4) (Galvanetto 

et al., 2001; Vasanthakumar et al., 2018). Interstitial nitrogen reacts much slower with 

titanium than oxygen but forms a very hard TiN or Ti2N phases with good tribological 

properties. Thus, titanium nitriding is normally done to improve the surface properties of 

titanium for good surface hardness and tribology properties. But excessive nitrogen diffusion 

in titanium may cause embrittlement (Zhecheva et al., 2005). Galvanetto et al. (2001) 

investigated the formation of nitride phases obtained by reactive plasma spraying of α-Ti 

powder in a nitrogen-containing plasma gas on 304L steel. The phases formed after coating 

consisted of α-Ti, TiN and Ti2N layers and the lattice parameters calculated were compared 

with the JCPDS standards and from literature. The calculated lattice parameters a and c with 

reference to the α-Ti feedstock powders increased. For sample 1  which was  sprayed with 

Ar/N2 gas ratio of 3, at a distance of 100m the α-Ti phase lattice parameters were a = 

0.2958nm and c = 0.4720nm, TiN phase a =  0.4225nm and Ti2N phase a = 0.4952nm and c = 
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0.3032nm. In comparison with JCPDS α-Ti phase a = 0.2950nm  and c = 0.4686nm, TiN 

phase a = 0.4241nm and Ti2N phase a = 0.4945nm and c = 0.3034nm. 

 

Figure 1.4. Ti-N binary phase diagram (Wriedt et al., 1987) 
 

1.1.1.3 Carbon 
Carbon impurity in commercial pure titanium are kept at low levels of  0.08wt% as shown in 

Figure 1.5 (Baker, 1992), to avoid formation of hard TiC phases. In comparison to oxygen 

and nitrogen, the solid solubility of carbon with a much larger atomic radius, is very low in 

both α-Ti and β-Ti. The solubility of carbon content in titanium can be less than 100ppm and 

still carbides can precipitates at grain boundaries during fabrication process such as casting 

and heat treatment and can lead to brittleness (Qian et al., 2015; Solonina et al., 1974; Welsch 

et al., 1993). Vasanthakumar et al. (2018) studied the effect of C/Ti ratio on the lattice 

parameter, hardness and elastic modulus of TiCx prepared by reactive spark plasma sintering. 

The XRD patterns analysis of sintered TiCx compacts showed formation of a single TiC 

phase  with increase of lattice parameters with increasing carbon content. Moreover, the 

calculated lattice parameter values in the study were  in good agreement with the data found 

in literature (Frage et al., 2002; Holt et al., 1986; Yang et al., 2013; Zarrinfar et al., 2002). 
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Figure 1.5. Ti-C binary phase diagram 
 

1.1.1.4 Hydrogen 
Hydrogen is well-known to cause hydrogen embrittlement in titanium and its alloys, hence its 

maximum content in kept at about 125-150ppm (Lütjering et al., 2007a). So hydrogen 

contamination in α-Ti is undesirable when the concentration is above  200ppm, it has  very 

high diffusion rates in β-Ti as well as in the α-Ti (Liang et al., 2010). Hydrogen has an atomic 

radius of 0.53Å and occupies tetrahedral interstitial sites in the titanium crystal structures.  

The maximum solubility of hydrogen in α-Ti is about 7at.% at 300°C and it decreases rapidly 

with decreasing temperature. In the β-Ti the solid solubility of hydrogen is 50at.% at 

temperatures above 600°C without formation of hydrides. This is attributed by the open BCC 

crystal structure of β-Ti which consists of 12 tetrahedral and 6 octahedral interstitial sites, 

comparing with HCP crystal structure of α-Ti with only 4 tetrahedral and 2 octahedral 

interstitial sites (Tal-Gutelmacher et al., 2005). Hence hydrogen is known to stabilize the β-Ti 

phase by lowering the α to β-phase transus temperature as shown in Figure 1.6. 

 

Mechanical properties degradation in α-Ti and α + β-Ti alloys can still occur even when the H 

content is at safe levels (30 to 40ppm) below 125ppm (Wasz et al., 1996; Welsch et al., 

1993), except annealed β-Ti alloys which are less sensitive to hydrogen embrittlement. β-Ti 

alloys have high tolerance to hydrogen mainly because the solid solubility of hydrogen is 

much higher the BCC crystal structure than the HCP (Lütjering et al., 2007a).  When 

hydrogen diffuses in α-Ti, it reacts with titanium to form a brittle hydride phase which has 
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different elastic properties compare to the α-Ti lattice (Wasz et al., 1996). This hydride phase 

degrades mechanical properties of α-Ti by embrittlement and causes early fracture failure. 

Thus titanium often fails in hydrogen manifested aqueous or humid gaseous environments, 

especially under high static loads or fatigue loading (Lütjering et al., 2007a).  

 

 

Figure 1.6. Ti-H phase diagram (Baker, 1992) 
 

1.1.2  Microstructure of pure titanium 
The microstructure of any material depends on its composition, processing steps, heat 

treatment and cooling rates (Wasz et al., 1996). When CP-Ti is heated to the β-Ti phase 

region and cooled down to α-Ti phase, usually the β-Ti phase is not retained but transforms 

back to its room temperature α-Ti phase due to low quantity of beta stabilising elements. This 

transformation can be of martensitic type or can occur  by diffusion controlled nucleation and 

growth process depending on cooling rate and composition (Lütjering et al., 2007a). A 

martensitic microstructure (Figure 1.7) resulting from quenching is characterised by 

extremely fine acicular morphology which exhibits high strength and hardness but reduced 

ductility and toughness. Microstructure by diffusion controlled nucleation and growth is 

obtained by slower cooling rates producing a coarse Widmanstätten α plus α-prime or some 

retained β-phase (Figure 1.7). This microstructure has very low strength and hardness but the 

ductility and toughness is higher than the martensitic microstructure (Donachie, 2000).  
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Crystallographic orientation relationship between α and β is given by the Burgers 

relationship: 

 

(110 )β || ( 0002 )α 

[111 ]β || [1120 ]α 

 

According to this relationship, a BCC crystal can transform to 12 hexagonal variants, having 

different orientations with regard to the parent β crystal (Lütjering et al., 2007a).  

 

 

 
Figure 1.7. Microstructure example of a) Widmanstatten in pure titanium and b) Martensitic 

in Ti6Al4V  
 

1.1.3 Alloying elements effect on CP-Ti mechanical properties 
Commercially pure titanium (CP-Ti) grades produced according to the ASTM standards have 

compositions as shown in Table 3 (Welsch et al., 1993). The concentration of carbon, 

nitrogen and hydrogen are typically very low and in order to compensate for the low strength 

oxygen is intentionally added to enhance the strength (Qian et al., 2015; Welsch et al., 1993). 

However, the addition of oxygen has to be controlled in order to minimise the reduction in 

fracture toughness and ductility. A summary of the influence of the alloying elements on the α 

to β transformation temperature , tensile strength and hardness is presented in Table 3 

(Donachie, 2000; Welsch et al., 1993). The β-transus denotes the α to β phase transformation 

temperature during heating, while the α-transus is the β to α phase transformation during 

cooling. High purity titanium grades with lower interstitial content have low strength and 

a b 
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hardness, and the α to β phase transformation temperature is lower, as compared to those with 

higher interstitial content which stabilizes the alpha phase (Lütjering et al., 2003).  

 

 Table 3. ASTM standard grades of commercially pure titanium. Welsch et al. (1993).  

Designation Impurity limits 

(wt%) 

β-

transus 

(°C) 

α-

transus 

(°C) 

Vickers 

hardness 

(HV) 

Tensile 

strength 

(MPa) 

 

 C H O Fe N      

ASTM grade 1 0.08 0.015 0.18 0.2 0.03 880 888 126 240  

ASTM grade 2 0.08 0.015 0.25 0.3 0.04 890 913 210 340  

ASTM grade 3 0.08 0.015 0.35 0.3 0.05 900 920 225 450  

ASTM grade 4 0.08 0.015 0.40 0.5 0.05 905 950 265 550  

 

 

1.1.4 Sintering methods   
Powder metallurgy processes are more competitive than other fabrication methods like 

casting, stamping or machining, due to lower energy consumption, higher material utilisation 

and reduced numbers of processing steps thus reducing cost. The process allows fabrication of 

combination of material that would be conventionally difficult to fabricate such as those with 

higher melting points. Powder metallurgy is favourably method of choice because finer 

microstructures yielding superior properties can be obtained such as higher strength and wear 

resistance. Greater precision is obtained, eliminating most or all of the finish machining 

operations required for castings. It avoids casting defects such as blow holes, shrinkage and 

inclusions. Thus with powder metallurgy near net-shape components are directly produced 

from powders while simultaneously reducing material input and fabrication costs making it an 

attractive alternative for the production of most materials. However, powder metallurgy 

processes are  economical only when production rates are higher, since the tooling cost is 

quite appreciable (Masikane, 2016; Upadhyaya, 1997).  

 

There are several sintering techniques available these include spark plasma sintering (SPS), 

uniaxial hot-pressing (HP), hot isostatic pressing, (HIP) and pressing & sintering (P&S) 

(Bolzoni et al., 2013). In HP, a conventional sintering method, the powder is loaded into a 

graphite mold and sintered, under uniaxial applied pressure, by indirect heating via resistive 

heating units (Shon et al., 2014a). However, HP often requires very long time for sintering 

(several hours) and as a result high energy consumption. On the opposite, Spark Plasma 
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Sintering (SPS) allows rapid consolidation (several minutes) and controlled grain growth by 

the reduction of the sintering temperature and time (Chaim et al., 2008; Chaim et al., 2012; 

Munir et al., 2006). Here also the powder is loaded in a graphite mold and a uniaxial pressure 

is applied but the heating is directly obtained by the use of DC pulsed current passing through 

the material and/or the mold (Munir et al., 2006).  The two methods are widely used by 

researchers, SPS technique is a promising technique due to aforementioned reasons (Yang et 

al., 2015).  

 

1.1.5  Sintering of titanium, densification and mechanical properties  
Recent studies have shown that SPS technique can produce material with relatively improved 

properties. Ti6Al4V master alloy and TiAl intermetallic are among advanced materials that 

are widely used in high added value industries and thus most investigated by the economic 

SPS technique (Abedi et al., 2016; Crosby et al., 2014; Garbiec et al., 2016; Hussainova, 

2003; Kus et al., 2016; Lampke et al., 2006; Manière et al., 2017; Martins et al., 2017; 

Matsugi et al., 1996; Mischler et al., 2014; Prakash et al., 2016; Trzaska et al., 2016; Weston 

et al., 2015) while only few investigations are focused on SPS of commercial pure titanium.  

 

Sintering of CP-Ti by SPS has been reported  by Zadra et al. (2008), Weston et al. (2015), 

Shon et al. (2014b) and Shon et al. (2014a). In their studies, these authors have shown that 

sintered CP-Ti components produced have similar Vickers hardness values close to ASTM 

grades (126-265HV) (Welsch et al., 1993). Zadra et al. (2008) investigated the use of SPS on 

45μm spherical CP-Ti grade 1 and irregular shaped CP-Ti grade 3. Sintering experiments 

were conducted in the temperature range 750 - 1100°C for 5min, under uniaxial pressure of 

60MPa in vacuum followed by free cooling to produce SPS pellets with diameter and 

thickness of 30mm and 5mm respectively. Full densification for both grades was reached at 

950°C but at 800°C the relative density was already 99%. However, the grain sizes of the two 

grades were different when sintered at 950°C. CP-Ti grade 1 grains were coarser (~30µm) 

compared to that of CP-Ti grade 3 (~16µm). These authors explained these differences by the 

amounts of dissolved oxygen which was measured on the sintered pellets and was relatively 

higher (~0.32wt%) in CP-Ti grade 3 compared to CP-Ti grade 1 (~0.075wt%). On the 

contrary, Weston et al. (2015) explained this phenomenon in terms of particles shapes. For 

spherical particles the grain growth was rapid because there were higher initial particle-to-

particle contacts with smaller pores and thus underwent more densification. In contrary to 

areas with less particle interactions and larger pores as found in irregular shaped particles 
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leading to lower densification. However, it is known that, oxygen is very detrimental to the 

mechanical properties of CP-Ti and its alloys because it has an influence on the 

microstructure (Yan et al., 2014). ASTM CP-Ti grades are classified according to the oxygen 

content dissolved and this has shown to have effect on the transus temperature and Vickers 

hardness. For instance ASTM grade 1 has low oxygen content of 0.18wt% (~126HV) leading 

to lower transus temperature (890°C) while grade 3 has high oxygen content of 0.35wt% 

(~280HV) thus increasing the transus temperature to 920°C (Lütjering et al., 2007b; Welsch 

et al., 1993). Zadra et al. (2008) found that Vickers hardness of CP-Ti grade 3 (~190-240HV) 

was higher than CP-Ti grade 1 (~120-150HV) whatever the sintering temperature. The 

difference in Vickers hardness was attributed to high amount (~0.3-0.34wt %) of oxygen 

dissolved in grade 3.  

 

Eriksson et al. (2005), studied the influence of sintering pressure and temperature on the 

morphology of SPS partially consolidated CP-Ti powders. The compacts heated to 200°C and 

500°C with 50MPa pressure did not present change in grain size and morphology but the 

latter sample at 600°C was ~90% dense. According to the authors, at 500°C, particles 

deformation features were observed at grain boundaries instead of micro-welding and local 

melting of particles. However, the authors seem not to discuss the effect of pressure on the 

sintering mechanisms occurring. Different sintering mechanisms influenced by compaction 

pressure have been reported for Ti6Al4V alloy during SPS (Garbiec et al., 2016) . The 

authors explained that sintering mechanisms at 5MPa compaction pressure occurred by 

electric discharges between particles and were dominant during the whole sintering stage. At 

much higher compaction pressure, at 25MPa and above, the electric discharges were only 

dominant in the early stages of sintering and were suppressed thereafter. The presence of 

spark discharges which is a pathway for electron migration have been proposed by Tokita 

(1999). This phenomenon occurs in the initial stages of sintering and leads to neck formations 

between particles. Experimentally neck formations have been observed  for Ti6Al4V  alloy 

with and without applied pressure  (Kus, 2017). In contrast,  Trzaska et al. (2016)  have 

suggested  no detection of the electric arcs, plasma or local overheating in TiAl intermetallic, 

but plastic deformation as the main densification mechanism. 

 

Garbiec et al. (2016) further suggest that  increased compaction pressure assisted in 

densification during heating by more rapid formation of necks favoring Joule effect which in 

turn enhanced diffusion and thereafter grain growth resulted. The grain sizes of samples 
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sintered with heating rate of 300°C/min increased from 15.49±3.81µm at 5MPa to 

143.6±46.8µm at 25MPa. However at 50MPa the grain sizes reduced to 86.94±19.28 µm, 

authors explain that Joule effect was inferior at this pressure compared with 25MPa. The same 

effect was observed for 200°C/min and 400°C/min heating rates. Wang et al. (2017) report 

plastic deformation as densification mechanism in TiAl intermetallics prepared by SPS, the 

authors related the effect of pressure on density. At sintering temperature of 1150°C, by 

increasing pressure from 10MPa to 50MPa, the density gradually increased from 3.947g/cm3 

to 3.967 g/cm3. The authors explained that higher sintering pressure led to more severe plastic 

deformation and it accelerated the mass transport between the particles which promoted 

densification. Plastic deformation of particles was confirmed by Trzaska et al. (2016), TEM 

thin foils were extracted in between necks of sintered TiAl powder particles, high densities of 

dislocations and twins which are characteristics of plastic deformation were observed. Despite 

the reported studies on the densification and mechanisms governed by sintering pressure for 

Ti6Al4V alloy and TiAl intermetallic, there is however limited literature on pressure effect on 

densification of CP-Ti powders.  

 

1.2. Metal Matrix Composites 
Generally, metal matrix composites (MMCs) can be defined as materials consisting of at least 

two distinct phases with different chemical and physical properties, for example a ceramic 

reinforcement embedded in a metallic matrix (Chawla et al., 2006; Kainer, 2006). Metallic 

matrix is a continuous phase which is ductile, chemically unstable and has good thermal 

conductivity and its properties are improvised when reinforcement is introduced. Metallic 

matrix which have been explored in the literature include Al, Mg, Ti, Co, Ni, Be and Ag 

(Jayalakshmi et al., 2015; Kainer, 2006).   

Ceramic reinforcement is a load bearing phase in the composite due to its high Young’s 

modulus, high strength and high stiffness  (Jayalakshmi et al., 2015; Kainer, 2006). The 

morphology of ceramic phase may be long fibers, short fibers or particulates made of oxides, 

carbides, nitrides and borides (Jayalakshmi et al., 2015). The ceramic phases include SiC, 

Al2O3, B4C, TiB2, TiB, TiC, TiN, TiCN and graphite (Choi et al., 2013; Kelly et al., 2000; 

Song et al., 2013).   

The selection of metal matrix and reinforcing ceramic phase  entirely depend on foremost 

compatibility of the two phases, required properties, intended applications and cost efficiency 

(Nalwa, 1999).  In this regard, when good compatibility is obtained between the two distinct 
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phases, the resultant MMCs have outstanding properties such as increased yield and tensile 

strength at room and elevated temperatures, increased young modulus of elasticity, improved 

corrosion and wear resistance over the individual phases and some conventional material 

(Balaji et al., 2015; Chawla et al., 2006; Choi et al., 2013; Kim et al., 2011).   

MMCs are categorized according to the type of reinforcement morphology and there are three 

major groups namely; continuous reinforcement in the form of long fibers and discontinuous 

reinforcement in the form of short fibers or whiskers, and particulates as shown in Figure 1.8 

(Clyne et al., 1995). Subsequently, the selection of reinforcement morphology is determined 

by the required properties, the application and the fabrication cost (Clyne et al., 1995; Kelly et 

al., 2000). For instance, the continuously reinforced MMCs have anisotropic properties, thus 

properties are high in the direction of the fiber orientation and the fabrication cost is relatively 

high (González et al., 2001). As a result, the discontinuously reinforced MMCs which have 

isotropic properties are favorable because they are easy to fabricate and fabrication cost is low 

(Batraev et al., 2014; Kim et al., 2011).  

MMCs can be fabricated by several methods, the commonly used are listed here 

a) Liquid processes: casting, pressure infiltration, spray co-deposition and in-situ  

b) Solid processes: powder metallurgy, extrusion, forging, pressing and sintering, roll 

bonding and co-extrusion, diffusion bonding 

c) Gaseous state:  physical vapor deposition (Chawla et al., 2006) 

 

MMCs are mostly used in industrial application such as aerospace, automotive, structural, 

military, commercial, industrial products, electronic packaging and thermal management. 

(Rosso, 2006).The demand for the use of MMCs is attributed to the availability of the ever-

evolving sources of relatively inexpensive reinforcements, and the frequent development of 

the processing routes which results in reproducible microstructures and properties (Ajayan et 

al., 2006).  
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Figure 1.8. Three classes of reinforcement’s morphology. Clyne et al. (1995) 
 

1.2.1 Titanium Matrix Composites (TMC) 
1.2.1.1 Continuously reinforced TMCs 
SiC (SCS-6) fiber is the commonly used continuous reinforcing phase in TMCs normally with 

a larger diameter of  about 100-140µm (Jayalakshmi et al., 2015). SiC fibers are strong, stiff, 

have low density, have anisotropic properties and are widely used for high temperature 

(815°C) applications (Campbell, 2010). Main application for these classes of materials is in 

hot structures (hypersonic airframe structures) and in jet engines replacing some portions of 

super alloys. However due to their high cost, the fabrication process and assembly their use is 

limited (Campbell, 2010; González et al., 2001). Moreover, interfacial reactions between 

titanium matrix and the fiber may occur during fabrication and also in later application at 

higher temperatures (Campbell, 2010; Gundel et al., 1991; Huang et al., 2015). As a result 

second phase particles (Ti3SiC2, TiCx and Ti5Si3(C))  formed at the interface cause defects 

and significantly decrease mechanical properties of these composite (Kieschke et al., 1991). 

Fukushima et al. (2000) studied the reaction kinetics between Ti15Al3V and SiC fiber  at heat 

treatment temperatures of 1153K and additional heat treatment at 1203K and 1253K. The 

reaction zone thickness increased linearly with the square root of the heat treatment time. The 

interfacial tensile strength of the composites decreased with the increase of reaction zone 

thickness. Therefore, focus has been made on selecting a compatible reinforcement with 

titanium matrix and also various  SiC fiber  coatings such as Mo, B4C and C have been 

investigated to minimize or prevent the interfacial reactions (Luo et al., 2012; Zhang et al., 

2014). 

 

Continuous Discontinuous 

Fibers Short fibers  
or whiskers 

Particulates 
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1.2.1.2 Discontinuously reinforced TMCs 
TMCs reinforced with discontinuous fibers, whiskers or particles have isotropic properties 

and allow easy fabrication of near net shaped components and also secondary processing of 

the composites is possible (Campbell, 2010). A wide variety of discontinuous reinforcements 

including SiC, TiC, TiB2, B4C, TiN, and TiCN have received great attention because of their 

ability to improve mechanical properties of titanium (Choi et al., 1994).These types of 

reinforcements are used in applications where the higher stiffness and strength properties of 

continuous reinforcements are not needed (Campbell, 2010).  

 

Discontinuously reinforced TMCs (DTMCs) can be fabricated ex-situ and in-situ. For ex-situ 

fabrication (conventional processing), the reinforcing phase is prepared separately and later 

added to the metal matrix (Ajayan et al., 2006; Casati et al., 2014). Although DTMCs 

fabricated by ex-situ have demonstrated good properties making them suitable for variety of 

applications (Chen et al., 2014; Prasad et al., 2004), the composites interfacial bonding with 

the matrix is poor and sometimes the interface can be contaminated with second phases 

(Ajayan et al., 2006). In case of the in-situ composites, the desired reinforcements are 

synthesized during fabrication step with exothermic chemical reactions between a compound 

and the titanium matrix (Campbell, 2010). The interface between titanium and reinforcing 

phase is normally without an interphase and a strong interfacial bond exists. Microstructure is 

characterized by a uniform dispersion of reinforcing phases in the matrix yielding optimized 

mechanical properties (Kainer, 2006). Due to different growth kinetics occurring with the 

individual reinforcing fibers, whiskers or particles, there is no specified orientation and also 

their sizes vary.  

 

Among reinforcements, TiC and TiB2 have  shown  to promote good wetting at the 

matrix/reinforcement interface, also they have showed to improve mechanical properties of Ti 

(Kim et al., 2011). However due to their high melting temperatures (Table 4) and thus low 

diffusivity, TMC made of both pure TiC and TiB2 phases are difficult to synthesize. However, 

the chemical instability of B4C when reacted with Ti tends to be favorable as the products 

formed are TiC, TiB2 and TiB. As a result simultaneous synthesis and consolidation of the 

TMCs by in situ method is accomplished. In the present study B4C is chosen as a constituent 

element for in situ synthesis and consolidation of Ti - (TiB2 + TiB + TiC) composites. 
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Table 4. Material properties of Ti, TiB2 TiB, TiC (Chandran et al., 2004) and B4C (Domnich 
et al., 2011; Sairam et al., 2014) 

Property Ti TiB2 TiB TiC B4C 

Density (g/cm3) 4.57 4.52 4.56 4.92 2.52 

Elastic modulus (GPa) 110 540 371 450 570 

Vickers hardness ( HV) 150 2200 1800 3200 3793 

Melting temperature (°C) 1668 2970 2200 3054 2763 

 

 

1.2.1.3 Ti-TiB2 composite 
Titanium diboride (TiB2) is a ceramic material known to have relatively high strength, 

durability and density of 4.52g/cm3 close to that of pure titanium. It is characterized by high 

melting point of 2970°C, hardness of 2200HV, elastic modulus of 540GPa, strength to density 

ratio and excellent wear resistance (Ravi Chandran et al., 2004).  This material is used in 

engineering applications such as impact resistant armor, cutting tools, molten metal crucibles 

and heavy duty wear application (Basu et al., 2006; Vallauri et al., 2008). Its high melting 

point has restricted its broader application due economic factors. But with the current 

favorable developments in fabrication of components by powder metallurgy techniques, its 

production and thus vast application becomes possible (Munro, 2000). TiB2 has unit cell 

consisting of eight Ti atoms at the vertices and two boron atoms at the center. The crystal 

structure of TiB2 is shown in Figure 1.9, is a layered hexagonal structure with alternating 

closed-packed hexagonal layers of titanium and graphite-like boron layers. Similar to TiC and 

other ceramics, it has relatively low fracture toughness (~5MPam½) and low self-diffusion 

coefficient making it difficult to sinter, thus a metallic binder is often needed in sintering 

(Morsi et al., 2007). 
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Figure 1.9. TiB2 crystal structure (Will, 2004) 
 

In the production of Ti-TiB2 composites, the Ti + 2B → TiB2, reaction has more negative 

Gibbs free energy (∆G). However, when mass fraction of Ti is higher than TiB2, TiB2 can 

further react with Ti to form TiB phase by this reaction,  Ti + TiB2 → 2TiB (Chandran et al., 

2004).  The reaction has a slightly negative ∆G value (Figure 1.10) assuring that it can occur 

in Ti-TiB2 composites. Moreover, because of low diffusion rates of B in Ti, the reaction rate 

is limited, so TiB2 phase initially forms (from first reaction) and then followed by TiB phase 

(Morsi et al., 2007).Eriksson et al. (2008) investigated densification and deformation of Tix 

(TiB2)1-x composites by SPS from 1400 up to 1900°Cat holding times from 0 to 3min and 

pressure of 50MPa, using coarse grained Ti (45µm) and amorphous TiB2 (1.4µm). Authors 

studied the effect of varying mass fraction (x=0.05, 0.1 & 0.2) of Ti on densification and 

phases formed. They found that at 1500°C, 3min and 50MPa densification was 100% for 

mass fraction x=0.05 and 0.1 when increased to x=0.2 the relative density decreased to 97%. 

Phases present for the three compositions after sintering was TiB2 with Ti but for composite 

with x=0.2 TiB phase in minor amount was also detected.  

 

 
 

HCP : P6/mmm space group 
Lattice parameters: a = 0.3026nm 
                                    c = 0.3226nm 
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Figure 1.10. The values of ∆G for some reactions  forming TiC, TiB2 and TiB as a function of 
temperature (Mao et al., 2015)  

 

1.2.1.4 Ti-TiB composites 
Titanium monoboride, TiB, can be synthesized from a reaction between titanium and powder 

sources such as TiB2, pure B, CrB and MoB (Balaji et al., 2014; Feng et al., 2006). Various  

synthesizing techniques such as combustion synthesis, rapid solidification and powder 

metallurgy have been employed to synthesize Ti-TiB composites (Cao et al., 2015; Feng et 

al., 2006). In cases whereby the powder source is TiB2, TiB whisker is normally an 

intermediate phase between Ti and TiB2 when incomplete reaction occurs.  TiB has excellent 

chemical stability and the interfacial bonding between Ti and TiB is clean without interphase 

and this has shown to result in improved mechanical properties (Feng et al., 2006). TiB has 

density of 4.56g/cm3, high hardness of 1800HV, elastic modulus of 371GPa modulus thermal 

expansion coefficient of 8.6x10-6, thermal conductivity of 7.2 x 10-6K-¹. Its similar density to 

Ti make TiB even more attractive reinforcement because there is less modification in density, 

while mechanical properties of Ti are improved (Cao et al., 2015; Ravi Chandran et al., 2004; 

Sahay et al., 1999). 

 

In the crystal structure of TiB the principal building block is trigonal prism, whereby six Ti 

atoms are positioned at the corners and the B atom is at the center. The trigonal prisms stack 

up transversely in columnar arrays forming orthorhombic unit cell in its stable form of B27 

structure (FeB type). From this, the B atoms arrangement pattern is characterised by zigzag 

chains which are parallel to the [010] direction as shown in Figure 1.11(a) (Feng et al., 2006; 

Panda et al., 2006; Ravi Chandran et al., 2004). The growth mechanism of the TiB is the 
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stacking up of the (100) plane and the cross section of the TiB is normally a hexagonal 

structure with (100), (101) and (101̅) planes as show in Figure 1.11(b). Moreover the growth 

rate of the transverse direction is slower than the longitudinal direction (Feng et al., 2006; 

Ravi Chandran et al., 2004).  Therefore,  morphology of TiB is normally characterised by a 

needle like structure, namely whiskers (Feng et al., 2006). 

 

Figure 1.11. Crystal structure of TiB: a) Stacking up trigonal prisms with B zigzag chain 
(Panda et al., 2006), b) TiB whisker growth (Feng et al., 2006). 

 

Shen et al. (2011), in situ synthesized TiB reinforced TMCs  from Ti and TiB2 powders with 

average particles sizes of 30 μm and 4.5μm fabricated by SPS method respectively, with a 

composition of 15wt% TiB2 and 85wt% Ti powder. The structure of the sintered composites 

showed that TiB was formed at 950°C and the microstructure revealed a uniform distribution 

of needle and rod shape TiB whiskers with a high aspect ratio growing rapidly with sintering 

temperature. The rapid growth of the TiB whiskers leads to coarsening and agglomeration of 

the whiskers leading to cross-sectional diameters from 0.2μm to 2 μm at 950°C and 1150°C 

respectively. According to the authors the TiB whiskers which are fine grow along the grain 

boundaries while others grow towards inner grains of titanium. Sahay et al. (1999) reported  

three different morphology of TiB formed at low and high volume fraction of the 

reinforcement fabricated by hot pressing. The first morphology at low volume fractions of 0.3 

was characterised by long and needle-shaped TiB whiskers which are isolated and randomly 

oriented in the Ti matrix. The second morphology at volume fractions of 0.55 to 0.86, 

colonies of refined and densely packed short TiB whiskers which seemed to be interconnected 

Orthorhombic: 62(Pnma) space group 
Lattice parameters:  a = 0.612nm, b = 0.306nm, c = 0.456nm 
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were observed. Chandran et al. (2004) explain the interconnection morphology of TiB 

whiskers to be due to spatial diffusion limitations of boron atoms from the parent TiB2 

particle and resulted in interceptions between TiB whiskers forming from that parent TiB2. 

The third morphology at the highest volume fractions of 0.92, the TiB whiskers were coarse 

and elongated with a few needle-shaped whiskers. Further illustration of the different 

morphologies developments at low and high volume fraction of starting TiB2 powders is 

shown in Figure 1.12.  The dominant reinforcing phase was TiB however at higher volume 

fractions of 0.86 and 0.92, a significant amount of unreacted TiB2 was still present (Sahay et 

al., 1999). Table 5 presents some of the relative densities and hardness values of sintered Ti-

TiB composites found in literature. 

 

Table 5. Relative densities and hardness values of Ti-TiB2/TiB sintered composites  
Reference Process & parameters Material Relative 

density 
(%) 

Hardness 
(HV) 

(Diouf et al., 2017) SPS 
1000°C, 50MPa, 5min 

 
Ti2.5wt%TiB2 
Ti5wt%TiB2 

 
98.9 
97.8 

 
~ 360 
~ 380 

(Namini et al., 2017) SPS 
1050°C, 50MPa, 5min 

 
Ti – 0.6wt%TiB2 
Ti – 1.2wt%TiB2 
Ti – 2.4wt%TiB2 
Ti – 4.8wt%TiB2 
Ti – 9.6wt%TiB2 

 
98 
98 
99 
99 

100 

 
328±08 
344±06 
363±09 
477±13 
586±17 

(Chaudhari et al., 2013) SPS 
1300°C, 50MPa & 

10min 

 
Ti – 10wt%TiB 

 
98 

 
416 

(Shen et al., 2011) SPS 
950°C, 50MPa & 5min 

 
1250°C, 50MPa & 5min 

 
Ti – 26vol%TiB 

 
Ti – 26vol%TiB 

 
94 

 
100 

 
Phase 1 = 418 
Phase 2 = 449 
Phase 1 = 479 
Phase 2 = 673 

(Kumar et al., 2012) SPS 
1100°C, 20MPa & 5min 

 
Hot isostatic pressing 
1200°C, 120MPa & 5h 

 
Vacuum sintering 

1200°C & 5h 

 
Ti – 24vol%TiB 

Ti –  38.5vol%TiB 
 

Ti –  20.6vol%TiB 
Ti – 38.3vol%TiB 

 
Ti – 17.6vol%TiB 
Ti – 37.9vol%TiB 

 
99 
96 

 
99 
99 

 
85 
95 

 
710 
890 

 
658 
823 

 
424 
618 

(Gorsse et al., 2003) Reactive hot pressing 
900°C, 80MPa & 2h 

 
Ti – 20vol%TiB 

 
- 

 
550 

(Alman et al., 1999) Cold isostatic pressing 
1400°C,  275MPa, 2h 

 

 
Ti2.5vol%TiB2 
Ti5vol%TiB2 

Ti10vol%TiB2 
Ti20vol%TiB2 
Ti40vol%TiB2 

 
88.8 
93.3 
96.0 
98.8 
76.5 

 
265 
234 
413 
610 
352 
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Figure 1.12. Schematics of TiB whisker morphologies development in Ti-TiB composites at 
starting volume fraction of TiB2: (a, b & c) low volume fraction of 10vol% TiB2, (d, e & f) 

high volume fraction of  29vol% TiB2 (Sahay et al., 1999). 
  

1.2.1.5 Ti-TiC composites 
Titanium carbide (TiC) belongs to a class of interstitial carbides and its crystal structure is 

face centered cubic (FCC) (Fu et al, 2017). The building unit cell consists of six titanium 

atoms positioned in the corners and surface centers of the FCC with interstitial carbon atom 

positioned in center of each corners and the cubic as shown in Figure 1.13  (Jin et al., 2002; 

Nie et al., 2012). Two types of bond exist in TiC that is metallic Ti-Ti bond and a much 

stronger covalent Ti-C bond (Djellouli et al., 2001; Johansson, 1995). TiC has high electrical 

and thermal conductivity of 30 x 106 S/m and 28.9 Wm-1K-1 respectively. It has  low density 

of 4.92g/cm3, high hardness greater than 3200HV, elastic modulus of 450GPa, low friction 

coefficient, high solvency with other carbides and high melting temperature of 3054°C due to 

its strong covalent bonds (Fu et al., 2017; Ravi Chandran et al., 2004). These properties make 

TiC an abrasive material that is resistant to high temperature oxidation and in chemically 

corrosive environments (Vallauri et al., 2008). It is widely used in abrasive wear applications 
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such as cutting tools, gears, bearings and shafts it is also useful in erosion, corrosion and creep 

(engine) applications (Covino Jr et al., 2002; Gu et al., 2012; Mohanty et al., 1995) 

 

Figure 1.13. TiC crystal structure (Nie et al., 2012) 
 

TiC is brittle in nature, as such metallic binders are normally incorporated to provide ductility 

and toughness in the bulk material. In terms of sintering, the binder phase also aid in 

consolidation to full density by controlling bonding with the ceramic phase (Hussainova, 

2003). This is due to TiC poor sinterability resulting from its low self-diffusion coefficient 

which is unfavorable for mass transfer. At high temperature it experiences rapid grain growth 

leading to pores entrapment in grains and also oxide impurity in the powder inhibits 

densification (Gu et al., 2017). However, with addition of binding phase to TiC the hardness 

and corrosion/oxidation resistance properties are reduced. Nevertheless, economical sintering 

of TiC still partly requires liquid phase for full densification during sintering because of its 

higher melting temperature (Teber et al., 2012). Previous studies have shown that high 

sintering temperature was required for TiC consolidation as shown in Table 6. Relative 

densities obtained by presureless sintering in Fu et al. (2017) and Gu et al. (2017) at  

temperatures of 1700°C and 2300°C was 95.7% and 96.67% with grain sizes of 5.5±0.9µm 

and 7.5µm respectively. For hot pressing and spark plasma sintering in the study of Xue et al. 

(2016) and Cheng et al. (2012) at 2000°C and 1600°C densification was 98.15% and 99% 

with grain sizes of 19.62µm and 3.21µm respectively. These results clearly indicate the need 

for a binding phase to lower the sintering temperature while achieving full densification. 

Several metallic binding phases such as Co, Cr, Ni, Mo, Al, Ti and Fe have been explored  

and have shown excellent hardness, fracture toughness and wear resistance (Degnan et al., 

2002; Fu et al., 2016; Kübarsepp et al., 2001; Lagos et al., 2016; Li et al., 2009; Teber et al., 

 

FCC: Fm-3m space group 
Lattice parameters: a = 0.4328nm 
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2012; Wu et al., 2011). TiC composites based on Ti and Ti6Al4V as matrix are the most 

common combination explored mainly because of their chemical compatibility (Georgiou et 

al., 2017; Konitzer et al., 1989; Lagos et al., 2016). 

 

Table 6. Relative densities and hardness values of Ti-TiC sintered composites 

*HRB 

 

According to the binary phase diagram of Ti-C in Figure 1.5, the interaction between Ti based 

matrix and TiC leads to formation of wide range of (x=0.5-1.0) sub-stoichiometric carbides 

according to reaction 1 (Baker, 1992).  

 

                                          (1-x)TiC + xTi = TiC1-x                                      [Eq.1] 

 

Quinn et al. (1984) investigated solid state reaction of single-crystal diffusion couples of Ti 

and TiC forming sub-stoichiometric carbides during sintering and hot pressing from 1350 up 

Reference Process & parameters Material  Relative 
density (%) 

Hardness 
(HV) 

(Vasanthakumar et al., 2017) 
 
 
 
 

SPS 
800°C, 50MPa, 5min 

1000°C, 50MPa, 5min 
1200°C, 50MPa, 5min 

 
800°C, 50MPa, 5min 

1000°C, 50MPa, 5min 
1200°C, 50MPa, 5min 

 
Ti25wt%TiC 

 
 
 

Ti50wt%TiC 

 
97% 
99% 
102% 

 
87% 
88% 
102% 

 
1121±103 
1232±128 
1595±136 

 
475±40 
402±70 

871±102 
(Zhang et al., 2017) 

 
SPS 

1200°C, 5min, 50MPa 
 

 
Ti3vol%TiC 
Ti7vol%TiC 

 
4.550g.cm-3 

4.564g.cm-3 

 
458 
514 

(Diouf et al., 2017) SPS 
1000°C, 50MPa, 5min 

Ti2.5wt%TiC 
Ti5wt%TiC 

99.3% 
99.3% 

~350 
~375 

 
(Cheng et al., 2012) 

 
SPS 

 1600°C, 50MPa, 5min 
TiC 99% 3091 

(Fu et al., 2017) 
 

Presureless sintering 
1800°C, 1h 

TiC 95.7% 2070 

(Gu et al., 2017) Presureless sintering  
2300°C, 1h 

TiC 96.67% 2243 

(Xue et al., 2016) 
 

Hot pressing 
 2000°C, 30MPa, 60min 

TiC 98.15% - 

(Alman et al., 1999) Cold isostatic pressing  
1400°C,  275MPa, 2h 

 

Ti2.5vol%TiC 
Ti5vol%TiC 

Ti10vol%TiC 
Ti20vol%TiC 
Ti40vol%TiC 

89.1% 
94.2% 
93.8% 
96.0% 
95.1% 

245 
296 
304 
354 
354 

(Gülsoy et al., 2014) Powder injection 
moulding 

Ti1.5wt%TiC 
Ti3wt%TiC 

~97% 
~95.5% 

~106* 
~110* 
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to 1525°C. According to the authors, the reaction between reactants proceeds by carbon 

diffusion at the interface of reactants forming sub-stoichiometric carbides in the sequence 

TiC0.89, TiC0.53 and TiC0.01 from the centre of  TiC  particle into the Ti matrix.. Microstructural 

analysis of reaction couple revealed growth of second phase platelets into the original TiC 

crystal. The morphology of the platelets resembled that of Widmanstatten pattern. Authors 

suggest that carbon diffuse across the Ti-TiC interface and react to form TiC0.5, the product 

nucleates at the interface and grow with the advancing phase boundary and also back into the 

original carbide crystal. The Ti2C phase provides a faster diffusion path for carbon atoms in 

new carbide phase (Ti2C) and also in the original carbide crystal.  

 

Wanjara et al. (2000) also reported the presence Ti2C phase at interface of Ti6Al4V alloy and 

TiC compacts processed by graphite-element vacuum furnace at 1200 and 1500°C. 

Microstructural analysis by low voltage FEG-SEM showed a distinct phase at the boundary of 

TiC particles. EDS quantitative elemental analysis revealed a low amount of carbon at 

boundary and it increased towards the center of the TiC particle. Further analysis by neutron 

diffraction revealed that lattice parameters of the matrix increased with the holding time at the 

various isothermal temperatures, suggesting that carbon diffuse from the TiC to the Ti6Al4V 

alloy matrix. However, the authors do not report any Widmanstatten pattern morphology for 

Ti2C in the TiC particles as observed by Quinn 1984. They reported a rapid growth of 

interface layer with processing temperature at 1500°C until the entire TiC particle has fully 

reacted.  However, with in-situ synthesized Ti based TiC composites using various carbon 

sources such as graphite (Yu et al., 2017), carbon fiber (Hao et al., 2015), graphene (Zhang et 

al., 2017), the interface between matrix and reinforcing phase is normally clean without 

interphase and have strong metallurgical bonds (Kainer, 2006). On the contrary, 

Vasanthakumar et al. (2017) reported formation of non-stoichiometric TiCx when CNT was 

the carbon source. In fact, the carbon addition was obtained from decomposition of toluene 

during milling for 10h this was confirmed with XRD and Raman spectroscopy analysis and 

not from the CNT.  
 

1.2.1.6 Ti - B4C composites 
Boron carbide (B4C), is one of the hardest engineering materials with hardness value of 

3793HV, a high elastic modulus of 570GPa, low density of 2.52 g/cm3, melting temperature 

of 2763°C  and high electrical resistivity at elevated temperatures (Domnich et al., 2011; 

Sairam et al., 2014). Because of its high melting point and thermal stability it is used in 
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refractory applications. Its extreme abrasion resistance make it useful as abrasive powder and 

coating. Also it is commonly used in nuclear applications as neutron radiation absorbent. 

Moreover, boron carbide is a high temperature semiconductor that can potentially be used for 

novel electronic applications. The primary structural units of boron carbide are the 12-atom 

icosahedra located at the vertices of a rhombohedral lattice of trigonal symmetry (R3m space 

group), and the 3-atom linear chains that link the icosahedra along the (111) rhombohedral 

axis, as shown in Figure 1.14 (Domnich et al., 2011).  B4C has received much attention in the 

fabrication of in situ titanium based TiC, TiB2, TiB composites, more especially in fabrication 

by powder metallurgy techniques. This is due to its lower melting temperature of 2763°C 

compared to that of the single phases TiC (3054°C) and  TiB2 (2970°C).  

 

Figure 1.14. Crystal lattice of B4C illustrating the correlation between the rhombohedral in 
read and the hexagonal in blue unit cells  (Domnich et al., 2011). 

 

The relative densities of with the mechanical properties of Ti-B4C are summarised in Table 7. 

Balaji et al. (2014) investigated the densification behaviour and microstructural evolution of 

Ti (100µm) and B4C (50 µm) powder mixture by SPS. Sintering was performed at 1400°C 

with pressure 40MPa and varying dwell time of 5 to 30min. On the densification behaviour at 

30min dwell time, the relative density decreased with increasing amount of B4C from 

99.06±0.224% to 98.04±0.236% for Ti5wt%B4C and Ti15wt%B4C respectively. While on the 

sintering parameters effect, Ariza Galván et al. (2017) reported that increase of  temperature 

from 1000°C to 1100°C increased density from 3.83g/cm3 to 3.87 g/cm3 for Ti30vol%B4C at 
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50MPa. Also by increasing dwell time from 1 to 5min the density was improved from 3.77 

g/cm3 to 3.83 g/cm3 at 950°C and 80MPa, similar results when dwell time was increased from 

5min to 30min have been reported (Balaji et al., 2013). However, the increase of pressure 

from 50MPa to 80MPa at 1000°C had an insignificant effect on the density which remained 

constant (Ariza Galván et al., 2017). While Shufeng et al. (2015) further hot extruded vacuum 

sintered composites billet to improve the density and microstructure. 

Table 7. Relative densities and hardness values of Ti-B4C sintered composite 
Reference Process & parameters Material Relative 

density (%) 
Hardness 

(HV) 
(Ni et al., 2006) 
Ti : 10µm 
B4C: 0.5µm  
B4C: 3.5µm 

Hot Pressing 
1200°C, 30min, 20MPa 
 

 
Ti10vol%B4C(0.5µm) 
Ti10vol%B4C(3.5µm) 
 

 
- 
- 

 
581 
452 

(Balaji et al., 2014) 
Ti : 100µm 
B4C : 50µm 

SPS 
1400°C, 30min,  40MPa 

 
Ti5wt%B4C 

Ti10wt%B4C 
Ti15wt%B4C 

 
99.06±0.224 
98.46± 0.223 
98.04±0.236 

 
- 
- 
- 

(Ariza Galván et al., 2017) 
Ti: 20-45µm 
B4C:45-75µm 

Inductive hot pressing 
950°C, 80MPa, 1min 
950°C, 80MPa, 5min 

1000°C, 50MPa, 5min 
1000°C, 80MPa, 5min 
1100°C, 50MPa, 5min 
1100°C, 80MPa, 1min 

 
 
 

Ti30vol%B4C 

 
3.77* 
3.82* 
3.83* 
3.83* 
3.82* 
3.87* 

 
317 
333 
324 
383 
397 
367 

(Jimoh et al., 2012) 
TiH2: 4.5μm 
B4C: 4.6μm 

Presureless sintering 
1400°C 

 
 
 
 

Hot pressing 
1400°C, 30MPa 

 

 
Ti 

Ti10vol%B4C 
Ti20vol%B4C 
Ti40vol%B4C 

 
Ti20vol%B4C 
Ti40vol%B4C 
Ti60vol%B4C 
Ti80vol%B4C 

 

 
 

100 
99.12 
93.44 

 
100 
100 
100 
100 

 
270 ± 30 
705 ± 20 
850 ± 40 
860 ± 25 

 
942 ± 5 

1085 ± 35 
1455 ± 50 
1600 ± 20 

 Presureless sintering 
1100°C 

 
 
 
 

Hot pressing 
1100°C, 

30MPa,120min, 
10°C/min 

 
Ti 

Ti10vol%B4C 
Ti20vol%B4C 
Ti40vol%B4C 

 
Ti20vol%B4C 
Ti40vol%B4C 
Ti60vol%B4C 
Ti80vol%B4C 

 
 

97.36 
92.09 
80.53 

 
98.46 
99.34 
93.04 
67.32 

 
270±31 
727±10 
695±21 
500±11 

 
921±33 

1061±14 
1194±66 
232±12 

 

It is crucial to understand reaction kinetics and thermodynamics of the interfacial reactions in 

TMCs, as they aid when improving the mechanical properties of the composite. The data 

found in literature based on the reaction kinetics and the thermodynamics of interfacial 

reactions is mostly focused on continuous SiC based TMC (Campbell, 2010; Fukushima et 
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al., 2000; Gundel et al., 1991; Huang et al., 2015; Jayalakshmi et al., 2015; Kieschke et al., 

1991; Luo et al., 2012; Zhang et al., 2014) and TiB2 based coatings on Ti/Ti alloys (Ataibis et 

al., 2015; Fan et al., 1997; Fenghua et al., 2010; Kartal et al., 2013; Keddam et al., 2017; 

Keddam et al., 2016; Makuch et al., 2017), and limited for TMCs prepared by powder 

metallurgy techniques.  

 

Recently, attempt has been made to study the effect of temperature and processing time in the 

kinetics of TMCs for such techniques. Jia et al. (2016) investigated solid state reaction 

mechanisms of SPS Ti-B4C system (1000°C, 60min and 30MPa) using experimental 

investigations and theoretical calculations. Observations made by laser scanning confocal 

microscope revealed decomposition of B4C into B and C diffusing on the Ti side to form fine 

TiB whiskers and TiC particles and the sharp corners of the B4C became smoother. 

Interdiffusion competition between B, C and Ti atoms in either Ti and B4C rich side was 

proposed to be the reaction mechanisms occurring at the interface of the reactants as shown in 

Figure 1.15. Similar observations were made  for mechanically alloyed Ti-B4C  (Rafiei et al., 

2014). However, when it came to which phase formed first between TiB and TiC, comparing 

the theoretical and experimental analysis there seemed to be a contradiction (Jia et al., 2016; 

Ni et al., 2008b; Rafiei et al., 2014).  

 

Figure 1.15. Chemical reactions mechanisms in Ti-B4C couple system. Adapted from (Jia et 
al., 2016) 

 

 Theoretically, the threshold activities for formation of TiB2 (5.96 x 10-7) and  TiB (3.97 x 10-

7) are higher than that of TiC (1.05 x 10-7), so TiC was expected to primarily form followed 



48 
 

by TiB rather than TiB2 (Jia et al., 2016). However, experimentally the DTA analysis and 

XRD patterns for mechanically alloyed Ti-B4C Rafiei et al. (2014) proposed that TiB2 phase 

forms first then TiC followed. While Jia et al. (2016) suggest that although the theoretical 

threshold activity for formation of TiC (1.05 x 10-7) is lower than that of TiB (3.97 x 10-7), 

according to concentration level of B and C determined around the Ti/B4C interface, TiB 

formed first prior to TiC in agreement with (Rafiei et al., 2014). This suggestion was based on 

the lower and high diffusion velocity of B and C in Ti matrix respectively (Brodkin et al., 

1996; Rafiei et al., 2014).So, C diffuse further into Ti matrix and later form TiC particles 

while, B diffuse closer to Ti/B4C interface to form TiB whiskers. Hence, this resulted in 

higher concentration of B at the Ti/B4C interface than C atoms (Jia et al., 2016).  

 

The proposed sequence of atoms inter-diffusion mechanisms in SPS Ti-B4C layers by (Jia et 

al., 2016) is as follows. In the initial stage, B4C decomposes, B and C atoms diffuse into Ti 

matrix, and chemical reactions [Eq. 3, 4 and 5] which solely depends on B and C atoms take 

place. Simultaneously in B4C rich side Ti diffuse into vacancies left by B and C atoms, 

reactions in [Eq. 6 - 9]  which depend on Ti atoms they take. In the second stage TiB whiskers 

form in Ti rich side and while dispersed TiB2 particles form in B4C rich side due to limited 

amount of Ti atoms and also some C was formed.  The C then diffuses into the Ti rich side 

and increases the C carbon content to form TiC particles in stage 3 of reaction. Further 

processing of the in situ reaction in stage 4 results in formation of a monolithic layer of TiB2, 

which inhibits C diffusing out and results in C layer which form  between unreacted  B4C and 

monolithic layer of TiB2. At this stage reaction between Ti and B4C stops because B and C 

can hardly diffuse across monolithic layer of TiB2.  

Ti + 2B →TiB2 

 

[Eq. 2] 

 Ti + B → TiB 

 

[Eq. 3] 

Ti + C→ TiC 

 

[Eq. 4] 

 Ti + B4C → TiC + 4B 

 

[Eq. 5] 

 2Ti + B4C→TiB2 + C 

 

[Eq. 6] 

 3Ti + B4C → TiB2 + TiC 

 

[Eq. 7] 

 4Ti + B4C →4TiB + C 

 

[Eq. 8] 

 5Ti + B4C → 4TiB + TiC [Eq. 9] 
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On the microstructure evolution Jia et al. (2016) investigated two layers composed of sintered 

B4C and Ti powder. The sintered B4C (0.5µm) was placed onto inferior punch of SPS mold 

then filled up with pure Ti powder. To study the microstructure evolution the sintered cold 

compacts were heat treated at varying temperature from 700°C to 900°C for 5 min as well at 

1000°C with varied dwelling time of 5 min to 60 min.  On the effect of temperature, at lower 

temperature (700°C) the reaction between Ti and B4C did not take place due to poor 

compaction. Increasing temperature to 800°C for 5min, led to improved contact and formation 

of large amount of fine TiB whiskers on the Ti side and the interface was observed. Further 

increase in temperature to 900°C for 5min a thick TiB2 layer formed with fine TiB whiskers 

growing from it. The TiB2 layer became denser while the TiB whiskers. Balaji et al. (2014) 

reported the reduction of ‘’spherical’’ B4C particles size to needle like TiB and equiaxed TiC 

particulates forming a homogeneous microstructure. When dwell time was increased from 5 

to 30min at higher temperatures of 1400°C as shown in Figure 1.16. However, Jia et al. 

(2016) found that  at lower temperature of 1000°C dwelling time had insignificant effect on 

the growth TiB whiskers while the layer of TiB2 became thicker (4µm). The microstructure at 

1000°C for 10min was the same as for 30min and 60min (Jia et al., 2016).  

 

 
Figure 1.16 . Microstructure evolution of Ti-B4C sintered at a) 5min, b) 10min, c) 15min and 
d) 30min (Balaji et al., 2014). 
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Particles size of B4C also has effect on the formation of TiB and TiC reinforcing phases. It 

was found that hot pressed (1200°C and 20MPa for 30min) Ti-B4C composites fabricated 

using 3.5µm B4C formed particles clusters while those  with 0.5µm B4C powder particles 

clusters were absent (Ni et al., 2006). The size of the TiB clusters was similar to the original 

size of the B4C particles and were characterised with many small TiC particulates with a 

diameter of 0.5µm surrounded by densely packed fine TiB whiskers. The TiB whiskers grew 

in all directions from centers initially occupied by B4C particles before reaction occurred, 

after the complete reaction B4C was consumed, but inhomogeneous microstructure was 

obtained. These TiB clusters have adverse effect on mechanical properties, the could act as 

crack initiators at much lower strains, limiting the strength and ductility of the composite 

(Gorsse et al., 2003). Only by either further heat treatment (1200-1300°C), hot extrusion 

(1100°C) or prolonged processing time (6-100h) the particles clusters were  eliminated at the 

expense of excessive matrix grain growth (Gorsse et al., 2003; Ni et al., 2006). Mechanical 

properties of the extruded composites and composites with finer B4C (0.5µm) powders were 

evaluated and compared. The tensile strength of the extruded composites was 817MPa with 

ductility of 0.55% lower than that without particles clusters (950MPa and 0.64%) (Ni et al., 

2006). 

When the correct processing conditions (temperature, time, pressure) are utilized the final 

microstructure of the Ti-B4C composites is expected to be characterized homogeneously 

distributed TiB and TiC. In addition, a symbiosis structure as shown in Figure 1.17 of TiB 

and TiC has been reported to exist   for Ti-B4C system prepared by reactive hot-pressing 

(1200°C, 20MPa and 30min) of blended Ti and B4C powders. Whereby, the TiC particle 

appeared to be relatively fixed into the TiB whisker. Observations made by TEM showed the 

TiC particles with crystal planes (1̅01̅) and (111̅), grew on the  TiB whisker in (101) and 

(101̅) crystal planes and seldom on the (100) crystal plane (Ni et al., 2008b). Available 

literature based on solid state fabrication support this structure formation (Li et al., 1993; 

Tang et al., 2000; Vallauri et al., 2008). This phenomenon results from large number of 

stacking faults in the (100) TiB plane causing steps in the (1̅01̅) and (111̅) TiB planes. The 

steps cause a roughening on the crystal planes which promotes the growth of TiC in them (Li 

et al., 1993). In addition,  interconnections of TiB whiskers formed from Ti-TiB2 system have 

also been reported, the morphology is favoured because the growth of  TiB is by 

decomposition of TiB2, TiB whiskers grow from centres occupied by TiB2 particles (Huang et 

al., 2009; Sahay et al., 1999). 
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Figure 1.17. TEM micrographs of composites symbiosis structure (a) bright field images and 
(b) electron diffraction patterns corresponding 

 

On the mechanical properties evaluation of Ti-B4C composites fabricated by powder 

metallurgy routes, the available literature is focused on the strengthening effect of TiC and Ti 

at room and elevated temperature strength of Ti matrix, the effect of B4C particles size and 

composition effect (Barsoum et al., 1993; Bhaumik et al., 2000; Brodkin et al., 1996; Geng et 

al., 2008; Jia et al., 2014a; Jia et al., 2014b; Ni et al., 2006, 2008a; Ogwu et al., 1996; 

Shufeng et al., 2015; Tjong et al., 2008; Wen et al., 2001). Shufeng et al. (2015) carried out 

room temperature tensile tests a strain rate of 5 x 10-1 s-1 of TMCs consisting of TiB whiskers 

with low volume fraction of fine TiC particles. The yield and tensile strength increased 

gradually when the B4C content volume fraction was increased from 0, 1.76, 2.85 and 

5.0vol%. Ti-5vol%B4C TMCs showed improved yield and tensile strength of 916MPa and 

1138MPa, compared with pure Ti 484MPa and 654MPa respectively. However, elongation 

was compromised and reduced significantly from 32.4% to 2.3% for the Ti-5vol%B4C TMC. 

 

 

With the effect of increasing the temperature from 25 to 700°C the tensile strength decreased 

from ~1200 to 100MPa and ~700 to 40MPa for the Ti-1.61wt%B4C TMCs and Ti, 

respectively. The decrease of strength was attributed to softening of Ti matrix at elevated 

temperatures (Jia et al., 2014a). 

 

On the particle sizes effect Ni et al. (2006) found that the tensile and yield strength were 

improved when the B4C particles sizes was reduced from 3.5µm to 0.5µm for hot pressed 

(1200°C, 20MPa and 30min) Ti-10vol%B4C TMCs. The extruded (1100°C) Ti-10vol%B4C 

a b 
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TMCs with 3.5µm B4C tensile strength was 817MPa with ductility of 0.55%, and the finer Ti-

10vol%B4C TMCs with 0.5µm B4C yielded improved strength of 950MPa without reduction 

in ductility of 0.64%. In contrast, Ti-1.61wt%B4C TMCs prepared by SPS (1000°C, 30MPa 

and 60min) and extrusion (1000°C), with 40µm (11.73%), 11µm (9.26%) and 0.5µm (6.9%) 

B4C particles size showed reduced ductility for the finer TMCs, but the  ultimate tensile 

strength was improved (709.98, 873.56 and 1117.76MPa) respectively (Jia et al., 2014b).  

 

Load transfer strengthening mechanism from the soft Ti matrix onto the hard TiB and TiC 

reinforcements take place in the TMCs. Long TiB whiskers are however reported to be prone 

to stress concentration and fracture due to their large aspect ratio. Although the TiC particles 

cannot take up loads as efficient as TiB whiskers, they prevent cracks from being formed and 

retard the crack propagation more effectively than TiB whiskers due their equiaxed shape (Ni 

et al., 2008a). Moreover, by substituting some part of TiB whiskers by TiC particles 

effectively retarded crack propagation as there were no cracks found in the fractured surfaces 

of TMCs (Ni et al., 2008a). Jia et al. (2014a) studied the fractured surfaces on composites 

surface were observed at room temperature and 400°C. When temperature was increased, 

small and large dimples emanated from spaces occupied by TiB whiskers and TiC particles 

respectively. By further increasing the temperature the larger dimples gradually increased 

while the smaller dimples reduced due to severe necking closing the smaller dimples. Due to 

good bonding strength between Ti with TiB whiskers or TiC particles there was no evidence 

of reinforcement pulling out observed, similar to Ni et al. (2008a)  .  

 

1.2.2 Summary  
Densification of Ti-B4C TMCs requires high sintering temperatures when high contents of 

B4C are used. Increased temperature and dwell time significantly improves the relative 

densities, while pressure has less effect. On the interfacial reaction mechanisms, atoms inter-

diffusion has been proposed to occur during the production of TiB whiskers and TiC particles 

by powder metallurgy route. B and C diffuse into Ti matrix while Ti diffuses into the 

vacancies left by B and C in B4C. It has been found experimentally that TiB/TiB2 phases 

primarily form then followed by TiC based on diffusion velocities of B and C atoms in Ti 

matrix. In the reaction sequence, when TiB2 monolithic layer was formed it prevented 

diffusion of C into the Ti matrix and the reaction was stopped.   
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On the microstructure evolution, chemical reaction between Ti and B4C in powder metallurgy 

fabrication route depends on the contact of the reactants and temperature. At lower 

temperature due to poor compaction the reaction does not take place, irrespective of the dwell 

time. Higher temperature improves compaction and activates the reaction, with varied dwell 

time B4C particles transform into coarser TiB whiskers and TiC particles. Reducing particles 

size yields improved tensile strength while hot extrusion of the composites seems to reduce 

ductility. When coarser B4C particles are used TiB/particles clusters are formed, to remove 

them either hot extrusion can be employed or dwelling time can be increased. However, the 

TiB/particles clusters were not completely removed by hot extrusion. These clusters adversely 

affect mechanical properties by acting as stress concentrators. 

 

Strengthening in TMC occur by load transfer from the soft Ti matrix to harder TiB and TiC 

reinforcing phases. TiB whiskers are more effective in carrying load while TiC particles 

retard crack propagation due to their equiaxed shape. Due to the strong interfacial bonds 

between either TiB or TiC with Ti matrix, decohesion was not observed on the fracture 

surface.   

 

Based on the literature reviewed to prevent TiB/particles clusters and be more energy 

efficient, B4C with finer particles size has to be used. There is still a wide gap in the data 

reported on the reaction kinetics in relation to the microstructure evolution for powder 

metallurgy fabrication route. Further investigations with the use of TEM could be helpful. 

Furthermore, reactions activation energies during fabrication by the SPS could also be 

determined.   

 

1.3 Tribology 
Tribology is the science of friction, wear and lubrication of interacting surfaces in relative 

motion. Wear is the major cause of material wastage and loss of mechanical performance and 

any reduction in wear can result in considerable savings. Friction is a principal cause of wear 

and energy dissipation. Considerable savings can be made by improved friction control. It is 

estimated that one-third of the world's energy resources in present use is needed to overcome 

friction in one form or another. Lubrication is an effective means of controlling wear and 

reducing friction. Tribology is a field of science which applies an operational analysis to 

problems of great economic significance such as reliability, maintenance and wear of 
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technical equipment ranging from household appliances to spacecraft (Stachowiak et al., 

2006). 

1.3.1 Wear behaviour of Ti-TiB2/TiB, Ti-TiC and Ti - B4C composites 
Titanium and its alloys exhibit inferior wear resistance and suffer considerable loss in 

mechanical strength  (Balaji et al., 2015). These limitations prevent these class of material in 

many engineering applications (marine, chemical, automotive and petrochemical industries) 

were both corrosion and wear may be encountered (Mathew et al., 2009; Toptan et al., 2016). 

Notwithstanding, addition of hard ceramic particle or short fiber reinforcements such as TiB2, 

TiB and TiC (Choi et al., 2013) into titanium based matrix to produce TMCs, can 

significantly improve its wear resistance. 

 

A summary of available literature on the specific wear rates and average COF values is 

presented in Table 8. IZUI et al. (2018) studied dry sliding wear behaviour of Ti-TiC and Ti-

TiB composites prepared by SPS (900°C, 70MPa and 10min), using a Ø10mm high carbon 

chromium steel counter ball on a three ball-on-disk machine. Sliding velocity of 100mm/s and 

a sliding distance of 500m at a constant load of 23N were used. They observed that the wear 

depth reduced with increasing amount of TiC, that of Ti-15vol%TiC was about 30µm and Ti-

25vol%TiC depth was maintained at the same level as the unworn surface. Although the wear 

depth of Ti-TiB2 composites reduced from about 40 to 20µm for 25 to 35vol%, the depth of 

Ti-35vol%TiB was still higher than that of Ti-25vol%TiC. So, Ti-20vol%TiC composites 

exhibited lower specific wear rates  close to 0 m2/N  than Ti-TiB composites with 4 x 10-13 

m2/N (IZUI et al., 2018). However, an opposite wear behaviour was observed for TiB and 

TiC reinforcements synthesized from Ti and B4C reaction. However, in the case of TiB and 

TiC synthesized from Ti and B4C a different behaviour was observed. 
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Table 8. Specific wear rate and average COF values  of TMCs 

TMC Sliding wear  
conditions 

Material 
 

Relative 
density 

(%) 

Hardness 
(HV) 

Specific wear  
rate (m2/N) 

Average 
COF 

SPS 
Ti: 45 µm 
TiC: 1-2 µm 
 
(IZUI et al., 2018) 

Ball  on disk 
Dry sliding 
Ball: Ø10mm 100Cr6 
Load: 23N 
Sliding 
velocity:100mm/s 

Ti 
Ti 5vol% TiC 
Ti 15vol% TiC 
Ti 25vol% TiC 

- 
- 
- 
- 

- 
- 
- 
- 

~ 6.2 
~ 6 
~ 4 
~ 0 
 

- 
- 
- 
- 
 

Selective laser 
melting 
Ti: 22.5 µm 
TiC: 50nm 
 
(Gu et al., 2012) 

Ball-on-disk 
Dry sliding wear 25°C 
Ball: Ø3mm GCr15 
steel 
Load : 3N 
Sliding velocity: 
560rpm 
Time: 30min 

Ti 
Ti7.5wt%TiC 
Ti12.5wt%TiC 
Ti17.5wt%TiC 
Ti22.5wt% TiC 

 
- 
98.3% 
97.2% 
94.7% 

 
- 
577 
- 
- 
 

- 
b2.6 x 10-16 
b 2.3 x 10-16 
b 3.55 x 10-16 
b 6.5 x10-16 
 

- 
0.23 
0.19 
0.35 
0.41 

Cold isostatic 
pressing  
1400°C, 275MPa, 
2h 
 
 
 
 
 
 
 
(Alman et al., 1999) 

Pin-on-drum 
Dry sliding 
Pin: Sintered Ti-TiC 
and Ti-TiB2 
Pressure: 2.1MPa 
Sliding velocity: 
0.36mm/s 
Time:- 

Ti 
Ti2.5vol%TiC 
Ti5vol%TiC 
Ti10vol%TiC 
Ti20vol%TiC 
Ti40vol%TiC 
 
Ti2.5vol%TiB2 
Ti5vol%TiB2 
Ti10vol%TiB2 
Ti20vol%TiB2 
Ti40vol%TiB2 

99.1% 
89.1% 
94.2% 
93.8% 
96.0% 
95.1% 
 
88.8 
93.3 
96.0 
98.8 
76.5 

297 
245 
296 
304 
354 
354 
 
265 
234 
413 
610 
352 

c 41.0±0.6 
c 46.0±1.4 
c 43.7±1.5 
c 41.5±1.3 
c 34.2±0.6 
c 7.6±0.6 
 
c 49.1±0.6 
c 38.2±0.4 
c 29.5±0.5 
c 12.6±0.4 
c 1.7±0.1 

- 
- 
- 
- 
- 
- 
 
- 
- 
- 
- 
- 

SPS 
Ti: 45 µm 
TiB2: 1-2 µm 
 
(IZUI et al., 2018) 

Ball  on disk 
Dry sliding 
Ball: Ø10mm 100Cr6 
Load: 23N 
Sliding 
velocity:100mm/s 

Ti 
Ti 5vol% TiB2 
Ti 15vol%TiB2 
Ti 25vol%TiB2 
Ti 35vol%TiB2 

- 
- 
- 
- 
- 

- 
- 
- 
- 
- 

~ 6.2 
~ 6 
~ 6.1 
~ 4 
~ 1 

- 
- 
- 
- 
- 

Investment 
casting process 
B4C: 150µm 
 
 
(Kim et al., 2011) 

Ball-on-disk 
Dry sliding 
Ball: 52100 bearing 
steel 
Load: 0.35N 
Sliding 
velocity:125mm/s 
Time: 30min 

Ti 
Ti–0.94 
wt%B4C 
Ti–1.88 
wt%B4C 
Ti–3.76 
wt%B4C 

- 
- 
- 
- 

a134 
a239 
a259 
a306 
 

d 0.57 
d 0.54 
d 0.5 
d 0.15 

- 
- 
- 
- 
 

aHRB 
bm3 N-1 m-1lap-1 (wear rate) 
c Δm, mg (average mass loss) 
dmm3 (wear loss) 
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Qin et al. (2012) investigated the synergistic effect of TiB and TiC (Ti-B4C) reinforcing 

phases on the wear behavior under dry sliding loads of 40-100N, they found that the wear 

resistance of the TMCs increased with increased TiB whiskers volume fraction. Thus, TiB 

whiskers were more effective in improving the wear resistance of TMCs than the TiC 

particles. Similar to Kim et al. (2011) and Balaji et al. (2015) TMC with  higher TiB content, 

16.18vol%TiB and 6.54vol%TiC, and Ti – 15vo%(TiB + TiC) exhibited lower wear loss 

respectively. It was reported that during sliding wear heat is generated from the friction 

between sliding ball and the sample, the heat in turn oxidizes TiB2 into TiO2 and B2O3. 

Thereafter, B2O3 reacts with water to form H3BO3, the two in turn act as solid lubricants  and  

prevent excessive wear (Zhang et al., 2002). Balaji et al. (2015) also mention that the 

presence of Fe-rich wear debris (rotating steel disc) acted as solid lubricant and reduced the 

friction coefficient of the Ti-B4C TMCs. Moreover, the higher aspect ratio and load-bearing 

capacity of TiB during sliding wear was also  reported to the reason for improved wear 

resistance (Qin et al., 2012).  

 

It has to be noted that TiB clusters were present at the interface between the Ti and TiB 

whiskers in the study by IZUI et al. (2018). Smaller TiB clusters fractured due to fatigue 

caused by the sliding load, while it was difficult to fracture the larger TiB clusters and remove 

them from the wear track. So the poor wear resistance of the Ti-TiB could have been due to 

the presence of TiB clusters. Regardless, both reinforcing phases TiB whiskers and TiC 

particles were not pulled out  after siding, this was due to their strong interfacial bonding 

strength with the matrix (Qin et al., 2012).  

 

Worn surfaces analysis showed that adhesive wear mechanisms on titanium. While, the wear 

debris of Ti - (TiB + TiC) composites has been reported to consists of a mixture of titanium 

matrix, hard reinforcements and oxidation fine particles formed  by abrasion, adhesion and 

oxidation as predominant wear mechanisms, which led to three-body abrasive wear (Balaji et 

al., 2015; Kim et al., 2011). A protective layer was formed and it  prevented direct contact 

between the sliding surfaces and protects the composite from severe wear (Balaji et al., 2015). 

The wear behavior of the metal matrix composites has been found to be influenced by the 

size, hardness, volume fraction of reinforcement, the distribution of reinforcement material, 

the nature of the reaction products between Ti and the reinforcement particles and thus the 

interfacial bond strength (IZUI et al., 2018).  

 



57 
 

1.3.1.1 Summary  
The wear behaviour of Ti-TiB and Ti-TiC TMCs is lacking, the available data showed higher 

wear loss for TiB based TMC which could have been due to the presence of TiB clusters. For 

TiB and TiC produced by reactive synthesis of Ti and B4C, TiB whiskers were found to be 

more effective in improving the wear resistance of the TMC than TiC particles. The formation 

of protective solid lubricants such as B2O3 and H3BO3 formed during oxidation of TiB, and 

Fe-rich layer were responsible for the lower wear rates. The wear mechanisms in Ti were 

found to be by adhesion and for the TMCs abrasion, delamination and oxidation. Due to the 

strong interfacial bonding strength for TiB and TiC formed by reactive synthesis of Ti and 

B4C, the reinforcing phases were not pulled during sliding wear. 

 

1.4 Corrosion 
Corrosion is the deterioration of materials as a result of reaction with its environment. For 

corrosion to take place, the formation of a corrosion cell is essential. A corrosion cell is 

essentially comprised of the following four components (Ahmad, 2006); 

 

a. Anode: Oxidation takes place and electrons are released at the anode, which is the more 

reactive metal. 

b. Cathode:  Reduction takes place at the cathode and electrons are consumed. 

c. Electrolyte: It is the electrically conductive solution that must be present for corrosion to 

occur. 

Metallic path: The two electrodes (anode and cathode) are connected externally by a metallic 

conductor  

 

Electrochemical corrosion techniques are sufficiently rapid and accurate thus examination of a 

variety of conditions in a short time (weeks) is achieved. In contrast to salt spray or 

immersion corrosion techniques this could take months. Thus potentiodynamic polarization is 

one of the most preferred techniques used to determine the active/passive characteristics of a 

given metal in solution: i the corrosion potential (Ecorr), ii) corrosion current density (Icorr) and 

iii) the corrosion rate. The polarization diagram for a passive metal with the anodic and 

cathodic branches is presented in Figure 1.18. For the anodic curve, potential scan typically 

starts at Ecorr and scanning in a positive direction, and usually to a potential positive enough to 

oxidize the test solution. The scan rate is typically 0.1 to 5 mV/s and depends on the system 

(Bas et al., 2017).  
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Figure 1.18. Hypothetical polarization diagram for a passive metal with  anodic and cathodic 

branches (Bas et al., 2017) 
 

1.4.1 Corrosion behaviour of Ti-TiB2/TiB, Ti-TiC, TiC-TiB2 and Ti-B4C 
composites 
The corrosion behaviour of TMCs can be significantly affected by the composition, 

reinforcement phases, micro-cracks, residual stresses, micro-crevices, porosity, secondary 

phase precipitates and interfacial products. The type of corrosion taking place in TMCs is 

reported to be galvanic coupling between the matrix and the reinforcement phase. This may 

result in selective corrosion at the matrix/reinforcement interface, chemical degradation of 

reinforcement phases and matrix defects (Doni et al., 2014).   

 

Onuoha et al. (2017) investigated corrosion response of a single phase TiC at room 

temperature in 3.5wt%NaCl, densified to 98% by SPS (1850°C, 5min and 50MPa). Open 

circuit potential (OCP) was measured for 2 hours in order to ensure steady-state conditions. 

The measured average OCP value was -0.209 ± 0.035V and the Ecorr value was -0.173 ± 0.094 

V, while Shvets et al. (2016) reported Ecorr value of  +0.05V for hot pressed TiC. In the 

potentiodynamic polarization curves there was a rapid dissolution then at 0V potential, the 

current density gradually decreased. This was due to passivation of TiC over a wide range of 

potential (0 to 1V) in NaCl solution (Onuoha et al., 2017). Although work by Shvets et al. 

(2016) have reported small passivation region (0.25 to 0.45V) for hot pressed TiC, the current 
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density was sharply slowed down at these potentials then greatly increased, this indicated 

formation of a weak passive oxide film.  

 

Verkhoturov et al. (1988) studied the corrosion behaviour of cold compacted and sintered TiC 

(87% and 55%) and TiB2 (66%) in synthetic sea water. The measured Ecorr values of TiC with 

density of 87% and 55% were -0.18V and -0.16V, while that of TiB2 was more negative -

0.42V showing higher susceptibility to corrosion, respectively. The presented literature in 

Table 8 support this, the Ecorr values of TiC were more positively shifted  (-0.18 to +0.2V) and 

that of TiB2 were negatively shifted (-0.665 to -0.42V) (Ali et al., 2011; Alkhateeb et al., 

2011; Beverskog et al., 1990; Onuoha et al., 2017; Shvets et al., 2016; Verkhoturov et al., 

1988). 

 

The measured Icorr values of the samples in Verkhoturov et al. (1988) were comparatively 

lower  for TiC  (2 x 10-7 A/cm2) and higher for TiB2 (1 x 10-5 A/cm2), this could indicate that 

TiC has a lower dissolution rate compared to TiB2 in synthetic sea water (3.5wt%NaCl). 

Similar results were reported in 40% H2SO4 acidic medium as shown in Figure 1.19, the 

corrosion rate decreased with increasing amount of TiC phase.  Verkhoturov et al. (1988) 

suggest that higher corrosion resistance of TiC was due to two stage oxidation process, firstly  

formation of titanium oxycarbide layer followed by the natural protective layer phases of 

TiO2.H2O. In support of this,  Andreev et al. (1997) also reports the formation of oxycarbide 

layer in TiC. In the case of TiB2, boron anhydride B2O3  form on the surface during oxidation 

and the corresponding  boric acid H3BO3  was  then formed  in the aqueous solution (Ali et 

al., 2011; Verkhoturov et al., 1988). This caused chemical heterogeneity on the surface of 

TiB2 which led to higher corrosion rates.  
 

Furthermore, even when TiC was incorporated in Ti matrix to produce TMCs, the composite 

still exhibited better corrosion resistance than Ti-TiB2 composites in acidic medium at varying 

temperature (50 to 80°C) (Covino Jr et al., 2002). Presented in Table 10 are the Ecorr and Icorr 

values of TiC based composites. The Ecorr values of pure Ti (-0.5 to -0.3V) were positively 

shifted with 20vol%TiC addition (±-0.2 to -0.1V) and comparably close to those of single 

phase TiC (-0.18 to +0.02V). In contrast, the Ecorr values of 20vol%TiB2 composites were 

negatively shifted (±-0.55V) thus lowering the corrosion resistance of pure Ti as shown in 

Table 9. However, it has to be noted that Ti and TiB2 reacted to form TiB phase, so this phase 

also altered the surface chemistry of the composite resulting in mixed potentials. Thus, it is 
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not clear which phase was responsible for a negative Ecorr shift as literature based on TiB 

composites still lacks. The Ti-TiB2 composites yielded higher corrosion rates than Ti-TiC 

composites (Covino Jr et al., 2002).  

 

 
Figure 1.19. Corrosion rates of SHS TiC-TiB2 CMCs in 40% H2SO4, dotted line presents 

simplified TiC-TiB2 phase diagram (Andreev et al., 1997) 
 

Similar results have been reported for TiC-TiB2 ceramic matric composites prepared by self-

propagating high temperature process. In which corroded samples showed a preferential 

dissolution of TiB2 phase at the grain boundaries (Andreev et al., 1997). The corroded 

morphology of the composites reported by (Covino Jr et al., 2002) revealed galvanic 

corrosion took place thus no corrosion attack on the Ti matrix but on the reinforcing phases 

(TiB2, TiB and TiC) was observed.  

Table 9. Titanium Ecorr and Icorr values 
Material, Fabrication and 

Reference 
Corrosion 
conditions 

Relative 
density(%) 

Passive 
range (V) 

Ecorr 
(V) 

Icorr 
(A.cm-2) 

Ti 
Hot pressing @ 1100°C, 120h, 

15°C/min & 40MPa 
(Toptan et al., 2016) 

 
3.5wt% 
NaCl 

 
- 

 
- 

 
-0.499 ± 6 

 

 
- 

Ti 
Vacuum sintering @ 

1400°C, 2h, 10°C/min & 
275MPa 

(Covino Jr et al., 2002) 

 
Deaerated 

2wt%HCl at 
50, 70, and 

90°C 

 
99.1 

 
-0.3 to 2 

 
± -0.5 to -0.3 

 
- 

Ti film 
Activated reactive 

evaporation 
(Beverskog et al., 1990) 1990 

 
1M HCl 

 
99.97 

 
-0.260 to 6 

 
-0.610 

 
6 x 10-6 

Ti 
Vacuum sintering @ 

1400°C, 2h, 10°C/min & 
275MPa  

(Covino Jr et al., 2002) 

 
Deaerated 

2wt%HCl @ 
50°C 

 
99.1 

 
- 

 
± -0.500 
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Table 10. TiC based composites Ecorr and Icorr values 

Material, Fabrication and 
Reference 

Corrosion 
conditions 

Relative 
density(%) 

Passive 
range (V) 

Ecorr 
(V) 

Icorr 
(A.cm-2) 

TiC 
Cold compact and sintered 
(Verkhoturov et al., 1988) 

 
Synthetic 
sea water 

 
87 
55 

 
- 
- 

 
-0.180 
-0.160 

 
2 x 10-7 
2 x 10-7 

TiC 
 Hot pressing 

(Shvets et al., 2016) 

 
3wt%NaCl 

 
- 

 
0.25 to 

0.45 

 
+0.050 

 
- 

TiC 
SPS @ 1850°C, 5min & 

50MPa 
(Onuoha et al., 2017) 

 
3.5 

wt%NaCl 

 
98 

 
0 to 1 

 
-0.173 ± 0.094 

 
1.28× 10−6 

TiC films 
Activated reactive 

evaporation 
(Beverskog et al., 1990) 

 
1M HCl 

 
- 

 
0.09 to 6 

 
+0.200 

 
0.15 x 10-6 

Ti-20vol%TiC 
Vacuum sintering @ 1400°C 

(Covino Jr et al., 2002) 

Deaerated 
2wt%HCl at 
50, 70, and 

90°C 

89 to 96 ± 0.5 to 2 50°C:  ± -0.1 
70 and 80 °C: 

± -0.2 

- 

 

Table 11. TiB2 based composites Ecorr and Icorr values 

Material, Fabrication and 
Reference 

Corrosion 
conditions 

Relative 
density (%) 

Passive 
range (V) 

Ecorr 
(V) 

Icorr 
(A.cm-2) 

TiB2 
Cold compact and sintered 
(Verkhoturov et al., 1988) 

 
Synthetic 
sea water 

 
66 

 
- 

 
-0.420 

 
1 x 10-5 

TiB2 film 
Chemical  vapour deposition 

coated steel substrate 
(Alkhateeb et al., 2011) 

 
0.5M NaCl 

 
- 

 
0.25 to 1 

 
-0.457 @ 0h 

 
-0.409 @ 6h 

 
- 

TiB2 film 
Chemical  vapour deposition 

coated steel substrate 
(Ali et al., 2011) 

 
Simulated 

soil solution 
 

 
- 

 
- 

 
-0.665 

 
1.43 x 10-6 

TiB2 
Self propagating high 
temperature synthesis 
(Andreev et al., 1997) 

 
40% H2SO4 

 
- 

 
- 

 
- 

 
3.67 x 10-2 

Ti-20vol%TiB2 
Vacuum sintering  @ 1400°C 

(Covino Jr et al., 2002) 

 
Deaerated 

2wt%HCl at 
50, 70, and 

90°C 

 
89 to 99 

 
± -0.3 to 2 

 
50 to 80 °C: 

± -0.55 

 
- 

 

1.4.2 Summary 
The literature reviewed here is based on the corrosion behaviour of TiB2 and TiC based 

composites in acidic and neutral media. Although the sample preparations were different 

(coatings and sintering) and also yielded varying relative densities, the Ecorr values were 
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comparably in the same range. It can be deduced that TiC based composites has better 

corrosion resistance than TiB2 based composites. Formation of oxycarbide film together with 

TiO2 passive film on TiC based composites were suggested to be responsible for improved 

corrosion resistance. In the case of TiB2 based composites, TiB2 dissolved to form B2O3 film 

which further reacted to form boric acid thus increasing the corrosion rates. However, the 

presented literature is still insufficient to make a clear conclusion on the influence of TiB and 

TiC reinforcing phases on the corrosion behaviour. Thus, the present study aims to investigate 

the synergy effect of the two phases on the corrosion behaviour of the composites. 

 

1.5 Tribocorrosion  
Between the late 1970s and early 1980s, the effect of wear on corrosion was studied by 

several researchers in different industrial application systems such as abrasion-corrosion, 

erosion-corrosion, or sliding-corrosion (López-Ortega et al., 2018). Several terms commonly 

used in 1980s to describe this mechanism include oxidation wear, corrosive wear, corrosion 

wear and wear-corrosion. The term tribocorrosion was recently adopted in sliding systems and 

the individual mechanisms taking place have been systematically studied since the 1990s 

(Munoz et al., 2011).  

 

1.5.1 Definition of tribocorrosion 
Tribocorrosion can be defined as materials deterioration or irreversible transformation 

resulting from simultaneous action of wear (mechanical degradation) and corrosion (chemical 

degradation) in a corrosive medium (López-Ortega et al., 2018; Mischler, 2008). It involves 

two major scientific areas namely; tribology and corrosion. Tribology is defined as the study 

of friction, wear and lubrication while corrosion involves chemical aspects of materials 

degradation (Ahmad, 2006; Stachowiak et al., 2006). 

 

It is encountered in many areas where it causes damage to installations, machines, and devices 

and there are other industrial applications, where this phenomenon is put to good use, for 

example, electromechanical machining (Mathew et al., 2009). A wide range of industrial 

sectors affected by tribocorrosion include; material processing, energy conversion, 

transportation, oil and gas exploration, medical and dental implants, surgical devices (Fazal et 

al., 2014; Fedrizzi et al., 2002; Landolt et al., 2001; Stack, 2002; Wood, 2017). 
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Evaluation of electrochemically controlled tribocorrosion systems depends on many  factors, 

among them four important parameters are presented in Figure 1.20, namely a) mechanical 

influences related to equipment design and operation, b) electrochemical conditions, c) the 

solution properties and, d) the materials and their surface properties (Landolt et al., 2001). 

 

 
Figure 1.20. Types of parameters affecting tribocorrosion behaviour of a sliding contact 

under electrochemical control 
 

 

1.5.2 Tribocorrosion model for degradation phenomena   
The tribocorrosion model showing chemically and mechanically inert ball sliding on a passive 

metal, immersed in corrosive solution is presented in Figure 1.21. The three areas are of 

concern during wear-corrosion (Mischler et al., 2014). 

Area a, unworn area, it relates to metal surface unaffected by mechanical degradation and is 

only affected with corrosion. Despite of absence of direct interaction with the ball, the 

rubbing still affect corrosion in area a. Under typical tribocorrosion conditions, galvanic 

coupling is established between area a (passive “noble” metal) and area c (de-passivated 

“non-noble” metal). Resulting in electrode potential cathodic shift in area a and anodic shift 

in area c (Toptan et al., 2016), with a consequent change in corrosion rate. Depending on the 

                     Materials (pin and plate) Hardness, plasticity 
                                                    Microstructure, inclusions 
                                                    Surface roughness 
                                           Oxide film properties 
                                           Wear debris, material 
transfer 

Viscocity 
Conductivity 
pH  
Corrosivity 
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TRIBOCORROSION 
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Film growth 
Active dissolution 
Valence 

Electrochemical 
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                               Sliding velocity, type of motion 
                                                       Shape and size of contacting bodies  
                                                       Alignment  
                                                       Vibrations 

 
Solution 
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specific situation, the corrosion rate of area a can differ substantially in absence of rubbing. 

(Mischler et al., 2014) 

Area b, contact area, is subject to mechanical loading (compression, friction) and is subjected 

to a number of phenomena such as frictional heating, elastic and plastic deformation, 

breakdown of the passive film and ejection of metal wear particles. Chemical reactions can 

profoundly affect the mechanical response in area b (Mischler et al., 2014). 

Area c, worn area, has undergone some depassivation (removal of the passive film and 

exposure of bare metal to the solution) resulting either from cracking of friable passive films, 

plastic deformation of the metal or from the detachment of metallic wear particles. As a result, 

area a is subject to enhanced corrosion (wear accelerated corrosion) that can exceed by order 

of magnitudes the typical corrosion rates observed on passive metals (Mischler et al., 2014). 

 

Figure 1.21. Tribocorrosion model  for passive specimen 
 

1.5.3 Tribocorrosion behaviour of TMCs 
Degradation of materials by corrosion and tribocorrosion is encountered in various harsh 

technological applications (Fazal et al., 2014; Fedrizzi et al., 2002; Landolt et al., 2001; 

Mathew et al., 2009; Stack, 2002; Wood, 2017). The literature on the corrosion and 

tribocorrosion behaviour of TMCs is limited (Toptan et al., 2017) and available literature 

involves a variety of newly developed, surface treated and coated Ti-alloys used in 

biomedical implants (Revathi et al., 2016). With the emerging use of TMCs parts in harsh 

applications, their corrosion and tribocorrosion behaviour is yet to be clearly understood.   

 

Toptan et al. (2016) investigated the tribocorrosion behaviour of hot pressed (1100°C, 120min 

and 40MPa) Ti-B4C TMC in 9g/L NaCl. The final TMC was characterised with partially 

reacted B4C particles. The Ecorr value obtained from static polarisation curves of Ti were -499 

Rotating sliding 

Specimen 

a 

b c 

Load 

Wear track 

Exposed area: Corrosion 

Counterface contact area: Wear 
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± 6mV and for Ti-B4C composites were -297 ± 8mV respectively. The positive Ecorr value 

shift when B4C was added in Ti was due to the diminished metallic surface area. Similar 

behaviour of Ecorr positive shift has been reported for Ti6Al4V-B4C composites in static 

corrosion test in 3.5wt%NaCl by (Prakash et al., 2016). Hence, the corrosion resistance was 

improved by the inert physical barrier role of the reinforcement particles (Han et al., 2015). 

Available literature report that addition of ceramic particles may shift the OCP or Ecorr value  

to more noble values this effect may increase the corrosion resistance by the inert physical 

barrier role of the particles (Doni et al., 2014; García et al., 2003; Han et al., 2015; Lampke et 

al., 2006). 

 

Nevertheless, the Icorr value of Ti-B4C ((1.26 ± 0.14) x 10-6 A.cm-2) composites measured in 

Toptan et al. (2016) was relatively higher than that of Ti ((1.26 ± 0.14) x 10-6 A.cm-2). In 

addition, the corrosion resistance values of samples measured by impedance technique for Ti 

was higher than Ti-B4C composites, it was around 106 Ωcm2 and 104 Ωcm2 respectively. The 

lower corrosion resistance value obtained for Ti-B4C composite was due to localized 

corrosion in pore sites particularly near B4C particles agglomerates sites, but for the well 

dispersed B4C in the Ti matrix their interface was free of porosity. Moreover, Han et al. 

(2015) reported that by increasing the B4C content in the composite may results in 

discontinuities of the protective oxide film making the composites more exposed to the 

chloride ions and thus generating a less noble potential. While Song et al. (2005), suggest that 

the presence of corrosive chloride ions in the solution also contribute to the higher current 

densities. Chloride ions destabilises the passive film by changing the composition, 

microstructure or thickness of the passive film resulting in the higher dissolution rate of the 

passive film.  

 

Seah et al. (1998) stated that mechanical properties of material can be weakened by the 

presence of pore. In electrochemistry this effect common since pores are permeable thus they 

provide a passage for electrolyte infiltration in the material. Hence, the exposed larger surface 

area in porous material will be prone to corrosion than in full dense material. Moreover, 

higher current densities will be produced in porous material (Oksiuta et al., 2009). In addition, 

crevices in the material are found to also influence corrosion rates which are not proportional 

to the surface area. Corrosion by crevice effect depends or geometry of pores while pitting 

corrosion depends on the composition. Electrolytes filled in crevices can become acidic or 
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oxygen deficient resulting in an autocatalytic process which accelerates corrosion (Oksiuta et 

al., 2009; Seah et al., 1998). 

 

Electrochemical state of material under sliding can be evaluated by open circuit potential 

(OCP) since no potential is applied. The OCP values are monitored in three stages, first 

without applied load, secondly the load is initiated and the OCP values are reduced, then 

lastly the applied sliding load is removed then the OCP values are stabilized (López-Ortega et 

al., 2018). OCP values measured in sliding conditions in a mixture of potentials from the 

unworn area and worn area (wear track) and galvanic coupling between the two areas may 

take place (López-Ortega et al., 2018; Mischler, 2008). Ponthiaux et al. (2004) mention four 

factors which affect corrosion potential during sliding. 

 

 OCP of the material in worn and unworn areas are in different electrochemical states.  On 

the worn area the surface is damaged, the passive film is removed, material debris and 

corrosion products are absorbed on the surface by mechanical straining resulting sliding 

contact. 

 Worn and unworn areas ratio, if the worn area increases the OCP of the material will shift. 

Depending on the controlling electrochemical process, being either the dissolution of the 

metal (anodic) or the reduction of hydrogen or dissolved oxygen (cathodic). 

 The relative position of worn and unworn areas, since galvanic coupling occurs, current 

flows between anodic and cathodic areas. As a result non-uniform distribution of potential 

and current density over material surface may be induced by ohmic drop. Thus the 

measured OCP is actually an average value depending on that distribution. 

 Anodic and cathodic reactions mechanism and kinetics in the worn and unworn area. 

Using tribocorrosion techniques, friction coefficients (COF) values is simultaneously 

measured with the OCP values (López-Ortega et al., 2018; Mischler, 2008; Toptan et al., 

2016). COF values measured during OCP and polarisation in Toptan et al. (2016), were 

relatively higher in Ti-B4C composites. It was suggest that as the imparted 10N load 

continued stresses, breaking and/or pulling-out of some B4C reinforcing particles may have 

led to third-body abrasion being responsible for the relatively higher COF and causing more 

material damage. In support of this, SEM analysis on worn area revealed fatigue stresses 

created around unreacted B4C particles and de-attachment occurred due to poor bonding with 

Ti matrix. However, under dry sliding wear conditions with loads in the range of 40 - 100N 
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TiB whiskers and TiC particles were not pulled out due to their strong interfacial bonding 

strength with the matrix (Qin et al., 2012). These results could clearly indicate the potential 

use of TiB and TiC based TMCs in wear-corrosion conditions, in contrast to those with 

partially reacted B4C particles 

The Ecorr values of Ti-24vol%B4C composites were shifted from -297±6 to -398±6mV, 

similar with unreinforced Ti from -499±6 to -623±24mV. Regardless the negative shift of 

Ecorr values of the composite, the values was still more positive than that of unreinforced 

titanium. The potential difference of the worn and unworn surface resulted in accelerated 

corrosion under sliding, the Icorr values increased to two decades for Ti, (10.8 ± 3.4) x 10-6 

A.cm-2 and almost two times for composites (2.4 ± 0.9) x 10-6 A.cm-2 (Toptan et al., 2016).   

 

1.5.4 Summary 
The tribocorrosion properties of Ti can be significantly improved with addition of ceramic 

B4C by shifting the Ecorr values positively. However, with coarser and high volume fraction of 

B4C particles agglomerates sites may be created and result in porosity. Porosity can reduce the 

corrosion resistance of the composites by increasing Icorr values thus corrosion rates would be 

accelerated. Moreover, the stresses can be concentrated around the partially B4C particles 

causing de-attachment from the matrix when sliding wear continues. The particles will act as 

third-body abrasives and result in higher COF values, thus severe damage will be induced. 

Nevertheless, the Ecorr values of the TMCs were still more positive than that of Ti, showing 

the load carrying capacity by the B4C. This indicated good tribocorrosion properties 

improvement when B4C particles were added. 

Regardless the literature based on the tribocorrosion behaviour of Ti-B4C and Ti-(TiB2/TiB + 

TiC) TMCs is still lacking in both acidic and neutral solutions. Owing to emerging 

technological applications of TMC’s in harsh environments such as in automobile brake 

rotors where both corrosion and wear are encountered during road deicing with salts. It is 

important to evaluate and understand their performance in such harsh conditions. Hence there 

is still lot of work to be done under this research topic. The present study aims to evaluate the 

tribocorrosion behaviour of Ti - (TiB + TiC) TMCs in saline conditions. 
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2.1 Materials of study 
As-received CP-Ti powders with -325 mesh sizes were supplied by PI-KEM Ltd., UK 

(Ti(25.9µm)) and CERAC incorporated, US (Ti(35.9µm)) both were prepared by Hydride 

dehydride (HDH)  process producing powders with angular morphology respectively. The 

boron carbide powders were supplied by H.C. Starck with particles size of 0.3µm-0.6µm B4C 

(1.67µm) and LTS research laboratories. Inc. with -400 mesh B4C(1.79µm) and -325 mesh 

B4C(17.9µm). 

 

2.2 Elemental analysis by ICP-OES and Instrumental gas analysis 
Trace elements analysis in CP-Ti powders were analysed by Inductively Coupled Plasma - 

Optical Emission Spectrometry ICP-OES (JY 2000 2) technique at Marion Technologie. The 

interstitial elements O, N, H and C were analysed with instrumental gas analysis technique at 

TIMET, Fr using LECO ONH836 and LECO CS844 respectively. 

 

2.3 X-ray Diffraction 
Phases present in pure powders, mixed powders and sintered samples were identified by using 

D4-Endeavor X-ray diffractometer by Bruker with monochromatic Cu Kα radiation at 40KV 

and 40mA. The diffraction patterns were initially recorded in 2-theta range 10 -100° at step 

size of 0.01569. It was then found that the interesting section in the patterns for CP-Ti and Ti-

B4C TMCs were in between 34 - 42° and 20 - 50° 2 - theta range, the diffraction was then 

registered at this range at a much lower step size of 0.00998 respectively. The phases present 

were identified by searching and matching of peak positions and intensities with those in 

JCPDS using EVA software.  The Reference Intensity Ratio (RIR) method was then used to 

quantify the concentration of phases formed in 20mm TMCs. 

 

2.4 Scanning electron microscope  
Particles shape, morphology and size were examined by scanning electron microscope (SEM) 

JSM6510LV with tungsten filament at 20KV acceleration voltage. The SEM was equipped 

with energy dispersive spectrometry (EDS) and the elements presents were confirmed with 

this technique. 

 

2.5 Particle sizes  
The particle sizes and distribution (PSD) was determined using Mastersizer 3000 in dry 

conditions at Laboratoire de Genie chimique, Fr (LGC). 



72 
 

 

2.6 Turbula mixing  
The as-received powders prepared in compositions of Ti1wt%B4C, Ti2.5wt%B4C and 

Ti5wt%B4C and Ti10wt%B4C for the varying B4C particles sizes were turbula mixed in dry 

conditions for 1 hour. Alumina balls were used as mixing medium and powder to ball ratio of 

1:1 was used.  

 

2.7 Spark Plasma Sintering 
CP-Ti and Ti-B4C powders were spark plasma sintered using a Dr. Sinter 2080 unit, SPS 

Syntex Inc., Japan, (Figure 2.1) available at the Plateforme Nationale de Frittage Flash located 

at the Université Toulouse 3 Paul Sabatier, using Ø8mm and  Ø20mm Graphite die (Gr die) 

lined with a 0.2 mm graphite paper (PERMA-FOIL®Toyo Tanso). Sintering was performed 

at varying temperatures in the range of 550-900°C and 800-1100°C for CP-Ti and Ti-B4C 

powders at pressure range of 25MPa-75MPa respectively. Dwelling time was varied from 

3min to 30min and a constant heating rate of 100°C/min was used. K-type thermocouple was 

inserted 3mm in depth on the outer diameter of the Gr die to monitor all temperature readings. 

To ensure a uniform initial compaction for all the powders, pre-compaction at 25MPa for 3 

minutes was done prior to the start of the thermal cycle. In SPS the temperature distribution is 

known to differ. Especially the temperature within a conductive powder is normally higher 

than the one measured on the graphite die (Anselmi-Tamburini et al., 2005). Therefore, sets 

of experiments were performed to measure the real temperature in the powder and to 

determine temperature difference between Gr die and CP-Ti powder using K-type 

thermocouples. Gr dies with Ø8 and Ø20 diameters were used, a hole was drilled through Gr 

die reaching maximum thickness (16.6 and 29.6 mm respectively) and then the thermocouple 

was inserted through reaching CP-Ti powder filled inside Gr die. The second thermocouple 

was inserted as normal (3mm in depth) on the Gr die as illustrated in Figure 2.2. The set-point 

temperature was 800°C and 25MPa pressure was used at constant heating rate of 100°C/min 

with a dwelling time of 3 min. 
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Figure 2.1. Dr. Sinter 2080 Spark Plasma Sintering unit 
 

 
Figure 2.2. Thermocouples positions for temperature measurements 

In (a) Ø8 mm and (b) Ø20 mm Gr dies 
 

2.8 Relative density  
The relative density of the sintered samples was measured by Archimedes principle using a 

hydrostatic balance (Sartorius MSE224S-YDK03). Before measurements, the graphite 

adhered to the sintered pellets was removed by grinding with P320 SiC paper. Measurements 

were done by weighing the sample in air and submerged in water, then with the use of [E.q 

13] configured in the hydrostatic balance the density of the sample was calculated. With the 

use of theoretical densities the relative density was calculated. Samples were dried in oven at 

150°C for 24 hours and measurements were repeated 3 to 4 times. 

a b 

Inside powder 

Gr die surface 
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                                                           ρ =
mair  ×ρwater

mair − mwater
                                       [E. q 13]  

 

When the relative density measured was or less than 92%, the relative density was measured 

geometrically. The sample was weighed and its dimensions (diameter and thickness) were 

measured using a micrometre to calculate the volume. The density was measured using [E.q 

14] and using theoretical densities of CP-Ti and Ti-(TiB2+TiB+TiC) composites the relative 

densities were determined. Whereby 𝜌 is the density, 𝑚 is the sample mass and 𝑣 is the 

volume. 

                                                                    𝜌 =
𝑚

𝑉
                                                              [E. q 14]    

 

2.9 Hardness testing  
The sintered samples were cold mounted using epoxy resin and the surface was grounded 

using a series of SiC papers P320, P600, P1200 and P2400. Then final polishing with 

colloidal silica on a neoprene cloth for a minimum of 10 min was performed to produce a 

scratch free surface. Vickers hardness was then determined using a HM-200 Mitutoyo 

hardness tester on the polished pellets at a load of 0.5kg and 10 indentations were made in 

different sections of the samples.  

 

2.10 Microstructure analysis by SEM/FIB and TEM 
Chemical etching was done for 15s to reveal the microstructure using Kroll’s etchant 

consisting of 92ml distilled water, 6ml of nitric acid and 2ml hydrofluoric acid. The etched 

sintered samples were thoroughly rinsed with tap water to remove any traces of the etchant 

and then hot dried. The microstructure was observed and analysed using a SEM 

(JSM6510LV). To further understand phase transformations and products formed, lamellae 

were extracted from the reinforcements/matrix interface in Ti5wt%B4C TMCs (8mm in 

diameter) sintered at 800°C and 1100°C using Focused Ion Beam (SEM/FIB FEI HELIOS 

600i – EDS) equipment. Thereafter, the crystallography and elemental compositions were 

analysed using a Transmission Electron Microscope (TEM JEOL JEM-ARM200F Cold FEG) 

corrected probe coupled to EDX spectrometer and a loss of energy spectrometer (EELS). The 

FIB and TEM analysis were performed at UMS CASTAING in Toulouse. With the aid of 

CysTBox software the Fast Fourier Transform (FFT) patterns were obtained from the TEM 

crystallographic images to verify the phases formed. FFT patterns analyses lattice planes 
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coordinates and experimental d-spacing values matching the theoretical d-spacing values of 

the respective phases to be analysed (Klinger et al., 2015). 
 

2.11 Corrosion tests 
Corrosion and tribocorrosion tests were performed at the Center for Nano-Engineering and 

Tribocorrosion at the University of Johannesburg in South Africa. Sintered samples at 1000 

and 1100°C at 25MPa and 75MPa with a diameter of 20mm for electrochemical 

measurements were prepared by attaching copper wire using adhesive aluminium foil on one 

surface of the sample and cold mounted using epoxy resin for insulation. A surface area of 

3.14cm2 was left exposed to the electrolyte. Cold mounted samples were then grinded on 

Saphir 520 automatic polishing using SiC P320 paper, polished with Aka-allegran 3 using 

diamaxx 6µm poly as lubricant and final polishing with aka-chemal using alkaline 0.2µm 

fumed silica. After polishing the pellets were cleaned with ethanol to remove residual 

polishing medium. Princeton Applied Research Potentiostat (VersaSTAT 4) with versastudio 

electrochemical software (version 2.52.3) was used to perform corrosion tests at room 

temperature.  The corrosion cell setup consisted of Ag/AgCl (3M KCl) reference electrode, 

graphite as counter electrode and sintered samples as working electrodes all immersed in 

3.5wt%NaCl electrolyte. The open circuit potential (OCP) was conducted for 2 hours and 

potentiodynamic polarization (PDP) was conducted at set-point potentials of -500mV to 

+1000mV at a scanning rate of 2mV/s.  

 

2.12 Tribocorrosion tests 
Prior tribocorrosion testing the bare sintered pellets were metallorgraphycally prepared as in 

corrosion testing but without attaching copper wire. Tribocorrosion behaviour of the sintered 

pellets was investigated on Anton Paar pin-on-disk tribometer (TRB) integrated with a 

Versastat 4 potentiostat shown in Figure 2.3. Tests were conducted on rotating sliding under 

controlled load and linear speed of 2N and 0.55cm/s respectively. The counterface material 

was 6mm ZrO2 ball and the wear track diameter was kept at 0.88mm. The exposed surface 

area of sintered pellets was 1.77cm2. The test cell, sample holder and ball holder were made 

from an insulating material to prevent any electric conductive interference. The tribocorrosion 

cell was filled with 3.5wt%NaCl electrolyte containing Ag/AgCl (3M KCl) reference 

electrode, graphite counter electrode and sintered pellets as working electrodes. The open 

circuit potential (OCP) were done for 30 min without load, 60 min with applied load and 
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thereafter the load was removed and OCP let to stabilize for 30min. On freshly polished 

samples surface, the potentiodynamic polarization (PDP) tests were done at potentials of -

500mV to +1000mV with a scan rate of 2mV/s 

 

 

Figure 2.3. Tribocorrosion setup a) Anton Paar pin-on-disk tribometer (TRB) intergrated with 
Versastat, b) Cell-setup with electrodes 

 

2.13 Characterisation of tribocorroded samples  
The tribocorroded sintered pellets worn tracks surface were then analysed using optical 

microscope and SEM (JSM6510LV). The depth and width of the tracks was measured with 

Sensofar Interferometric and Confocal Microscope - S Neox. The volume loss (Vw) was 

calculated for a half-ellipse track using [Eq 10]  respectively (Guiderdoni et al., 2013). 

          Vw (mm3) =
1

2
.πrd. 2πL′                                   [Eq. 10] 
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3.0 Introduction  
The selection of metal matrix entirely depend on foremost compatibility with the reinforcing 

phase, required properties, intended applications and the cost efficiency (Nalwa, 1999).  In 

this regard, when chemical compatibility is obtained between the two distinct phases, the 

resultant MMC have outstanding properties such as increased yield and tensile strength at 

room and elevated temperatures, increased young modulus of elasticity, improved corrosion 

and wear resistance over the individual phases (Balaji et al., 2015; Chawla et al., 2006; Choi 

et al., 2013; Kim et al., 2011).  

In this study two CP-Ti powders with varying chemistry were sintered at varying temperature 

and pressure. In this chapter the powders were sintered using the economic SPS technique 

with pulsed electric current assisted with pressure(Tokita, 1999). The effect of sintering 

temperature and  pressure on densification, microstructure and mechanical properties were 

thoroughly investigated on CP-Ti powders containing different amounts of interstitial 

elements. 
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3.1 Characterizations of CP-Ti powders  
Particles morphology of the Ti powders is shown in Figure 3.1. It was observed from the 

SEM micrographs that the Ti powders particles exhibited different morphology. The Ti 

powder with D50 particles size of 25.9µm was irregular shaped and that with 35.9µm the 

periphery was smoother. The PSD analysis showed that CP-Ti(25.9µm) had a larger particles 

size distribution than Ti(35.9µm). The elemental analysis shown in Table 12 revealed 

significant difference in compositions. CP-Ti(25.9µm) had high oxygen content (7315ppm) 

but with low hydrogen content (546ppm), whereas CP-Ti(35.9µm) had high hydrogen content 

(2226 ppm) and low oxygen content (2451 ppm). A high iron content of 298ppm was 

analyzed in CP-Ti(25.9µm) while it was lower in CP-Ti(35.9µm) with 25ppm. In the XRD 

pattern shown in Figure 3.2, both Ti powders were identified by HCP α-Ti phase while TiH2 

lines were also detected for Ti(35.9µm). The presence of the hydride phase in the latter 

powder can result from an incomplete removal of hydrogen during processing, especially 

since hydrogen is present in high amount compared to Ti(25.9µm). 

Table 12. Interstitial elements content (ppm), determined using instrumental gas analysis 
 C H N O Fe* 
CP-Ti(25.9µm) 205 546 175 7315 298 
CP-Ti(35.9µm) 125 2226 326 2451 25 
*ICP-OES 

 

Figure 3.1. SEM micrographs of -325mesh Ti powders and their respective PSD analysis, a) 
PI-KEM Ltd., UK and b) CERAC incorporated, US 

 

 

a b 

 D50=25,9µm D50=35,9µm 
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Figure 3.2. XRD pattern of as-received powders 
 

3.2 Temperature variation during sintering  
The temperature difference between Gr die and powder was measured in Ø8mm and Ø20mm. 

Figure 3.3 shows the temperature difference in the two measured locations. It was observed 

that the temperature increased linearly with time for the two locations. A variation in 

temperature was observed from 240s until final stages of the sintering cycle. The overall 

temperature measured in the powder was approximately 8% higher than in the Gr die. For 

Ø8mm Gr die in Figure 3.3(a), it was found that when ramping up to reach the set-point 

temperature of 800°C the temperature overshoot to 807°C then stabilized to 800°C at 

dwelling time. A similar behaviour was observed for Ti powder but higher temperatures were 

obtained in powder than in Gr die. Higher temperature of 874°C was reached before dwelling 

which thereafter lowered to 868°C just below 882°C α to β-Ti theoretical transus temperature. 

Hence, the temperature difference just before and after dwelling was 67°C and 68°C 

respectively. In comparison, for a Ø20mm Gr die, much higher temperatures of approximately 

10% exceeding the theoretical transus temperature were reached. Temperature difference of 

97°C and 89°C before and after dwelling were recorded (see Figure 3.3(b)). Figure 3.3(c) 

further shows that temperature of CP-Ti powder in Ø20mm Gr die was approximately 21°C 

higher than powder in Ø8mm Gr die. The temperature difference measured between CP-Ti 

(1041°C) and Gr die (1010°C) reported in Matsugi et al. (2003) was 31°C. Temperature 

measurements depend on the location of the thermocouple, in Matsugi et al. (2003) the 

thermocouple was positioned 2mm from the internal diameter and in this study it was 

positioned 3mm from the outer diameter. Hence with temperature gradient decreasing from 

the powder to the surface of the Gr die the temperature difference in Matsugi et al. (2003) was 

lower than in the present study. 

CP-Ti(25.9µm) 

CP-Ti(35.9µm) 
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Figure 3.3. Temperature difference between Gr die and Ti powder, a) Ø8 Gr die, b) Ø20 Gr 
die and c) Temperature difference between Ø8 and  Ø20 Gr dies 

 

3.3 Effect of sintering temperature and pressure on densification 
Figure 3.4 shows the variation of relative density for Ø8mm SPS pellets with the sintering 

temperatures for both CP-Ti(25.9µm) and CP-Ti(35.9µm). A density of 99% for CP-

Ti(25.9µm) and CP-Ti(35.9µm) was reached at pressure of 25MPa at  800°C and 900°C 

respectively. Further, as expected densification above 95% is reached at much lower 

temperatures as the applied pressure (75MPa) is increased. Comparing to the alloy Ti6Al4V 

(Garbiec et al., 2016) full densification was reached at 1000°C with higher heating rate of 

300°C/min and that of intermetallic TiAl (Couret et al., 2008) obtained at 950°C in similar 

SPS conditions.  More surprising, at 550°C and 650°C for 25MPa the densification of CP-

Ti(25.9µm) pellets was expected to be higher than CP-Ti(35.9µm) because of the small 

particles sizes. Spherical “like” particles tends to densify faster than irregular shaped ones. 

Grain growth is rapid for spherical particles because of higher initial particle-to-particle 

contacts with smaller pores. In contrast to irregular particles there is less particles interactions 

larger pores exist and lead to lower densification (Weston et al., 2015). In addition, the early 

microstructural transformation of CP-Ti(35.9µm) due to high amount of hydrogen (lower 

oxygen content) lowering the transus temperature could be  promoting diffusion of atoms 

resulted in faster densification. This effect was also noticed at the respective increasing 
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pressures at 550°C for CP-Ti(35.9µm). This indicated that for CP-Ti(25.9µm) with high 

amount of dissolved oxygen increased the transus temperature thus limiting atoms diffusion 

for enhancing densification at lower temperatures.  

 

 

Figure 3.4. Evolution of the relative density versus set-point temperature for three applied 
pressure a)25, b)50 and c)75MPa for CP-Ti(25.9µm) and CP-Ti(35.9µm) SPS pellets 

 

3.4 Effect of sintering temperature and pressure on the microstructure 
XRD patterns of Ø8mm SPS pellets sintered at various temperatures is shown in Figure 3.5. 

No specific effect is observed since all the XRD patterns of the pellets are similar to those of 

the starting powders. Except the slight negative and positive 2-theta shift observed when 

temperature and pressure were increased respectively. In the CP-Ti(25.9µm) structure at 

25MPa shown in Figure 3.5(a), the 2-theta angle slightly shifts to the left with increasing 

temperature, indicating that the lattice parameters are increasing and thus unit cell expansion. 

The negative 2-theta shift was however negligible at 50MPa and also for CP-Ti(35.9µm) in 

Figure 3.5 (c and d). Figure 3.6 shows the effect of applied pressure on the structure of the 

sintered pellets. In Figure 3.6(a) for CP-Ti(25.9µm) at lower temperature of 650°C with 

increased pressure there was a negligible positive shift of 2-theta angle, this behaviour was 

however not observed for CP-Ti(35.9µm) see Figure 3.6(c). For a temperature of 900°C in 

Figure 3.6(b), the positive shift of 2-theta angle was more pronounced for 50MPa than 

75MPa, as for CP-Ti(35.9µm) in Figure 3.6(c and d) the shift was negligible. Comparing CP-

Ti(25.9µm) and CP-Ti(35.9µm), the lattice parameters for CP-Ti(25.9µm) are reduced with 

the change in pressure at all temperatures but for CP-Ti(35.9µm) the change is negligible 

under the same conditions. Moreover the peak for hydrogen in CP-Ti(35.9µm) was detected 

on SPS samples showing no dehydrogenation took place. 

CP-Ti (25.9µm) 
CP-Ti (35.9µm) 

CP-Ti (25.9µm) 
CP-Ti (35.9µm) 

CP-Ti (25.9µm) 
CP-Ti (35.9µm) 
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Figure 3.5. Effect of temperature on the structure of SPS pellets at 25MPa  and 50MPa for 
CP- Ti(25.9µm) (a and b) and CP-Ti(35.9µm) (c and d) 

 

 

Figure 3.6. Effect of pressure on the structure of SPS pellets CP-Ti(25.9µm) a) 650°C, b) 
900°C and CP-Ti(35.9µm) c) 650°C and  d) 900°C 
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Microstructural evolution of CP-Ti(25.9µm) sintered pellets with increasing temperatures and 

pressure is presented in Figure 3.7. Porosity was observed at low temperatures of 550°C and 

650°C, with the respective pressure and this was in good agreement relative density evolution 

reported in Figure 3.4.  

 

 

Figure 3.7. SEM micrographs of CP-Ti(25.9µm) SPS pellets 
 

As previously discussed for varying temperature in the Gr die and powder, the actual 

temperature of the powder was higher than set-point temperature. In this discussion, we 

considered the actual temperature of the sample to be in excess of 68°C. Microstructural 

transformation of CP-Ti(25.9µm) at 800°C and 25MPa when cooling from above beta phase 

550ºC 

650ºC 

800ºC 

900ºC 

25MPa 50MPa 75MPa 

αs-phase  αp-phase αs-phase 

αp-phase 
αs-phase 

αp-phase 
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transus temperature, show nucleation and growth of secondary α-phase (αs) identified as the 

brighter phase at the grain boundaries of primary α-phase (αp) which was identified as the 

darker phase (Lütjering et al., 2007b). This could indicate that αs-phase nucleation is initiated 

in the temperature range 718°C - 868°C, with few degrees below the α to β-Ti transus 

temperature for high purity titanium.  When temperature was further increased to 900°C the 

microstructure transformed into equiaxed like structure, with increased volume fraction (21%) 

of αs-phase. It was also observed that by increasing pressure to 50MPa at 800°C, an increase 

in the volume fraction (76%) of αs-phase was noticed and decreased at 75MPa (19%). This 

was however not observed at 900°C, only the equiaxed like structure for αs-phase became 

well defined.  

 

Microstructural evolution of CP-Ti(35.9µm) is shown in Figure 3.8, when the temperature 

was increased to set-point of 800°C the microstructure completely transformed to lamellar 

structures with coarser αs-phase, which was very visible as the pressure was increased to 

50MPa. The pressure effect on the lamellar structure and αs-phase volume fraction was 

minimal (insignificant phase shift as revealed by the diffraction patterns in Figure 3.6. 

Nucleation and growth of αs-phase seem to have occurred at much lower temperatures of 

618°C in the CP-Ti(35.9µm) as compared with CP-Ti(25.9µm)).  

 

For the two powders investigated the dominant phases present were αp and αs-phases because 

there were few β-phase stabilising elements. When CP-Ti is heated to the β-Ti region and 

cooled down to α-Ti region, β-Ti phase is present only in small quantities or not retained and 

the structure transforms back to its room temperature α-Ti phase. Microstructure by diffusion 

controlled nucleation and growth is obtained by slower cooling rates producing a coarse 

Widmanstätten-α plus α-prime as observed for CP-Ti(35.9µm).  
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Figure 3.8. SEM micrographs of CP-Ti(35.9µm) SPS pellets 
 

Microstructural transformation for CP-Ti(25.9µm) and CP-Ti(35.9µm) at 800°C at the 

various pressures is presented in Figure 3.9. The morphology of αs-phase in the two samples 

was different at all pressures. At 25MPa, CP-Ti(25.9µm) has a combination of needle-like and 

irregular-shaped αs-phase. When pressure was increased to 50MPa αs-phase grain size 

increased then reduced at 75MPa. CP-Ti(35.9µm) at 25MPa has elongated needle-like and 

thickened αs-phase showing the formation of lamellar structure. The lamellar structure is 

clearly visible at 50MPa and 75MPa for CP-Ti(35.9µm) where the grain sizes slightly 

25MPa 50MPa 75MPa 

550ºC 

650ºC 

800ºC 

900ºC 

αs-phase 

αp-phase 
αs-phase 

αp-phase 

αp-phase 
αp-phase 
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increased. These observations indicate that CP-Ti(25.9µm) microstructure transformation was 

delayed due to the high amount of dissolved oxygen (Table 12) which stabilized the αp-phase. 

On the contrary, high amount of beta phase stabilizer hydrogen was measured in CP-

Ti(35.9µm) (Table 12), promoting early microstructure transformation. 

 

 

Figure 3.9. SEM micrographs for microstructure transformation at 800°C and varying 
pressures of 25-75MPa, CP-Ti(25.9µm) (a, b & c), CP-Ti(35.9µm) (d, e & f) 

 

Moreover, on the grain growth with increase in pressure it appeared that different mechanisms 

occur during sintering and this phenomenon was more visible for CP-Ti(25.9µm). At low 

pressure of 25MPa the dominant mechanism could be due to electric discharging and neck 

formations between particles. This occurred by spark discharging between particles whereby 

high temperatures are reached causing vaporization and melting at the particles surface. This 

transient phenomenon resulted in necks formation around the contact area between the 

particles. The necks gradually developed and plastic deformation progressed during sintering 

until full densification was reached (Tokita, 1999). However, at high pressures these 

mechanisms were only dominant in the early stages of sintering. At high sintering pressure of 

50MPa and 75MPa the possible mechanisms occurred were electric discharges dominant only 

in the beginning of sintering and were suppressed after. Particles rapidly plastically deformed 

and rapid neck formation occurred in favor of the Joule effect which enhanced diffusion and 
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the consequent grain growth. Hence sintering occurred by mechanical mechanisms in contrast 

to low sintering pressure (Garbiec et al., 2016).   

3.5 Effect of sintering temperature and pressure on Vickers hardness 
 Hardness evolution with increasing temperature and pressure for CP-Ti(25.9µm) and CP-

Ti(35.9µm) is shown in Figure 3.10. The hardness of CP-Ti(25.9µm) at 25MPa increased as 

the temperature was increased from 550°C to 800°C then decreased after at higher 

temperatures. This could be due to the 21% volume fraction of αs-phase formed at 900°C, in 

contrast to 12% at 800°C. The same behaviour is observed at 75MPa. Whereas CP-

Ti(35.9µm) hardness increases with increasing temperature and pressure. It seems that CP-

Ti(35.9µm) present the same hardness, whatever the applied pressure. The plateau was 

reached at lower temperature as the pressure was increased. There was a significant difference 

in hardness values for CP-Ti(25.9µm) and CP-Ti(35.9µm) SPS pellets, the values are in 

between 102-340HV and 160-260HV respectively, in agreement with values of the literature 

(Shon et al., 2014b; Welsch et al., 1993). The highest hardness of 340HV was obtained at 

25MPa and 800°C for CP-Ti(25.9µm) with a “needle-like’’ microstructure consisting of low 

volume fraction of αs-phase  as shown in Figure 3.9(a), and that of  CP-Ti(35.9µm) with 

lamellar microstructure  in Figure 3.9(f) was 262HV at 25MPa and 900°C.The high hardness 

of CP-Ti(25.9µm) was attributed by the smaller particle sizes (25.9μm) (according to Hall-

Petch) (Callister et al., 2011) and the high amount of oxygen dissolved in the matrix delaying 

the structural transformation into a lamellar structure with low mechanical properties. These 

results are similar to those reported by (Shon et al., 2014b), who reported that CP-Ti with 

25.06μm particles sizes with highest oxygen content yielded high hardness, tensile strength 

and reduced ductility, as opposed to 86.368μm powder. Zadra et al. (2008) investigated the 

dependence of mechanical properties on oxygen content by investigating CP-Ti powders of 

the same particles size of 45μm but different oxygen contents. Their results also demonstrated 

the same effect of oxygen on mechanical properties agreeing with the present study.  
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Figure 3.10. Vickers hardness vs temperature at 25MPa, 50MPa and 75MPa for CP-
Ti(25.9µm) . and CP-Ti(35.9µm) SPS pellets 

 

The Vickers hardness was plotted as a function of the relative density (Figure 3.11). SPS 

pellets with highest relative density have high hardness and vice versa (Miklaszewski et al., 

2018). The effect of pressure on densification is observed, the relative densities are in the 

range 77-100%, 93-100% and 97-100% for 25MPa, 50MPa and 75MPa respectively. 

However, the increased applied pressure shows to have minor effect on the hardness of the 

SPS pellets especially for those sintered at high temperatures (800-900°C) the values obtained 

are almost in the same range. 

 

 

Figure 3.11. Vickers hardness vs relative density at 25MPa, 50MPa and 75MPa for CP-
Ti(25.9µm) and CP-Ti(35.9µm) SPS pellets 

 

Summary  
Sintered CP-Ti samples were obtained at temperatures ranging from 550 to 900°C from CP-Ti 

powders of different composition. Full densification was obtained at 25MPa at temperatures 

of 800°C and 900°C for CP-Ti(25.9µm) and CP-Ti(35.9µm) respectively. The microstructure 

transformation for CP-Ti(25.9µm) with high amount of oxygen was delayed and only started 
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CP-Ti (35.9µm) 
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CP-Ti (35.9µm) 

CP-Ti (25.9µm) 
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at higher temperatures. As for CP-Ti(35.9µm) with high amount of hydrogen the 

transformation was promoted at very low temperatures and increased pressure. As found in 

literature oxygen is α-phase stabiliser raising the α to β transus temperature while hydrogen is 

a β-phase stabiliser lowering the transus temperature. The different elemental composition of 

the fully dense samples resulted in different microstructures formation with CP-Ti(25.9µm) 

characterised by needle like structure and for CP-Ti(35.9µm) lamellar structure was obtained. 

Thus CP-Ti(25.9µm) exhibited higher Vickers hardness of 340HV compared to CP-

Ti(35.9µm) with 262HV. In addition, smaller particles size resulting in retention of small 

grains for CP-Ti(25.9µm) also contributed to the high Vickers hardness value obtained in 

comparison to CP-Ti(35.9µm). It was found that increase of αs-phase volume fraction with 

pressure could be related to electric discharges between particles and plastic deformation of 

particles at low and high pressure respectively. Increment of αs-phase volume fraction was 

found to be influenced by increased pressure, temperature and high amount of hydrogen. 
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4.0 Introduction  
Fabrication of conventional TMCs based on pure TiB2/TiB and TiC reinforcing phases with 

very high melting temperatures compared with B4C, often requires much higher temperatures 

for full consolidation. Both the energy consumption and the related cost of the reinforcing 

phases are high (Vallauri et al., 2008; Wang et al., 2012). For economical reason, B4C was 

chosen as source for the production of the reinforcing phases by reactive sintering with CP-Ti 

matrix. Moreover SPS technique, which is known to consolidate materials within short period 

due to the application of pulsed electric current and pressure reducing energy consumptions, 

was employed (Munir et al., 2006; Orru et al., 2009). 

 

In this chapter, simultaneous synthesis and consolidation homogenously distributed TiB and 

TiC phases in the titanium matrix was investigated. The involved reaction kinetics between 

pure CP-Ti and B4C powders of varying particles size and the influence of temperature, 

pressure and dwell time on the reaction was studied. Moreover, to effectively understand 

microstructure evolution, phase products formations, particularly TMCs consolidated from 

sub-micron B4C powders, FIB and TEM analyses were carried out. Thereafter the weight 

percent of TiB and TiC on the fully consolidated TMCs were estimated with reference 

intensity ratio (RIR) method and the Vickers hardness values were quantified.  
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4.1Characterization as-received CP-Ti (25.9μm) and B4C powders 
A detailed characterization of as-received CP-Ti powder with D50 of 25.9μm obtained from 

PI-KEM Ltd., UK has already been discussed in Chapter 3. In this section three ceramic B4C 

powders with varying particles size obtained from H.C. Starck (0.3 - 0.6µm) and LTS 

research laboratories. Inc. with (-400 and -325 mesh) were characterized. In addition, the 

powder mixtures of B4C powders with CP-Ti(25.9μm) were also characterized. The SEM 

morphology and the particles size and distributions (PSD) of the as-received powder are 

presented in Figure 4.1: a) Ti with D50 size of 25.9μm and B4C powders with varying D50 sizes 

of b) 1.67, c) 1.79 and d) 17.9μm. 

 

Figure 4.1. As received powders a) Ti(25.9µm) , b) B4C (1.67µm), c) B4C (1.79µm) and d) 
B4C (17.9µm) 

 

a 

b 

c 

d D50=17,9μm 

D50=25.9μm 

D50=1,79μm 

D50=1.67μm 
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We can observe that both Ti and B4C powders are irregular shaped and the PSD of the B4C 

powders gets narrow with increasing D50 size. CP-Ti (25.9μm) with lower hydrogen content 

(546ppm) was chosen to reactively sinter with the B4C powders to produce the desired TMCs. 

The XRD patterns of the pure powders are reported in Figure 4.2 CP-Ti(25.9μm) was 

characterized with alpha Ti phase and the B4C powders contained elemental carbon and B2O3 

phases. We can observe in the XRD patterns of B4C the peaks become narrower with 

reducing particles size. 

 

 

Figure 4.2. XRD pattern for Ti and B4C as received powders 
 

4.2 Characterization of mixed CP-Ti (25.9μm) and B4C powders 
To achieve a homogenous microstructure of sintered TMCs, the starting powders must be 

effectively homogenized by mixing. This method is important and can significantly affect the 

quality and properties of the final TMC. Ti (25.9μm) and B4C powders were carefully mixed 

at weight percent ratios of 99:1, 97.5:2.5, 95:5, 90:10 to produce reinforcing phases (TiB and 

TiC) in volume percentages of 5vol%, 13vol%, 26vol% and 53vol%. The lower B4C powder 

content of  1-10wt% was chosen in order to prevent agglomerates formation, high porosity, 

lower toughness and reduce high temperature required for complete reaction (Ariza Galván et 

al., 2017, Balaji et al., 2014, Ni et al., 2006). The respective volume percentage of TiB and 

TiC phases in the TMCs are shown in Table 13 and detailed calculations for these volume 

percentages are shown in Appendix I.III. A homogeneous distribution of B4C phase in Ti 

matrix will help further with uniform distribution of the desired reinforcing phases in the 

synthesized TMCs. Figure 4.3 shows SEM micrographs of powder mixtures for Ti5wt%B4C 

and Ti10wt%B4C. In the powder mixtures containing B4C(1.67µm), smaller B4C particles 
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adhered to the Ti particles this was more visible for Ti10wt%B4C(1.67µm) (Figure 4.3 (d)). 

When powder mixtures contain larger B4C particles, B4C(1.79µm) and B4C(17.9µm), the B4C 

particles were homogeneously distributed with the CP-Ti(25.9μm)  particles. The EDS 

analysis shown in Figure 4.4 further confirms that the bright and dark phases are Ti and B4C 

particles respectively. The XRD phase analysis evidence a small B4C peak in Ti10wt%B4C 

powder mixtures as shown in Figure 4.5. The B4C peak diminished with decreasing the 

content in powder mixtures of Ti1wt%B4C, Ti2.5wt%B4C and Ti5wt%B4C. This is attributed 

to the B4C lower density (2.52g.cm3) and that XRD phase detection is limited to concentration 

of about 2-5wt% in powder mixtures. However,  when the XRD scan was done for 2h at step 

size of 0.01  at reduced 2-theta range of 34°- 42°  and 36° - 39.5° 2-theta ranges for 

Ti5wt%B4C(1.67µm) the B4C peak was visible as shown in Figure 4.6.  

 

Table 13. Theoretical volume percentage of reinforcing phases in complete chemical reaction 
 Ti Ti1wt%B4C Ti2.5wt%B4C Ti5wt%B4C Ti10wt%B4C 

Ti (vol%) 100 95 87 74 47 

TiB (vol%) 0 4 11 21 43 

TiC (vol%) 0 1 2 5 10 

 

 

Figure 4.3. SEM micrographs of Turbula mixed powders Ti5wt%B4C a) B4C(1.67µm), 
b)B4C(1.79µm) and c) B4C(17.9µm)and for Ti10wt%B4C d) B4C(1.67µm),  e) B4C(1.79µm) 

and f) B4C(17.9µm) 
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Figure 4.4. EDS analysis of mixed Ti10wt%B4C(17.9µm) powder 

 

Figure 4.5. XRD patterns for mixed powders 

 

Dark phase     Bright phase  
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Figure 4.6. XRD patterns for CP-Ti(25.9 µm) and Ti5wt%B4C(1.67 µm) powders  at step size 
of 0.01 for 2h at 2-theta range of 34°- 42° and  36°- 39.5°. 

 

4.3 Synthesis and densification of TMCs  
Synthesis of TiB and TiC reinforcing phases considered in this study is based on exothermic 

chemical reactions between Ti and B4C powders taking place during sintering at elevated 

temperatures (Campbell, 2010). In this method of fabrication, simultaneous synthesis of the 

desired reinforcing phases and consolidation of the TMC takes place in one step. This method 

promotes formation of a strong interfacial bond between Ti matrix and the reinforcing phases 

which could be a good microstructural characteristic for enhanced mechanical properties. 

Densification and microstructure characterization of CP-Ti(25.9µm) has already been 

discussed in chapter 3, in this chapter more focus will be put on characterization of TMCs. 

Samples, 8mm in diameter and 2mm in thickness, were densified under vacuum (<10Pa) from 

Ti5wt%B4C and Ti10wt%B4C mixed powders of the respective varying B4C particles size 

(1.67, 1.79 and 17.9µm) and CP-Ti(25.9µm). The evolutions of the relative densities are 

shown in Figure 4.7 as a function of temperature (800°C - 1100°C), for a dwell time of 3 min, 

for three applied pressures. It was observed that the relative densities at  given applied 

pressure increase with increasing temperature for all the TMCs while CP-Ti(25.9µm) at 
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800°C already densified to 99%. Several factors affected the lower relative densities of the 

TMCs at lower temperature.  

 

Firstly, it has to be noted that the relative densities were calculated by theoretically 

determining the amount of the reinforcing phases in the desired TMCs. Assuming that B4C 

completely reacted to form TiB and TiC phases and with Ti as the remaining reactant (see 

Appendix I.II).  So, the lower relative densities in Ti-B4C (17.9 µm) TMCs  were attributed to 

the higher theoretical densities of Ti (4.51 g/cm3), TiB (4.56 g/cm3)  and TiC (4.93g/cm3) 

phases, in comparison to B4C (2.52 g/cm3) with lower density. Secondly, sintering of finer 

particles (1.67 and 1.79µm) with a greater pore/solid interfacial area produces a greater 

driving force for sintering. The smaller particles promotes all types of diffusion transport in 

contrast to coarser particle (17.9 µm), which include greater surface area leading to more 

surface diffusion, small grain size promoting grain boundary diffusion and larger interparticle 

contact area to volume diffusion (Upadhyaya, 1997). Thirdly, densification of TMCs with D50 

sizes of 1.67 and 1.79µm at lower temperatures could have also been enhanced by formation 

TiB whiskers at the grain boundaries which could have also aided in elimination of porosity 

 

When the B4C content was increased from 5wt% to 10wt% the relative densities lowered 

further. The difference in the relative densities could be due to inclusion of high amounts of 

unreacted B4C particles, as previously explained for influence of theoretical density 

calculations, finer particles and reactions kinetics. Similar to Balaji et al. (2014), it was  

reported that densification of Ti-B4C from room temperature (37%)  to 573°C (35%)  

decreased (29%)  with increasing B4C content from 1.2wt%, 2.3wt% to 3.4wt% respectively. 

However, with temperature increase from 573°C to 900°C, 573°C to 950°C and 573°C to 

1150°C densification (62%>64%>70%) increased with increasing B4C content 

(1.2wt%>2.3wt%> 3.4wt%) Increasing the applied pressure slightly increase the relative 

densities especially at lower temperatures. 
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Figure 4.7. Relative density for CP-Ti, Ti5wt%B₄C and Ti10wt%B₄C TMCs at varying 
pressures of 25MPa, 50MPa and 75MPa 

 
 

The XRD patterns of Ti-B4C TMCs with varying B4C particles (17.9µm, 1.79µm and 

1.67µm) and B4C content (5wt% and 10wt%) with 8mm diameter sintered at 800°C - 1100°C 

and 25MPa to 75MPa  at 3min dwell time are shown Figure 4.8,  4.9 and 4.10 respectively.   

The reactivity of Ti and B4C  was reported take place at temperatures above 800°C (Lu et al., 

2008), while DTA analysis revealed wide a exothermic peak appearing at 1093°C (Liang et 

al., 2008) and analysis by DSC revealed exothermic peaks  before 1200°C (Ni et al., 2008a).  

At 800°C and 25MPa in Figure 4.8(a) the reaction between Ti and coarser B4C (17.9µm) 

particles was very slow despite the increase of temperature, pressure and B4C content to 

10wt%. From the XRD scan the B4C peak was not detected due to limitation of phase 

detection at lower concentrations (5wt%). So, we cannot conclude that B4C has completely 

reacted at 800°C for Ti-B4C(17.9µm) TMCs. However, it was shown in Figure 4.6 for 

Ti5wt%B4C powder with finer B4C particles (1.67µm), the B4C peak was only visible when 
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the scan was done for 2h at 36°- 39.5° 2-theta range. Also the evidence from the SEM 

micrographs in the next section 4.4 shows unreacted B4C particles. So, we could say that B4C 

with coarser particles (17,9µm) was not completely reacted for both at 800°C.  

Increasing  temperature from 900 to 1100°C at the respective pressures, TiB and TiC peaks 

were detected  and the contents were higher in Ti10wt%B4C(17.9µm) Figure 4.8 (d-f) in 

contrast to Ti5wt%B4C(17.9µm) (Figure 4.8 (a-c)). Also, it is worth to note that TiB2 phase as 

an expected transient phase for formation of TiB whiskers was not detected for all the TMCs 

at 10°-100° at 2-theta. This could indicate that TiB2 phase was present only in trace amounts. 

 
Figure 4.8. XRD patterns 8mm TMCs at sintered at varying temperature and pressure,   

(a-c)Ti5wt%B4C(17.9µm) and (d-f) Ti10wt%B4C(17.9µm) 
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When the B4C particles size were reduced  to 1.79 µm the TiB and TiC peaks at 800°C and 

25MPa were partially visible for Ti5wt%B4C(1.79µm)  as shown in Figure 4.9(a-c). The 

peaks became relatively stronger especially with increase of pressure (50MPa and 75MPa) 

and B4C content to 10wt% as shown in Figure 4.9(d-f). Figure 4.10 presents TMCs 

synthesized from finer B4C particles (1.67µm), the TiB and TiC peaks were stronger at 800°C 

compared with other TMCs (1.79 and 17.9µm B4C). It is expected for finer particles to have 

higher reaction spontaneity than coarser particles, because of their larger surface area. 

 

Figure 4.9. XRD patterns 8mm TMCs at sintered at varying temperature and pressure, (a-c) 
Ti5wt%B4C(1.79µm) and (d-f) Ti10wt%B4C(1.79µm) 
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Figure 4.10 XRD patterns 8mm TMCs at sintered at varying temperature and pressure, (a-
c)Ti5wt%B4C(1.67µm) and (d-f) Ti10wt%B4C(1.67µm) 

 

Summary 
Analysis of the XRD patterns for all the sintered TMCs shows that Ti, TiB and TiC are the 

major phases present. However, the B4C and TiB2 peaks were not detected due to low 

concentration. From the XRD patterns it was not clear which reinforcing phase formed first, it 

was reported that because of B low diffusion velocity in Ti matrix than C, B concentration 

would be high at the Ti/B4C interface and TiB whiskers primarily form,  while C diffuse 
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further into Ti matrix to form TiC particles (Brodkin et al., 1996; Jia et al., 2016; Rafiei et al., 

2014).  

In order to quantify the reinforcing phase’s volume fraction evolution with increasing 

temperature, pressure and B4C content the RIR method could not be used due to the 

discrepancies related to the degree of the B4C consumption during the reaction. Nevertheless, 

the increasing amount of reinforcing phases with sintering parameters and B4C content 

showed that reaction between Ti and B4C does take place. Moreover, it is worth to note that 

pressure increase has more effect on reinforcing phase’s formation on TMCs with finer B4C 

particles (1.67µm and 1.79µm) than those with coarser B4C particles (17.9 µm) especially at 

lower temperature.  

 

4.4 Microstructural evolution with temperature and pressure 
The microstructure evolution of the sintered TMCs described in this section helps in 

understanding the reaction between Ti and B4C with D50 particle sizes of 17.9µm, 1.79 µm 

and 1.67µm with varying content of 5wt% and 10wt%. This was carried out to investigate the 

desirable B4C particle size to synthesize of TiB whiskers and TiC particulates. As observed in 

Figure 4.11(a) for Ti5wt%B4C at 800°C and 25MPa there was porosity and the reaction 

between Ti and coarse B4C(17.9 µm) already commenced as thin grey TiB2 layer and  fine 

TiB whiskers were evidenced.  However, TiB2 layer and TiB whiskers were not detected by 

XRD at 800°C and 25MPa, this indicate that volume percentage of these phases was below 2 

- 5% detection limit for XRD technique.  The TiB2 layer on average grow  from about 0.66µm 

to  8.13µm  and the TiB whiskers from 1.97µm to 6.96µm for 800°C (Figure 4.11(a))  and 

1100°C (Figure 4.11(d)) at 25MPa respectively. Moreover, at 1100°C the central portion of 

B4C particle was unreacted and would require higher temperature or dwell time for a 

complete reaction (Balaji et al., 2014). In agreement with the XRD (Figure 4.8), pressure had 

less effect on the formation of TiB and TiC synthesized from coarse B4C, as the 

microstructures were almost similar. As the weight percent of B4C increased to 10wt% the 

only difference was the increment of porosity and reinforcing phases as observed in Figure 

4.12. The presence of the unreacted B4C is undesirable in the final TMCs as they may have 

adverse effect on the mechanical properties (Tabrizi et al., 2015).  
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Figure 4.11. SEM micrographs for Ti5wt% B4C for B4C (17.9µm ) powder at 25MPa, 50MPa 
and 75MPa for 800°C (a-c)  and 1100°C (d-f) 

 

 

Figure 4.12. SEM micrographs for Ti10wt% B4C(17.9µm) powder at 25MPa, 50MPa and 
75MPa for 800°C (a-c)  and 1100°C (d-f) 
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So the TMCs were further synthesized using finer B4C with D50 particle sizes of 1.79µm and 

1.69µm. In overview, finer B4C particles (1.79µm and 1.69µm) segregated in Ti grain 

boundaries and reacted to form the grey phase as indicated in Figure 4.13-4.16 respectively.  

As observed in Figure 4.13(a) the TMCs synthesized from 1.79µm B4C(5wt%) indicated  

high spontaneity of reaction with Ti at low temperature of 800°C at 25MPa in comparison to 

17.9µm B4C TMCs.  The microstructure at the respective pressure shows the grey phase along 

Ti grain boundaries, TiB whiskers and TiC particles were not visible at 800°C also unreacted 

B4C was not evidenced.   At 1100°C the microstructure transformed to coarser TiB whiskers 

and TiC particles with some TiB clusters which further indicated that B4C particles were fully 

reacted. The increase of B4C content to 10wt% as shown in Figure 4.14, at 800°C and the 

varying pressures resulted in an increase of porosity level. Also the area of the TiB clusters 

doubled in size. Further reduction of B4C particles size to 1.67µm for Ti5wt%B4C TMCs 

favoured the formation of TiB whiskers and TiC particulates as noticed at 800°C and 25MPa 

in Figure 4.15(a) in contrast to TMCs synthesized from 1.79µm B4C in Figure 4.13(a). 

Increasing pressure to 75MPa resulted in formation of coarser TiB whiskers as shown in 

Figure 4.15(c), in agreement with XRD analysis (Figure 44 (c & f)). Moreover, increasing the 

B4C content to 10wt% in 1.67µm also led to increased porosity at 800°C (25MPa - 75MPa) as 

observed in Figure 4.16 (a-c). 

 
Figure 4.13. SEM micrographs for Ti5wt% B4C for B4C (1.79µm ) powder at 25MPa, 50MPa 

and 75MPa for 800°C (a-c) and 1100°C (d-f) 
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Figure 4.14. SEM micrographs for Ti10wt% B4C(1.79µm) powder at 25MPa, 50MPa and 
75MPa for 800°C (a-c)  and 1100°C (d-f) 

 

 

Figure 4.15. SEM micrographs for Ti5wt% B4C(1.67µm) powder at 25MPa, 50MPa and 
75MPa for 800°C (a-c)  and 1100°C (d-f) 
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Figure 4.16. SEM micrographs for Ti10wt% B4C(1.67µm) powder at 25MPa, 50MPa and 
75MPa for 800°C (a-c)  and 1100°C (d-f) 

 

Summary  
Micrographs shown in Figure 4.11 & 4.12 essentially reveal that the reaction between Ti and 

coarser B4C (17.9µm) require higher sintering temperature to form the reinforcing phases than 

those with finer B4C (1.67µm and 1.79µm) in Figure 4.13 & 4.14 and Figure 4.15 & 4.16 

respectively. The TiB clusters observed in the present study could be different from those 

reported in literature The TiB clusters were located in the grain boundaries of Ti and we know  

that the former B4C particles were segregated in the grain boundaries. In this regard, we can 

say that TiB clusters emanated from clusters of sub-micron B4C particles. In literature Ni et 

al. (2006) reported that  for TMCs synthesized from 3.5µm B4C  particles, the clusters  were 

similar to the original size of the B4C particles and were characterized with many small TiC 

particulates with a diameter of 0.5µm surrounded by densely packed fine TiB whiskers. The 

fine TiB whiskers clusters grew in all directions, although the B4C was completely reacted an 

inhomogeneous microstructure was obtained. It was reported that the TiB clusters could act as 

crack initiators at lower strains thus limiting the strength and ductility of the TMC (Gorsse et 

al., 2003). The microstructure was homogenized by either heat treatment (1200-1300°C), hot 

extrusion (1100°C) or prolonged processing time (6-100h) by removing these TiB clusters 

(Gorsse et al., 2003; Ni et al., 2006). The TiB clusters in the present study will be further 
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characterized in the next section 4.5, whereby the FIB lamellae will be extracted from the TiB 

clusters region for analysis by TEM. 

 

4.5 FIB and TEM characterization of TiB clusters in Ti5wt%B4C (1.67µm) 
TMCs 
Literature based on studying reaction mechanisms for Ti-B4C TMCs by powder metallurgy 

techniques is limited. Focus has been on continuous SiC based TMCs and TiB2 based 

coatings on Ti/Ti alloys (Campbell, 2010; Fukushima et al., 2000; Gundel et al., 1991; Huang 

et al., 2015; Jayalakshmi et al., 2015; Kieschke et al., 1991; Luo et al., 2012; Zhang et al., 

2014) (Ataibis et al., 2015; Fan et al., 1997; Fenghua et al., 2010; Kartal et al., 2013; Keddam 

et al., 2017; Keddam et al., 2016; Makuch et al., 2017). Recently, an attempt was made to 

study the effect of temperature and processing time on the solid state reaction kinetics of SPS 

Ti-B4C system (Jia et al., 2016). Moreover, the available literature also reports TiB clusters 

morphology formed from using coarser B4C particles (3.5µm) (Ni et al., 2006). As such, in 

the present study phase transformations, products formed and the TiB clusters morphology 

resulting from exothermic reaction between Ti and sub-micron B4C particles (1.67µm) are 

investigated by FIB and TEM characterization techniques.  

 

Samples sintered at 800°C and 1100°C at 25MPa were metallorgraphycally polished and 

etched with kroll’s etchant to reveal the microstructure. FIB lamellae were then extracted 

from the TiB clusters/Ti interface (grain boundary region) in Ti5wt%B4C TMCs with 8mm in 

diameter sintered at 800°C and 1100°C at 25MPa as shown in Figure 4.17 and 4.18. 

Thereafter, the crystallography and elemental compositions were analyzed using a TEM 

coupled to EDX spectrometer and EELS. With the aid of CysTBox software, Fast Fourier 

Transform (FFT) patterns were obtained from the TEM crystallographic images to verify the 

phases formed. FFT patterns analyses lattice planes and experimental d-spacing values 

matching the theoretical d-spacing values of the respective phases to be analyzed (Ti, B4C 

TiB, TiB2, Ti2B3, etc.) (Klinger et al., 2015).  

 

Illustrated in Figure 4.17(a) and 4.18(a) is the TiB clusters/Ti interface where the FIB 

lamellae were extracted  from  the TMCs.  The lamellae include an interface portion of the 

reinforcing phases and Ti phase. On the surface of the sample   the grey phase appeared to be 

a continuous TiB2 layer with TiB whiskers growing from it, but further analysis by TEM 

revealed various phases. 
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Figure 4.17. FiB lamellae for Ti5wt%B4C(1.67µm) sintered at 800°C, 3min and  25MPa 
 

 

 

Figure 4.18. FiB lamellae for Ti5wt%B4C(1.67µm) sintered at 1100°C, 3min and  25MPa 
 

Figure 4.19 illustrates the different sections in the lamellae that were analyzed with EELS and 

STEM in the TEM for Ti5wt%B4C(1.67µm) TMCs sintered at 800°C. As observed the TEM 
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bright field micrographs (A1-A3) and (B1-B2) in Figure 4.19 shows the presence of different 

phases with porosity. In fact what appeared to be a continuous layer at 800°C as observed on 

the surface (Figure 4.17 (a)) are actually clusters of sub-micron B4C particles with a reacted 

perimeter which appeared grey. As shown in the different areas in Figure 4.19 (A2, A3 and 

B2), there were still some unreacted B4C particles. These could only be observed on the cross-

section of the sintered material. To confirm this, localized point elemental analyses was done 

by EELS in Figure 4.20. The concentration of the elements indicated higher boron contents in 

the dark phase, while the grey phase analyzed high contents in titanium as illustrated in the 

tables corresponding to the images with elemental analysis. Furthermore to clarify the crystal 

structures in Figure 4.19(a) and (c), FFT pattern were obtained from the HRTEM images and 

the corresponding lattice planes with d-spacing were identified using CrysTBox software. The 

measured d-spacing of B4C were relatively close to the theoretical values with a standard 

deviation of 0.0015 and 0.0279 as shown in Tables 14 and 15.  

 

  

 

Figure 4.19. TEM micrographs for Ti5wt%B4C (1.67µm) sintered at 800°C, 3min and 25MPa 
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Figure 4.20. EELS elemental analysis of particles in Ti5wt%B4C (a & b) Figure 4.19(B2) and 
c) Figure 4.19(A2) 

 

Table 14.  Experimental and theoretical d-spacing for B4C in Figure 4.20(a) (Point 001) 
B4C  A B C D 
Detected planes 0 0 -5 -2 2 -5 -2 2 0 -2 2 5 
Experimental d-spacing (nm) 0.232 0.164 0.233 0.165 
Experimental d-spacing(1/nm) 

spacing(1/nm) 

spacing(1/nm)spacing(1/nm) 

4.301 6.097 4.300 6.066 
Theoretical d-spacing (nm) 0.242 0.171 0.243 0.171 
Theoretical d-spacing(1/nm) 4.139 5.841 4.115 5.847 
STDEV: 0.0015     
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Table 15. Experimental and theoretical d-spacing for B4C in Figure 4.20(c) (Point 022) 
B4C  A B C D 
Detected planes 0 2 1 0 2 4 0 0 3 0 -2 2 
Experimental d-spacing (nm) 0.244 0.197 0.414 0.227 
Experimental d-spacing(1/nm) 4.101 5.088 2.415 4.407 
Theoretical d-spacing (nm) 0.238 0.189 0.403 0.225 
Theoretical d-spacing(1/nm) 4.203 5.287 2.484 4.441 
STDEV: 0.0279     

 

Reaction between Ti matrix and B4C  particles occur at their interface, so  the atomic contents 

of B, C and Ti measured  in Figure 4.20(a)  and  (c) were relatively consistent. In point 004 

and point 023 the atomic contents were 71.3 B, 12.4 C, 14.9 Ti and 71.8 B, 12.0 C and 16.1 

Ti respectively. Presented in Figure 4.21 are FFT patterns showing interfacial products 

between Ti and B4C for Ti5wt%B4C(1.67µm) TMCs sintered at 800°C. The FFT patterns 

show the detected lattice planes matching theoretical planes. The d-spacing values and the 

respective lattice planes shown in Table 16 - 18 were that of TiB2, Ti3B4, TiC and Ti2C 

phases. Although these phases TiB2, Ti3B4, Ti2C peaks were not detected in XRD patterns at 

800°C, analysis from TEM images revealed their presence. The phases detected are in 

accordance with those in  Ti-B and Ti-C phase diagrams (Baker, 1992).  

 

 

Figure 4.21. FFT patterns of interfacial products between Ti and B4C for 
Ti5wt%B4C(1.67µm) sintered at 800°C 
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Table 16. Experimental and theoretical d-spacing for TiB2 phase in Figure 4.21 
TiB2 A B C D 
Detected planes 0 1 0 0 1 1 0 0 1 0 -1 1 
Experimental d-spacing (nm) 0.271 0.211 0.334 0.211 
Experimental d-

spacing(1/nm) 

3.683 4.742 2.993 4.750 
Theoretical d-spacing (nm) 0.262 0.203 0.323 0.204 
Theoretical d-spacing(1/nm) 3.813 4.902 3.098 4.913 
STDEV: 0. 002     

 

Table 17. Experimental and theoretical d-spacing for Ti3B4 in Figure 4.21 
Ti3B4 A B C D 
Detected planes 0 0 -5 0 -1 -5 0 -1 0 0 -1  5 
Experimental d-spacing (nm) 0.274 0.213 0.333 0.210 
Experimental d-

spacing(1/nm) 

3.643 4.696 3.007 4.752 
Theoretical d-spacing (nm) 0.275 0.210 0.326 0.210 
Theoretical d-spacing(1/nm) 3.642 4.764 3.068 4.762 
STDEV: 0.398     

 

Table 18. Experimental and theoretical d-spacing for TiC phase in Figure 4.21 

TiC A B C D 
Detected planes 1  1 1 0 1 2 -1 0 1 -2 -1 1 
Experimental d-spacing (nm) 0.274 0.213 0.333 0.210 
Experimental d-

spacing(1/nm) 

3.643 4.696 3.007 4.752 
Theoretical d-spacing (nm) 0.249 0.193 0.305 0.176 
Theoretical d-spacing(1/nm) 4.016 5.181 3.2786 5.6818 
STDEV: 0.004     

  

Table 19. Experimental and theoretical d-spacing for Ti2C phase in Figure 4.21 
Ti2C A B C D 
Detected planes   0 1 0 0 1 1 0 0 1 0 -1 1 
Experimental d-spacing (nm) 0.274 0.213 0.333 0.210 
Experimental d-

spacing(1/nm) 

3.643 4.696 3.007 4.752 
Theoretical d-spacing (nm) 0.262 0.204 0.323 0.204 
Theoretical d-spacing(1/nm) 3.817 4.902 3.096 4.902 
STDEV:  0.002     

 

At 1100°C as observed in Figure 4.22 (A1 & B1) in the bright field TEM mode there was no 

particular difference in contrast between the reinforcing phases and Ti matrix. A variety of 

crystallites in clusters were formed and no B4C particles were evidenced as shown in Figure 

4.22 (A4, B2 and B3), this indicated that complete reaction had occurred between Ti and sub-

micron B4C (1.67µm). The crystallites clusters were segregated at the grain boundaries were 

the former B4C (1.67µm) particles were segregated as discussed for 800°C microstructure 

(Figure 4.19). The elemental composition in the clusters showed mixture of compounds rich 
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in Ti – B and Ti – C as shown in Figure 4.23. The d-spacing values measured from the FFT 

patterns revealed the presence of non-stoichiometric phases of TixBx in Figure 56(B4). The 

measured d-spacing from the HRTEM images matched theoretical Ti3B4 and Ti2B shown in 

Table 20 and 21. Analysis revealed TiB whiskers growing within Ti matrix and it was 

surrounded by smaller fragments of particles high in Ti and B atoms as shown in Figure 

4.23(c). Smaller TiC particulates were also present within Ti matrix as shown in Figure 

4.24(b). 

 

 

Figure 4.22. TEM micrographs for Ti5wt%B4C(1.67µm) sintered at 1100°C, 3min and 
25MPa 
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Figure 4.23. EELS elemental analysis of 1100°C Ti5wt%B4C(1.67µm) a) Figure 4.22(B3), 
b)Figure 4.22 (A4) and c) Reinforcing phases/ Ti interphase 

 

 

Point  B(At%) C(At%) O(At%) Ti(At%) 

005 0 65.1 3.6 31.3 
006 0 18.3 5.4 76.2 
007 42.0 0 3.7 54.3 
008 44.0 0 5.9 50.1 

 

Point  B(At%) C(At%) O(At%) Ti(At%) 

014 0 62.1 2.1 35.8 

015 40.4 0 9.5 50.1 

016 39.9 0 8.1 52.0 

017 0 3.0 19.6 77.5 

018 30.0 0 12.4 57.6 

019 0 0 12.1 87.9 

020 0 0 16.1 83.9 

021 0 3.5 1.3 95.2 
 

Point B(At%) C(At%) O(At%) Ti(At%) 

36 37.7 0 12.0 50.3 

37 0 0 19.1 80.9 

38 46.9 0 12.5 40.6 

39 18.7 0 12.9 68.4 

40 0 0 12.1 87.9 
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Figure 4.24. EELS point elemental analysis of 1100°C Ti5wt%B4C (1.67µm) in matrix region 
a) TiB whisker and b) TiC particulates 

 

Table 20.  Experimental and theoretical d-spacing for Ti3B4 phases in Figure 4.22(B4) 

 

Table 21. Experimental and theoretical d-spacing for Ti2B phases in Figure 4.22(B4) 

 

Summary  
In this section we observed that the TMCs fabricated with finer B4C(1.67µm) powder at 

800°C show unreacted B4C clusters which transformed into crystallites clusters (Ti-B and Ti-
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 Ti3B4 A B C D 
Detected planes 1 0 3 1 -1 1 0 -1 -2 -1 -1 -5 
Experimental d-spacing (nm) 0.254 0.219 0.297 0.174 
Experimental d-spacing (1/nm) 3.938 4.563 3.368 5.735 
Theoretical d-spacing (nm) 0.253 0.220 0.294 0.173 
Theoretical d-spacing (1/nm) 3.953 4.545 3.401 5.780 
STDEV 0.0011     

Ti2B  A B C D 
Detected planes 1 -2 0 0 -3 -1 -1 -1 -1 -2 -1 -1 
Experimental d-spacing (nm) 0.254 0.174 0.296 0.219 
Experimental d-spacing (1/nm) 3.938 5.749 3.379 4.562 
Theoretical d-spacing (nm) 0.273 0.186 0.314 0.234 
Theoretical d-spacing (1/nm) 3.663 5.376 3.185 4.274 
STDEV 0.0028     
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C compounds) at 1100°C. In literature several authors reported that, in temperature range of 

1200-1400°C, the clusters formed were actually nucleation sites for multiple TiB whiskers 

formed near the previous coarser B4C particle (3.5-50µm)  (Balaji et al., 2014; Ni et al., 

2006). Moreover, the TiB clusters were reported to have adverse effect on the mechanical 

properties. The TiB whiskers within clusters have lower load bearing efficiency in 

comparison with uniformly distributed ones (Tabrizi et al., 2015) and  they can also act as 

stress initiators especially at lower strains (Gorsse et al., 2003). The TiB clusters have been 

reported to be completely removed by increasing either temperature, the annealing time 

(Balaji et al., 2014; Gorsse et al., 2003) or further extrusion of fabricated components (Ni et 

al., 2006). In section 4.7 the sintering dwelling time is increased from 3min to 30min to 

homogenize the microstructure by removing the cluster 

 

4.6 Reaction mechanisms for Ti5wt%B4C with sub-micron B4C(1.67µm) 
particles  
In considering the phases detected from XRD patterns and microstructural characterization by 

FIB/SEM and TEM for the reaction between Ti and B4C, it is quite evident that the reaction 

took place at 800 and 1100°C. In agreement with literature, it  was reported that the reaction 

between Ti and B4C took place at temperatures above 800°C (Lu et al., 2008), at 1093°C 

measured by  DTA  (Liang et al., 2008) and before 1200°C measured by DSC analysis (Ni et 

al., 2008a). In addition, the reaction was enhanced by application of increased pressure more 

especially for TMCs with finer B4C (1.67µm and 1.79µm) particles. However, we have to 

consider that in DTA and DSC techniques loose powders are routinely used. So, the reaction 

sequence for exothermic powders could be misleading since in reactive sintering techniques 

often the state of compaction (relative density) strongly influence the reaction sequence and 

the final composition (Brodkin et al., 1996; Dudina et al., 2013). For other reactive sintering 

processes including the SPS, when new phases are formed, factors such as uniform 

distribution of reactants in the powder mixtures, the heat release in exothermic reactions, the 

specific volume change and the by-products formation need to be taken into consideration 

when microstructure evolution of the synthesized product is traced (Dudina et al., 2013).  

Moreover, in the SPS the electric current plays a major role in the microstructure 

development, such that the changes in material electrical conductivity during the reaction and 

the high temperature reached at the inter-particle contacts serve as reaction initiation zones 

(Dudina et al., 2013; Tokita, 1999). 
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In the initial sintering temperature of 800°C at 25MPa we observed Ti, TiB and TiC phases in 

the XRD pattern and the absence of TiB2 and B4C. In the SEM characterization, finer TiB 

whiskers were more evident than TiC particles (spherical morphology) most likely because of 

their whisker like morphology. However, cross-sectional analysis of the FIB lamellae by 

TEM for sample sintered at 800°C revealed partially reacted B4C particles segregated at the 

Ti grain boundaries. As reported in literature the TiB2 layer normally form on the perimeter 

during consumption of the B4C particle.  According to the elemental atomic composition and 

the phases detected on FFT patterns at the interface between Ti and B4C, were TiB2, Ti3B4, 

TiC and Ti2C.  Brodkin et al. (1996) reported the formation of Ti3B4 phase at higher 

temperature ranges of 1450°C - 1600°C for hot pressed Ti-B4C TMCs. In the present study, 

we have to note that the temperature in the powder could be higher than that is measured on 

the graphite die. As reported by  Motsi et al. (2019), in the SPS the overall temperature 

measured in the Ti powder was approximately 8% higher than in the graphite die (8 mm inner 

diameter). The temperature varied with the different stages during sintering, that is from 

ramping up (±20°C), overshooting (37°C) then stabilizing (±21°C) to reach the set-point 

temperature of 800°C. So, the actual temperature of Ti5wt%B4C(1.67µm) was actually higher 

than the set-point temperature of 800°C. This could be attributed to the pulsed electric current 

density and the amount of Joule’s heat of the Ti powder causing variation in temperature 

distribution (Matsugi et al., 1996). In addition, it has been reported that during the SPS 

process higher temperatures are reached on particles surface that lead to melting and 

vaporization thus enhancing interdiffusion of atoms for densification (Tokita, 1999). As a 

result, the reaction kinetics involved with sub-micron particles (1.67µm) of the present study 

in the SPS progressed rapidly (at 800°C), because of the combined effect of larger powder 

surface area, the effect of current density, Joule’s heat and higher interparticle temperatures in 

contrast to  Brodkin et al. (1996) who reported reaction kinetics in hot pressing (1450°C - 

1600°C). 

 

According to the Gibbs free energy (ΔG) reaction path for Ti-B4C system the final products 

should be TiB and TiC at temperatures higher than 800°C. However, experimental results 

always contradict this conclusion.  Therefore it should be considered that, ΔG criterion is not 

sufficient to predict reaction path of Ti - B4C system. Nevertheless, the theoretical reactions 

taking place between Ti and B4C with their ΔG values are presented in Table 22. According 

to the ΔG values, the reactions are exothermic and thermodynamically favorable at 800°C, 

meaning the formation of TiB2, TiB and TiC are theoretically possible. The most likely phase 
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to primarily form is TiB2 (-263KJ.mol-1), followed by TiC (ΔG = -172KJ.mol-1) then lastly 

TiB whiskers (ΔG  = -157 KJ.mol-1) (He et al., 2006).  Although the reaction path of the TMC 

investigated progressed rapidly at 800°C, with the aid of literature the preceding reactions 

taking place below 800°C can be traced.  It was reported that above 600°C formation of TiC 

is initiated (Mogilevsky et al., 1998), while  (Kim et al., 2001) mention that TiC formation 

from finer and coarse particles take place at 700°C and 800°C, respectively. As for TiB 

according to the Ti-B phase diagram it forms at much lower temperatures (Baker, 1992). 

 

The proposed reaction paths for Ti and B4C in the present study which take place at the Ti  

and B4C interface, at SPS set-point temperatures of 800°C and 1100°C are as follows;   

 

Table 22. Reactions during reactive SPS of Ti and B4C particles 
Chemical reaction equation ΔG equation ΔG/(KJ.mol-1) Reference 

Ti(s) + 2B(s) → TiB2(s) 

Ti(s) + C(s) → TiC(s) 

Ti(s) + B(s)  → TiB(s) 

3Ti(s) + B4C(s) →TiB2(s) + TiC(s) 

5Ti(s) + B4C(s) →4TiB(s) + TiC(s) 

-284,512 + 20,50T 

-183,100 + 10,08T 

-163,176 + 5,85T 

-762,408 + 17.833T 

- 

-263 (800°C) 

-172 (800°C) 

-157 (800°C) 

-743 

-754 

(He et al., 2006) 

(He et al., 2006) 

(He et al., 2006) 

(Sahoo et al., 2016) 

(Prakash et al., 2016) 

 

 

Path 1: Several competitive reactions take place to form the desired phases; the reactions at 

the Ti/B4C interface involve simultaneous interdiffusion mechanisms of decomposed B and C 

atoms into Ti matrix, and Ti into B4C occupying vacancies left by B and C atoms. The 

formation of TiB and TiC depends on the diffusion coefficients of B and C in Ti matrix (Jia et 

al., 2016). Carbon has higher diffusion coefficient than B, thus it rapidly diffuse into the Ti 

matrix leaving behind higher B concentration close to the Ti/B4C interface.  

 

Path 2: In the meantime, due to lower diffusion coefficient of B  in Ti matrix it would dissolve 

into the Ti matrix to primarily  form TiB phase [Eq.11] (Mogilevsky et al., 1998; Rafiei et al., 

2014). Thereafter, some TiC particles form further into the Ti matrix [Eq.12]. Ti then diffuses 

into vacancies left by B and C in B4C to form TiB2 and C substance [Eq.13] 

 



124 
 

Path 3: Boron further reacts with Ti to form TiB2 phase according to [Eq.14]. The TiB2 layer 

grows and prevents the passage of C from the B4C, resulting in the growth of carbon layer 

between B4C and TiB2. (Jia et al., 2016) reported path 1 - 3 to take place for Ti-B4C SPS 

compact sintered at 1000°C. 

 

Path 4: A stoichiometric Ti2C phase was also detected, there has been uncertainties in the 

literature regarding its formation. Especially that, according to the Ti-C phase diagram its 

existence it’s questionable and also the phase diagram at lower carbon concentrations  of less 

than 1 at.%  is poorly studied (Aksyonov et al., 2012). Nevertheless, Ti2C phase [Eq.15]  was 

reported to be an interphase between  Ti and TiC, which may exist in temperature ranges of 

25 - 1900°C (Aksyonov et al., 2012; Ranganath et al., 1996; Vallauri et al., 2008; Wanjara et 

al., 2000). 

 

Path 5: B further diffuses into TiB and small Ti3B4 platelets nucleate and grow according to 

[Eq.16]. The formation of Ti3B4  platelets  was reported to be in temperature ranges of 

1450°C - 1600°C in  HP, this range is close to Ti melting point 1668°C Brodkin et al. (1996). 

Since in SPS process atoms interdiffusion is enhanced by melting and vaporization on the 

surface, so it could be assumed that temperature of 1668°C was reached on the surface of Ti 

particles favouring the formation of Ti3B4 at relatively lower set-point temperatures in 

comparison to HP (Tokita, 1999).  

Path 6: Equilibrium is then reached whereby large Ti3B4 platelets are formed by TiB reacting 

with TiB2 according to [Eq. 17]. 

 

SPS set point temperature: 800°C  

Ti + B → TiB 

Ti + C → TiC  

2Ti + B4C→TiB2 + C 

Ti + 2B → TiB2 

Ti + TiC → Ti2C 

3TiB + B → Ti3B4 (small platelets) 

 

SPS set point temperature: 1100°C 

2TiB + TiB2 → Ti3B4 (large platelets) 

 

[Eq. 11] 

[Eq. 12] 

[Eq. 13] 

[Eq. 14] 

[Eq. 15] 

[Eq. 16] 

 

 

[Eq. 17] 
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4.7 Dwell time effect on the microstructure  
The Ti5wt%B4C(1.67µm) TMCs were characterized with particles clusters consisting of 

partially reacted B4C particles at 800°C.  Increasing the temperature to 1100°C the reaction 

between Ti and B4C was enhanced and clusters of Ti - B with Ti - C compounds were formed 

(section 4.5).  It was reported that the clusters could be efficiently removed by either 

increasing the processing time (6-100h), heat treatment (1200-1300°C) or hot extrusion 

(1100°C) (Balaji et al., 2014; Gorsse et al., 2003; Ni et al., 2006). Dwell time during sintering 

can ensure uniform temperature distribution within the material and so better microstructure 

homogeneity.  

Microstructure evolution at 650 and 800°C and  varying dwell times from 0 to 30min for 

Ti5wt% B4C TMC with coarser B4C (17.9µm) is shown in Figure 4.25.  

 

Figure 4.25. Dwell time effect on microstructure evolution of 8mm Ti5wt%B4C(17.9µm) 
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The interfacial contact between Ti and B4C is important as it facilitates the reaction during 

sintering. If there is no contact between reactants, the reaction will not take place. At 650°C 

and 0 min seems that the reaction already commenced as very fine TiB whiskers (0.34 µm) 

were observed, although in some interfacial areas no whiskers were formed due to poor 

contact between the reactants as a result of low densification. Hence the reaction did not occur 

on some of interfacial contacts. However, no second phases were detected 650°C by XRD 

analysis in Figure 4.26 due to XRD detection limit (2-5%). This observation at 650°C co-

relates with the results discussed in TEM analysis (section 4.5), wherein the reactions and 

formation second phases at temperatures below 800°C for TMCs synthesized from finer B4C 

(1.67µm) particles was discussed.  

 

With the increase of temperature to 800°C at 0min there was increased densification and the  

TiB whiskers grew  and the TiB peak was visible in Figure 4.26. The increase of dwell time to 

3min further improves densification and thus the reactants contact to react and form coarse 

TiB2, TiB and TiC phases. With further increase of dwell time (0 to 30min) there was 

insignificant change of TiB2 layer but some of TiB whiskers length increased  (1.246 to 

3.340µm) and were thicker (0.074 to 0.248µm). 

 

 

Figure 4.26. XRD phase analysis of 8mm Ti5wt%B4C(17.9µm) sintered at varying dwell 
time (0 to 30min) at 800°C 
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Microstructure evolution with dwell time for Ti5wt%B4C TMC with finer B4C (1.67µm) is 

shown in Figure 4.27. At 650°C 0min porosity was observed and densification was improved 

when temperature was increased to 800°C 0min promoting reactants reaction. Hence, partially 

reacted B4C clusters were observed in the Ti grain boundaries with some fine TiB whiskers.   

The TiC particulates were very small so it was difficult to distinguish them from nucleated 

secondary alpha Ti within Ti grains, hence they were not identified in the SEM micrographs.  

However, the XRD analysis in Figure 4.28 revealed small volume fraction TiC particulates 

already formed at 650°C without any trace of TiB2 and TiB phases (XRD detection limit 2-

5wt%). 

 

Figure 4.27. SEM observations of dwell time effect on microstructure evolution of 8mm 
Ti5wt%B4C(1.67µm) 

 

As dwell time was increased to 3min at 800°C, TiB whiskers were visible and their length 

increased until 10min. An interesting phenomenon was observed when dwell time was 

increased to 15min a small fraction of TiB whiskers disappeared although the “grey phase” 
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was not completely consumed. In agreement with this observation, XRD analysis in Figure  

4.28 showed TiB peaks gradually becoming weak after 10min dwell time. Li et al. (2018) 

suggested that diffusion of boron gradually weaken with the increasing processing time and 

results in the reduction in length of TiB whiskers. Furthermore Fan et al. (1997) also stated 

that after full consumption of TiB2 coating, the formed long TiB whiskers reduced length to 

smaller segments with the increased annealing time.  

 

 

Figure 4.28. XRD phase analysis of 8mm Ti5wt%B4C(1.67µm) sintered at varying dwell time 
(0 to 30min)  at 800°C 

 

So, combining SEM and XRD results we can say that at 650°C both TiB and TiC phases are 

formed for TMC with finer B4C (1.67µm) particles. The results obtained here are similar to 

those discussed for TMCs with coarser B4C (17.9 µm) and also in agreement with those 

discussed in TEM analysis (section 4.5). Suggesting that, in SPS the reaction between Ti and 

B4C could be initiated at much lower temperature of 650°C or even lower. This is due to 

pressure assisting in reactants interfacial contact and the pulsed current density creating 

higher temperatures in particles surface reaching melting point and evaporation enhancing 

diffusion of atoms. As such,  higher reaction  spontaneity in SPS compacted TMCs was 

achieved at lower temperatures (650°C) in contradiction to DTA(1093°C) and DTA (1200°C)  

experiments. Whereby, loose powders are normally used reaching exothermic reactions at 

higher temperatures (Liang et al., 2008; Lu et al., 2008; Ni et al., 2008a).  
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The results and discussions based on processing TMCs from high contents (10wt%) of B4C 

and larger B4C particle sizes (17.9µm) showed that high temperature (above 1100°C) is 

required for complete reaction to occur and achieve full densification. Also the dwell time 

have insignificant change on the TiB2 layer for Ti5wt%B4C (17.9µm) TMCs. TMCs based on 

1.67µm B4C have indicated the potential to fully synthesize TiB and TiC phases 

homogenously dispersed in Ti matrix at lower temperatures, however higher temperatures 

may be required for complete homogeneity. Therefore, Ti5wt%B4C TMCs with a diameter of 

20mm were prepared using 1.67µm B4C for mechanical and tribocorrosion properties 

evaluation. Moreover, TMCs with lower B4C content Ti1wt%B4C and Ti2.5wt%B4C were 

also prepared to study the effect of reinforcing content on mechanical properties.   The TMCs 

were prepared at temperature of 1000°C and 1100°C, dwell time of 3min to 30min and 

pressure of 25MPa to 75MPa.  

 

Presented in Figure 4.29 - 4.31 is the effect of dwell time and pressure on the microstructure 

evolution of  20mm Ti5wt%B4C(1.67µm) sintered at 1000°C. Figure 4.29 (a-d) shows that, 

whatever the dwell time  and pressure, very fine TiB whiskers and TiC particulates were 

observed for Ti1wt%B4C(1.67µm).  Figure 4.30(a-d) shows the microstructure of the 

composite with increased B4C content in Ti2.5wt%B4C (1.67µm). As expected, the amount of 

the reinforcing phases was higher and the tendency of particles to cluster was observed after 

3min and 25MPa (Figure 4.30(a)). Further increased B4C content in Ti5wt%B4C(1.67µm) 

TMCs (Figure 4.31(a-d)) leads to also an increase of the amount of reinforcing phases and 

particles clusters. In contrast to Ti2.5wt%B4C with lower B4C content, the  particles clusters  

were formed at 3min, 15min and 3min 75MPa (Figures 4.30 (a, b and d)) completely 

disappear by increasing the dwell time to 30min as shown in Figure 4.31(c). A complete 

reaction occurred 1000°C and 30min as coarser TiB whiskers (29.28 µm) and TiC particulates 

(2.66µm) were formed for Ti5wt%B4C(1.67µm) .  



130 
 

 

Figure 4.29. SEM micrographs of 20mm Ti1wt% B4C(1.67 µm) TMCs sintered at 1000°C (a) 
3min 25MPa,(b) 15min 25MPa,(c) 30min 25MPa and (d)3min 75MPa  

 

 

Figure 4.30. SEM micrographs of 20mm Ti2.5wt% B4C(1.67 µm) TMCs sintered at 1000°C 
3min 25MPa,(b) 15min 25MPa,(c) 30min 25MPa and (d)3min 75MPa  

 

 

a b 

c d 

 

a 

c d 
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Figure 4.31. SEM micrographs of 20mm Ti5wt% B4C(1.67µm) TMCs sintered at 1000°C(a) 
3min 25MPa,(b) 15min 25MPa,(c) 30min 25MPa and (d)3min 75MPa  

 

 

The increase of temperature to 1100°C had a significant effect on the reaction and growth of 

reinforcing phases as observed in Figure 4.32. Already at 3min dwell time as shown in Figure 

4.32(a) for Ti1wt%B4C(1.67µm) reinforcing phases were fine and they became coarser with 

15min and 30min dwell times. At 75MPa (Figure 4.32(d)) the microstructure is comparably 

similar to the one observed at 25MPa (Figure 4.32(a)).  Increasing B4C in 

Ti2.5wt%B4C(1.67µm) in Figure 4.33 the reinforcing phases became coarser. Particles 

clusters were only observed in Ti5wt%B4C(1.67µm) TMCs at 3min 25MPa and 75MPa  as 

observed in Figure  4.34(a and d).  Only prolonged time of sintering from 15 to 30min 

removed the particles clusters as observed in Figure 4.34 (b and c) were only coarser TiB 

whiskers and TiC particulates are present. Pressure increase to 75MPa at Figure 4.34d) did 

not particularly change the microstructure as it was similar to that of 3min and 25MPa in 

Figure 4.34(a). However, XRD phases analysis for pressure effect shown in Figure 4.35 

revealed the presence of Ti3B4 phase when pressure was increased to 75MPa especially on 

TMCs with higher amount of B4C (Ti5wt%B4C). In summary, TMCs processed 1100°C with 

increased dwell time showed absence of particles clusters achieving a homogenous 

microstructure 

 

c d 

a b 
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Figure 4.32. SEM micrographs of 20mm Ti1wt% B4C(1.67µm) TMCs sintered at 1100°C (a) 
3min 25MPa,(b) 15min 25MPa,(c) 30min 25MPa and (d)3min 75MPa  

 

 

Figure 4.33. SEM micrographs of 20mm Ti2.5wt% B4C(1.67µm) TMCs sintered at 1100°C 
(a)3min 25MPa,(b) 15min 25MPa,(c) 30min 25MPa and (d)3min 75MPa  

 

 

a b 

c d 

 

a b 

c d 
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Figure 4.34. SEM micrographs of 20mm Ti5wt% B4C(1.67µm) TMCs sintered at 1100°C 

(a)3min 25MPa,(b) 15min 25MPa,(c) 30min 25MPa and (d)3min 75MPa 

 

 

a b 

c d 
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Figure 4.35. XRD phase analysis of 20mm samples (a-c) 1000°C and (d-f) 1100°C 
 

 

 

 

 

a 

b 

c 

d 

e 

f 

1000°C 1100°C 
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Figure 4.36. XRD phase analysis of pressure effect in D20 TMCs 
 

  
4.8 Relation between reinforcing phase’s content and size to the Vickers 
hardness 
Hardness is a property measure of a material that determines its resistance to plastic 

deformation, indentation, penetration, abrasion, scratching and wear. Thus its application 

enables the evaluation of the material’s strength, ductility and wears resistance, as such it is 

possible to determine if the material or the materials processing is suitable for the required 

application. In this section the relation between process-structure-properties of the synthesized 

20mm TMCs are discussed. The Vickers hardness measurements were done using a load of 

0.5Kg with a dwelling time of 10s as described in Chapter 2.   

Semi-quantitative phase analysis was done, thanks to the XRD analyses (Figure 4.35 & 4.36) 

by means of RIR method. In all the TMCs at the respective sintering temperature, dwell time 

and pressure as shown in Table 23 and 24, the amount of TiB whiskers was higher than TiC 

particulates. The reinforcing phases’ weight percent increased with increasing the amount of 
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B4C from 1 to 5wt%. The presented experimental density values were obtained by rule of 

mixtures using the weight percent values of Ti, TiB and TiC obtained by RIR method. The 

Archimedes density values were in the range of 4.51 - 4.53 g/cm3 which were relatively close 

to the calculated theoretical density (Appendix I.II) values of 4.51 - 4.54 g/cm3. However, the 

Archimedes densities of Ti1wt%B4C and Ti2.5wt%B4C sintered at 1000°C and dwell time of 

3min - 30min were much lower, 4.42 - 4.47 g/cm3, compared with experimental and 

calculated theoretical density values. This could be attributed to the smaller size and low 

quantity of the reinforcing phases in the TMCs, as observed in SEM images in section 4.7. 

 

Table 23. Semi- quantitative phase analysis of 20mm Ti and TMCs sintered at 1000°C 

 
1000°C 3' 25MPa 

  Ti Ti1wt%B₄C Ti2.5wt%B₄C Ti5wt%B₄C 
Ti (%) 100 99.50 96.70 92.20 
TiB (%) - 0.30 2.60 5.80 
TiC (%) - 0.10 0.70 2.00 
Experimental density 
(g/cm3) 4.51 4.51 4.51 4.52 
Archimedes density (g/cm3) 4.50 4.47 4.42 4.48 
Theoretical density (g/cm3) 4.51 4.52 4.53 4.54 
  1000°C  15' 25MPa 
  Ti Ti1wt%B₄C Ti2.5wt%B₄C Ti5wt%B₄C 
Ti (%) 100 99.50 97.70 90.40 
TiB (%) - 0.40 1.70 7.40 
TiC (%) - 0.10 0.50 2.20 
Experimental density 
(g/cm3) 4.51 4.51 4.51 4.52 
Archimedes density (g/cm3) 4.50 4.44 4.46 4.50 

Theoretical density (g/cm3) 4.51 4.52 4.53 4.54 
  1000°C 30' 25MPa 
  Ti Ti1wt%B₄C Ti2.5wt%B₄C Ti5wt%B₄C 
Ti (%) 100 99.50 97.90 90.10 
TiB (%) - 0.40 1.60 6.20 
TiC (%) - 0.10 0.60 3.70 
C - - - - 
Experimental density 
(g/cm3) 4.51 4.51 4.52 4.53 
Archimedes density (g/cm3) 4.50 4.45 4.47 4.53 
Theoretical density (g/cm3) 4.51 4.52 4.53 4.54 
  1000°C 3' 75MPa 
  Ti Ti1wt%B₄C Ti2.5wt%B₄C Ti5wt%B₄C 
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Ti (%) 100 99.40 97.20 90.00 
TiB (%) - 0.50 2.20 7.10 
TiC (%) - 0.10 0.50 2.10 
C - - - 0.80 
Ti3B4 - - - - 
Experimental density 
(g/cm3) 4.51 4.51 4.51 4.52 
Archimedes density (g/cm3) 4.50 4.50 4.51 4.53 
Theoretical density (g/cm3) 4.51 4.52 4.53 4.54 

 

Table 24. Semi- quantitative phase analysis of 20mm Ti and TMCs sintered at 1100°C 

 

1100°C 3' 25MPa 

  Ti Ti1wt%B₄C Ti2.5wt%B₄C Ti5wt%B₄C 

Ti (%) 100 98.70 95.80 91.60 

TiB (%) - 1.10 2.70 5.50 

TiC (%) - 0.20 1.50 3.00 

Experimental density (g/cm3) 4.51 4.51 4.52 4.53 

Archimedes density (g/cm3) 4.50 4.50 4.51 4.52 

Theoretical density (g/cm3) 4.51 4.52 4.53 4.54 

  1100°C  15' 25MPa 

  Ti Ti1wt%B₄C Ti2.5wt%B₄C Ti5wt%B₄C 

Ti (%) 100 98.90 96.60 92.40 

TiB (%) - 0.70 2.10 5.50 

TiC (%) - 0.40 1.30 2.10 

Experimental density (g/cm3) 4.51 4.51 4.52 4.52 

Archimedes density (g/cm3) 4.51 4.51 4.52 4.52 

Theoretical density (g/cm3) 4.51 4.52 4.53 4.54 

  1100°C  30' 25MPa 

  Ti Ti1wt%B₄C Ti2.5wt%B₄C Ti5wt%B₄C 

Ti (%) 100 97.60 97.50 88.40 

TiB (%) - 2.10 1.70 7.20 

TiC (%) - 0.30 0.50 4.30 

C - - 0.20 - 

Experimental density (g/cm3) 4.51 4.51 4.50 4.53 

Archimedes density (g/cm3) 4.51 4.50 4.52 4.53 

Theoretical density (g/cm3) 4.51 4.52 4.53 4.54 

  1100°C 3' 75MPa 
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  Ti Ti1wt%B₄C Ti2.5wt%B₄C Ti5wt%B₄C 

Ti (%) 100 99.20 91.50 87.60 

TiB (%) - 0.60 4.50 3.50 

TiC (%) - 0.30 0.70 2.20 

C - - 3.20 0.80 

Ti3B4 - - - 5.90 

Experimental density (g/cm3) 4.51 4.52 4.42 4.33 

Archimedes density (g/cm3) 4.50 4.50 4.52 4.53 

Theoretical density (g/cm3) 4.51 4.52 4.53 4.54 

 

 

The hardness values for all the TMCS were obtained using a load of 0.5Kg with a dwell time 

of 10s and these are presented in Figure 4.37. It was evident that the hardness values of pure 

titanium were improved by addition of reinforcing phases. The hardness values for the TMCs 

at both temperatures increases with the increasing content of B4C. Pure titanium exhibited 

highest hardness value of 401HV at 1100°C and 30min dwell time, while the highest value for 

TMCs was 678HV for Ti5wt%B4C sintered at 3min and 75MPa.   The Vickers hardness 

values of the TMCs were in the range of 428 - 678HV. These values were comparably in the 

same range with those obtained by pressureless sintering at 1450°C for composites with 10 to 

30vol% (TiB + TiC) synthesized from 3µm B4C ( 526 and  690HV)  were obtained 

(Kolukuluri, 2013). Also  Ni et al. (2006) reported a hardness value of 581HV for 0.5µm B4C  

10vol%(TiB + TiC) composite prepared by hot pressing at 1200°C, 30min and 20MPa (Figure 

4.38).  

 

Presented in Figure 4.39 is the evolution of reinforcing phase’s sizes with the respective SPS 

sintering conditions. The TiB whiskers length for 8mm TMCs at 800°C increased from 1.264 

to 1.461µm, the 20mm increased from 19.343 to 29.567µm at 1100°C with the varied dwell 

times (3-30min) respectively. Similar observations were made for the width of the TiB. 

However it has to be noted that, the TiB whiskers growth was inhomogeneous for TMCs 

sintered at higher temperatures in contrast to those sintered at 800°C. Their length was in the 

range of 10.628 to 28.284µm at 3min 1100°C (20mm TMCs) higher than those sintered at 

3min 800°C (8mm TMCs) with 0.63 to 1.635µm. 
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Figure 4.37. Vickers hardness of 20mm TMCs at varying temperature and dwell time 

 

Figure 4.38. Vickers hardness of 20mm TMCs at varying temperature and dwell time 
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Figure 4.39. Reinforcing phases growth with increasing dwell time, a) TiB length, b) TiB 
width and c) TiC perimeter 
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The relationship between the reinforcing phase’s content and Vickers hardness for TMCs 

sintered at 1000°C and 1100°C with the varying dwell time (3-30min) and pressure (25-

75MPa) is shown in Figure 4.40. As can be seen the hardness values gradually increased with 

increasing reinforcement content at the varied sintering temperature, dwell time and pressure. 

There was a slight variation in hardness values with the respective SPS conditions. Addition 

of 1 to 5wt%B4C at 1000°C for the different dwell times (3 - 30min) increased the hardness to 

about 22 to 46% respectively. Also increasing pressure (25 - 75MPa) at 3min dwell time the 

hardness values increments with reinforcement were 23 to 48% respectively 

However, these hardness variations were comparably in the same range irrespective of 

coarsening of TiB and TiC. Similar behaviour was observed at 1100°C, hardness variation 

with dwell time (3 - 30min) was 17 - 38%,  with pressure (25 - 75MPa) was 21 - 41% with 

increasing reinforcement content from 1 to 5wt% respectively.  Moreover, comparing the two 

temperatures, it can be seen that the hardness variations were slightly lowered when 

temperature increased to 1100°C. This could be attributed to the compacted clusters observed 

at 1000°C providing higher hardness than homogeneously dispersed TiB and TiC phases 

formed at 1100°C 
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Figure 4.40. Relation between Vickers hardness and reinforcing phases content of 20mm 
TMCs at varying temperature and dwell time 
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4.9  Reaction kinetics in TMCs by SPS 
Reaction kinetics is widely studied in TiB2 based hard coatings field including also TiC 

coatings, than for TMCs prepared by powder metallurgy. In fact, the modeling of reaction     

kinetics is considered as a suitable tool to select the appropriate process parameters for 

obtaining adequate boride layer thicknesses in relation with their practical applications 

(Keddam et al., 2017).  

In order to understand the reaction kinetics involved in TMCs prepared by SPS, it is important 

to study the interphase reaction layer growth (TiB2 and TiB). The TiB2 is a transient phase 

which gives way to formation of TiB whiskers after complete consumption of B4C particles. 

However, the stages of reactions and formation of interphases (TiB2) involved in the 

microstructure evolution of sub-micron B4C particles occur rapidly. As such the reaction 

kinetics at varying temperatures and dwell times (3 to 30min) were quantified for the growth 

of TiB whiskers and TiC particles for TMCs with 1.67µm B4C particles  shown in Figure 

4.41. 

 

 

Figure 4.41.TMCs sintered at 800°C and 1100°C showing TiB whiskers 
 

The growth of TiB whiskers and TiC particles are diffusion controlled thus obeys parabolic 

law mathematically described as follows:  

 

𝑥 = 𝑘𝑡1/2                              [Eq.18] 

 

TiB 
whiskers 

800°C   1100°C   

TiC particles 
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Where x represents the length of TiB or perimeter of TiC, k is the growth rate and t is the 

sintering dwell time.   

Presented in Figure 4.42 and 4.43 is the growth in length of TiB whiskers and perimeter of 

TiC particles increasing gradually with time in the temperature range of 1073-1373°C. The 

parabolic growth constants were obtained from the slope of the curves. Due to lack of 

experimental data for TMCs by SPS technique the obtained parabolic growth constants were 

compared with those obtained by coating techniques in temperature ranges of 973-1123K as 

shown in Figure 4.44 and 4.45. At low temperatures the TiB values were relatively close to 

those reported for coating techniques and that of TiC were relatively lower. We have to 

consider that in coatings the reaction layers are planar so the growth rate may be almost 

uniform compared with TiB whiskers and TiC particles with inhomogeneous growths. This 

might have effect on the growth rate determination for the TMC.   

 

In section 4.6 we discuss that diffusion path of atoms involved in the Ti-B4C TMCs is by 

interdiffusion mechanisms involving B, C and Ti atoms. The formation of TiB and TiC 

depends on B and C diffusion coefficients in the Ti matrix. Carbon with higher diffusion 

coefficient diffuse rapidly further into the Ti matrix and the B is left behind closer to the 

Ti/B4C interface, Ti then diffuses into vacancies left by B and C atoms.  In agreement with 

Mogilevsky et al. (1998) a complex reaction layer in sequence of Ti-TiC0.5-TiB-TiB2-B4C 

was formed at 1000°C and 1300°C for B4C coating deposited on Ti substrate.  This formation 

was related to the higher diffusivity of carbon in titanium compared to that of boron in 

titanium and titanium self-diffusion. Vacancy diffusion mechanism of B and C atoms led to 

the growth of TiB2, TiB and TiC phases (Fan et al., 1997; Keddam et al., 2016; Martins et al., 

2018).  
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Figure 4.42. Evolution of TiB whiskers length as a function of the square root of time  
 

 

Figure 4.43. Evolution of TiC perimeter as a function of the square root of time 
 

y = 0.0075x + 1.2228 

y = 0.8673x - 9.2425 

y = 0.5069x + 12.665 

0

6

12

18

24

30

36

42

0 10 20 30 40 50

x(
µm

) 

t1/2(s) 

800 °C
1000°C
1100°C

y = 0.1659x + 4.2344 

y = 0.4993x - 1.2161 

0

6

12

18

24

30

36

42

0 10 20 30 40 50

x(
µm

) 

t1/2(s) 

1000°C

1100°C



146 
 

 

Figure 4.44. Parabolic growth constants for TiB 
 

 

Figure 4.45. Parabolic growth constants for TiC 
 

The growth of TiB whiskers and TiC particles are thermally activated and the growth rate (k) 

depends on the temperature, using the following equation the activation energy was 

determined. 
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𝑘 = 𝑘0exp (
𝐸𝑎

𝑅𝑇
)                                [Eq.19] 

 

Where k0 is the frequency constant, Ea is the activation energy, R (8.314J.mol-1.K-1) is the 

universal gas constant and T is the temperature. The boron and carbon activation energy 

needed to grow TiB whiskers and TiC particles was determined from the linear slopes in 

Figure 4.46 and 4.47, it was about 83.09KJ.mol-1 and 69.53 KJ.mol-1 respectively. These 

values are compared with those in literature in Table 25 that of TiB is within the range of 

activation energy values in contrast with TiC which is very low. . As found in literature 

reaction kinetics are widely investigated for titanium based coatings, so there is a wide gap in 

literature for titanium matrix composites by SPS. Due to lack of data in the SPS process is 

difficult to make a good judgement of the activation energies obtained in the present study. 

Thus more work is needed in this specific research area. 

 

 

Figure 4.46. Arrhenius relationship between growth rates and sintering temperature for TiB 
whiskers 
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Figure 4.47. Arrhenius relationship between growth rates and sintering  temperature for TiC 
particles 

 

Table 25. Summary of calculated activation energies 
Matrix     Process Temperature 

range (K) 
Activation energy 

Ea (KJ.mole
−1

) 
References 

CP-Ti SPS 25MPa 1073-1373 83.09 (TiB) Present study 
CP-Ti SPS 25MPa 1073-1373 69.53(TiC) Present study 
CP-Ti Plasma paste boriding 973–1073 136 (TiB

2
), 64(TiB) (Keddam et al .,2017) 

CP-Ti Plasma paste boriding 1023–1123 123(TiB
2
), 179(TiB) (Makuch et al., 2017) 

CP-Ti Plasma paste boriding 973–1073 138 (TiB
2
), 55(TiB) (Keddam et al., 2016) 

CP-Ti Plasma paste boriding 973–1073 94 (TiB
2
 + TiB) (Ataibis et al., 2015) 

CP-Ti CRTD-Bor (electrolyse 
liquid boriding) 

1173–1373 190 (TiB
2
) (Kartal et al., 2013) 

CP-Ti Powder immersion 
reaction assisted coating 
method 

1273-1473 175(TiC0.5-TiB-TiB2) (Mogilevsky et al, 1995) 

TB2 alloy Pack boriding 1223–1373 158(TiB
2
), 96 (TiB) (Li et al., 2018) 

Ti6Al4V Plasmam paste 
boriding 

973–1073 100 (TiB
2
 + TiB) (Ataibis et al., 2015) 

Ti6Al4V Pack boriding 1273–1373 65 (TiB
2
 + TiB) (Fenghua et al., 2010) 

Ti6Al4V Ti6Al4V/Sigma fibre 
composites 

1143–1243 187 (TiB
2
),190(TiB) (Fan et al., 1997) 

CP-Ti SPS 10.5 MPa 1043-1243 218.6 (TiC) (Hayashi et al., 2013) 
Ti-48Al-2Cr-2Nb SPS 50MPa 1173-1573 232.52 (TiC) (Martins et al., 2018) 
Ti3Al  SHS - 240 - 460 (TiC) (Khina et al., 2005) 
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Summary 
Simultaneous synthesis and consolidation of TMCs with homogenously distributed TiB and 

TiC reinforcing phases in the titanium matrix and detailed analysis of the involved  in-situ 

reaction mechanisms and kinetics was achieved. To achieve this, variety of B4C powders with 

different D50 particles size (1.67µm, 1.79µm and 17.9 µm) were reactively sintered with CP-

Ti (25.9 µm) to simultaneously synthesize and consolidate Ti-(TiB + TiC) TMCs. The 

relative densities depend on particles size and reaction between the reactants. Relative density 

of TMCs based on B4C 1.67µm and 1.79µm was higher and relatively the same at the varied 

SPS parameters, but that of B4C 17.9µm was very low. This difference was attributed to the 

high spontaneity of reaction occurring when smaller particles size were used forming high 

volume fraction of denser TiB2(4.52g/cm3), TiB(4.56g/cm3) and TiC(4.93 g/cm3) reinforcing 

phases at lower temperatures of 800°C.  As for TMCs based on coarser B4C 17.9µm the 

unreacted B4C (2.52g/cm3) contributed to the low relative densities. Relative density of 99% 

was reached at 800°C for 8mm TMCs Ti5wt%B4C(1.67µm) and Ti5wt%B4C(1.79 µm) 

sintered at pressures of 75MPa and 50MPa respectively. Increasing the amount of B4C for all 

the composites led to even lower relative densities due to porosity and unreacted B4C. 

Microstructure for B4C 1.67µm and 1.79µm TMCs were commonly characterized by TiB, 

TiC and clusters of particles, while that of B4C 17.9µm TMCs consisted of TiB2, TiB, TiC 

and unreacted B4C. Microstructure analysis on the cross section of the particles clusters for 

B4C 1.67µm TMCs revealed unreacted B4C at 800°C. At 1100°C the B4C completely reacted 

to form mixture of phases namely TiB, Ti3B4, Ti2B, TiC, and Ti2C. On the reaction 

mechanism, the reaction between the Ti and B4C was suggested to be initiated at temperatures 

below the set-point temperature of 800°C. This was due to the higher temperatures reached on 

the surface of particles reaching the melting point and vaporization which enhanced 

interdiffusion of atoms. To remove the particles clusters, the dwell time was increased from 

3min to 30min and a homogeneous microstructure with TiB and TiC phases was obtained. 

The Vickers hardness increases with the increasing amount of reinforcing phases (TiB and 

TiC) and the highest was 678HV obtained at 1000°C 3min 75MPa.  
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5.0 Introduction 
The poor wear resistance of titanium and its alloys limit their application in which the 

combined effect of wear and corrosion may be encountered. In this regard, the present study 

was focused on synthesis of ceramic phases in the form of whiskers and particles in titanium 

based matrix to form advanced TMCs to aid in reducing material loss and prolong the service 

life. TMCs are alternative material to reduce the overall weight, fuel consumption and 

harmful emission of combustion products to the environment. Therefore, TMCs find 

applications in many engineering applications, most importantly in the automotive industry 

(Mathew et al., 2009). In fact, degradation of materials by corrosion and tribocorrosion is 

encountered in various harsh technological applications including the automotive industry. In 

a motor vehicle, the damage in the brake disc is often caused by combination of wear and 

corrosion especially in humid conditions. As such, TMCs parts would offer both improved 

corrosion and lightweight properties compared with conventional gray cast iron or the 

unreinforced titanium based matrix (Blau et al., 2007).  

 

There is vast knowledge in mechanical properties evaluation of TMCs (Geng et al., 2008; Li 

et al., 2016; Rahoma et al., 2015; Shufeng et al., 2015) while little is known for their 

tribocorrosion response. Hence, contribution of corrosion and tribocorrosion knowledge in the 

TMCs research field is very important as it allows better understanding of the overall 

materials performance and its future potential uses. It was therefore decided to investigate the 

corrosion and tribocorrosion behaviour titanium reinforced with TiB and TiC phases. In this 

chapter, the effect of the SPS sintering conditions (i.e. set-point temperature, dwell time, 

pressure) and TMCs composition on the corrosion and tribocorrosion response of fully 

consolidated SPS TMCs was investigated.  The experiments were carried out in saline 

conditions to simulate the road deicing conditions whereby salts are usually used as deicing 

agents. Firstly, the corrosion behaviour was analyzed using the open circuit potential 

technique to find the equilibrium potential at which the materials show the tendency to 

corrode. Then the potentiodynamic polarization behaviour was studied to determine to 

corrosion potential and corrosion current densities. The aforementioned techniques were then 

performed under applied load in rotating motion to determine the tribocorrosion behaviour, 

whereby the coefficient of friction was related to corrosion. The depths of the wear tracks 

were further analyzed by a profilometer to determine the severe surface damage. 
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5.1 TMCs for corrosion and tribocorrosion studies  
In Chapter 4 we observed that TMCs sintered using 1.67µm B4C particles at 1000 and 

1100°C were fully consolidated (99%). These TMCs are of interest to 

corrosion/tribocorrosion related applications whereby porosity is not desired. Porosity may 

deteriorate mechanical properties of the materials and can reduce the corrosion resistance of 

the composites by accelerating corrosion rates. In terms of tribocorrosion, detachment of 

phases may occur in areas where porosity is concentrated and they may act as third-body 

abrasives causing severe damage on the surface of the material. Therefore, it was required that 

porosity is eliminated for the corrosion and tribocorrosion experiments. With the aid of TEM 

analysis in Chapter 4, we can say that the B4C particles were completely reacted and the 

particles clusters were composed of Ti-B and Ti-C compounds in the TMCs of interest. Either 

further increase of dwell time to 30min or increase of temperature to 1100°C the clusters were 

completely removed, producing homogenously dispersed TiB and TiC reinforcing phases in 

Ti matrix. In this Chapter, the focus is on corrosion and tribocorrosion performance of TMCs 

entirely composed of TiB and TiC reinforcing phases.  

 

The TMC samples for the experiments were sintered at 1000 and 1100°C, at pressure of 25-

75MPa and 3-30min dwell time are shown in Figure 5.1 and 5.2 . Increasing dwell time and 

temperature had a significant effect on the reaction and growth of reinforcing phases. Particles 

clusters were observed at 1000°C for Ti2.5wt%B4C and by increasing the temperature to 

1100°C they were completely removed.  For Ti5wt%B4C with increased B4C content, the 

amount of reinforcing phases and clusters was higher at both temperatures at shorter dwell 

time (3min) and increased pressure (75MPa).  Complete removal of clusters with coarsening 

of TiB and TiC phases was observed at 30min for 1000°C, while for 1100°C the dwell time 

was shorten to 15min achieving complete homogeneity. In general, microstructure 

homogenization by removal of clusters was achieved with increasing dwell time and 

temperature in contrast to pressure increase.  
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Figure 5.1. SEM micrographs of 20mm Ti2.5wt% B4C(1.67 µm) TMCs  
 

 

 

Figure 5.2. SEM micrographs of 20mm Ti5wt% B4C(1.67 µm) TMCs 
 

 

 

 

3min 25MPa 30min 25MPa 3min 75MPa 

1000°C 

3min 25MPa 15min 25MPa 3min 75MPa 

1100°C 

3min 25MPa 

3min 25MPa 

30min 25MPa 

15min 25MPa 

3min 75MPa 

3min 75MPa 

1000°C 

1100°C 



156 
 

5.2 Open circuit potential in 3.5%NaCl for Ti and TMCs sintered at 1000°C 
and 1100°C 
Open circuit potential (OCP) measurement under static conditions at room temperature was 

carried out for 2h to study the tendency of Ti and TMCs to corrode. Presented in Figure 5.3 

and 5.4 is the OCP as a function of time performed in 3.5%NaCl solution for Ti and TMCs 

sintered at varying dwell time (3min to 30min) and pressure (25MPa to 75MPa) at sintering 

temperatures of 1000°C and 1100°C respectively.  As observed in Figure 5.3 at 1000°C the 

OCP curves steadily increase with immersion time for the TMCs except for Ti sintered at 

3min and 15min showing some fluctuations, which could be due to formation and damage of 

passive oxide film. The OCP curves positively shifted with addition of B4C content, showing 

lower tendencies to corrosion than Ti except at 75MPa for Ti5wt%B4C.  

 

 

Figure 5.3. Open circuit potential of TMCs sintered at 1000°C with varying dwell times 
 

In Figure 5.4 the OCP curves of Ti and TMCs at 1100°C steadily increases with time without 

fluctuations showing formation of a stable oxide film. Ti5wt%B4C showed better 
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thermodynamic stability to corrosion compared with Ti and Ti2.5wt%B4C.  While at 3min 

and 30min dwell time Ti2.5wt%B4C was more prone to corrosion, thus adding 2.5wt% of 

B4C did not improve the thermodynamic stability of the material.  The OCP values of 

Ti5wt%B4C sintered at 1100°C were nobler compared with the one sintered at 1000°C. In 

summary, increasing amount of reinforcing phases and temperature lowered the susceptibility 

to corrosion. 

 

 

Figure 5.4. Open circuit potential of TMCs sintered at 1100°C with varying dwell times 
 

The microstructure evolution with dwell time, pressure and temperature (Figure 4.30 and 

4.31) showed particles clusters (Ti-B and Ti-C compounds) transforming into coarser TiB and 

TiC phases. In addition, quantification of the phases by RIR method (Chapter 4) showed TiB 

phase relatively higher than TiC phase at the respective increased sintering conditions and 

with increase of B4C content( 2-5wt%). Figure 5.5 presents the effect of microstructure 

variation on the OCP behaviour with increased dwell time and pressure at 1000°C and 
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1100°C. As observed the OCP values of the TMCs sintered at 1000°C were affected by the 

varying microstructures obtained with increased dwell time and pressure. In Figure 5.5(a) the 

OCP values of Ti2.5wt%B4C sintered at 1000°C positively shifted from 3 to 30min dwell 

time. This showed that homogenization of microstructure from particles clusters (3min) to 

well dispersed TiB and TiC reinforcing phases (30min) improves the OCP values of the TMC. 

While the OCP values of Ti2.5wt%B4C sintered for 15min were negatively shifted. This 

could be attributed to the combination of particles clusters with dispersed fine TiB and TiC 

phases in the microstructure. Similar to the increase of pressure from 25-75MPa, the 

microstructure was characterized with particles clusters but with coarser TiB and TiC phases 

this also caused the negative shift of OCP values.  This could indicate that particles clusters 

are not desirable for this types of TMCs as the tendency to corrosion was enhanced by them.  

 

 

Figure 5.5. Microstructure variation effect at the different dwell times (3-30min) and Pressure 
(25-75MPa) on the OCP of TMCs sintered at (a & b) 1000°C and (c & d) 1100°C 

 

Similar OCP values behaviour was observed for Ti5wt%B4C sintered at 1100°C as shown in 

Figure 5.5(b). The only difference was the OCP values of TMC sintered at 15min were mostly 

positively shifted. A negative shift of the OCP values was observed when TiB and TiC phases 

were coarsened with increased dwell time of 30min. Similar to Ti2.5wt%B4C pressure 

increase resulted in negative shift of OCP values. Temperature increase to 1100°C as 

a c 

b d 
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observed in Figure 5.5(c) for Ti2.5wt%B4C, in the first 300s the OCP values followed a 

similar trend to those sintered at 1000°C. OCP values for 15 and 30min dwell time were 

mostly positively shifted, the microstructure here was characterized with homogenously 

dispersed TiB and TiC phases. With pressure increase to 75MPa there was insignificant 

difference with 25MPa, the OCP values were almost the same. Increasing the B4C content to 

5wt% in Figure 5.5(d) resulted in a positive shift of OCP values with increased dwell time and 

pressure. In quantification of the phases present in Ti5wt%B4C, Ti3B4 phase (5.9wt%) was 

detected, it could have attributed to the positive shift of OCP values. In contrast to  

Ti5wt%B4C sintered at 1000°C Ti3B4 phase was present in traces. 

 

5.3 Potentiodynamic polarization in 3.5%NaCl for Ti and TMCs sintered at 

1000°C and 1100°C 
Potentiodynamic polarization curves of Ti and TMCs sintered at 1000°C, varying dwell times 

and pressure are presented in Figure 5.6. The polarization curves exhibited similar features, 

the current density of the cathodic branch decreased when applied potential increased up to 

the corrosion potential.  This was due to hydrogen evolution and, or oxygen reduction on the 

electrode surface (Ahmad, 2006). Moreover, the anodic branches showed passivation regions 

at increasing dwell time (30min) and pressure (75MPa), especially Ti5wt%B4C passivation 

was observed for all the studied sintering conditions. This indicates that Ti5wt%B4C may 

have the highest corrosion protection compared with the other samples. Similar passivation 

behaviour was observed for Ti-B4C composites characterized with partially reacted B4C 

particles tested in NaCl solution (Toptan et al., 2016). In contrast, active-passive behaviour 

without a transpassive region for Ti-TiC and Ti-TiB2 composites until applied potential of 2V 

in HCl solution has been reported (Covino Jr et al., 2002).  
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Figure 5.6. Potentiodynamic polarization curves of Ti and TMCs sintered at 1000°C in 
3.5%NaCl  

 

On evaluating the corrosion potential (Ecorr) and corrosion current density (Icorr) values 

reported in Table 25, obtained from the polarization curves (Figure 5.6) using Tafel 

extrapolation method, there was no specific behaviour trend at the respective varying sintering 

conditions. The polarization behaviour at the respective dwell times and pressure showed 

insignificant difference in the Ecorr values of Ti and Ti2.5wt%B4C except at 15min. A positive 

Ecorr shift was obtained for Ti5wt%B4C at the respective dwell times, this could  be due to the 

reduced exposed metallic surface area of Ti by the ceramic reinforcing phases (Toptan et al., 

2016). Similar results were reported for Ti6Al4V-B4C (Prakash et al., 2016), addition of 

ceramic particles may shift the Ecorr value to more noble values. This effect increases the 

corrosion resistance by the inert physical barrier role of the particles (Han et al., 2015).  

 

The Icorr values at 15min (see table 25) were higher for Ti and Ti2.5wt%B4C, while 

Ti5wt%B4C exhibited the lowest Icorr values.  Further increase of dwell time to 30min the Icorr 
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values were lowered for Ti and Ti2.5wt%B4C, a slight increase was observed for Ti5wt%B4C. 

Increasing pressure to 75MPa resulted in positive Ecorr shift for Ti and Ti2.5wt%B4C. 

Meanwhile, negative Ecorr shift was observed for Ti5wt%B4C with the highest Icorr value. 

Table 26. Corrosion potential (Ecorr) and corrosion current density (Icorr) of Ti and TMCs 
sintered 1000°C under static conditions 

  Ecorr(V) 

Sample 3min & 25MPa 15min & 25MPa 30min  & 25MPa 3min  & 75MPa 
Ti -0.45 -0.62 -0.36 -0.32 
Ti2.5wt%B₄C -0.46 -0.45 -0.37 -0.34 
Ti5wt%B₄C -0.26 -0.23 -0.24 -0.47 

  Icorr (A/cm2) x 10-6 
Sample  3min & 25MPa 15min & 25MPa 30min  & 25MPa 3min  & 75MPa 
Ti 4.11 34.06 0.58 0.92 
Ti2.5wt%B₄C 3.90 5.82 1.07 1.19 
Ti5wt%B₄C 0.45 0.17 0.36 2.94 

 

The effect of TMCs microstructure evolution with dwell time and pressure on the Ecorr and 

Icorr values it was evident and similar to the OCP values behaviour at 1000°C (Figure 5.5). For 

Ti2.5wt%B4C in Table 25 the decreasing Ecorr values with dwell time showed that formation 

of homogenized TiB and TiC phases yield a positive Ecorr shift. This behaviour was in 

agreement with Icorr values which were lowest for 30min dwell time. This showed the 

improved resistance to corrosion at 30min in contrast to 3 and 15min dwell times. Similar 

behaviour was observed for Ti5wt%B4C, the microstructure with particles clusters at 3min 

exhibited a more negative Ecorr value and it became positive when TiB and TiC phases were 

homogenously formed. However, when the phases were coarsened at 30min the Ecorr value 

became more negative, showing the lowered corrosion resistance.  In agreement, the lowest 

Icorr value was obtained for 15min TMC with finer TiB and TiC phases. On the pressure 

increase effect for Ti2.5wt%B4C, an opposite behaviour to OCP values was observed on the 

Eocrr values which became more positive with reduced Icorr value. However, Ti5wt%B4C still 

showed a similar trend with the OCP values and pressure increase. The Ecorr value became 

more negative with increased Icorr values showing reduced corrosion resistance. In summary, 

addition of reinforcing phases to Ti yielded improved corrosion resistance at 1000°C for 

Ti5wt%B4C sintered at 15min.  
 

Presented in Figure 5.7 is the polarization curves of Ti and TMCs sintered at 1100°C, varying 

dwell times and pressure. Similar to 1000°C, the polarization passivation behaviour was 
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observed at 1100°C for all the samples. Moreover, on the corrosion values presented in Table 

26, Ecorr values of Ti and Ti2.5wt%B4C were almost in same range with only Icorr values 

variation at 3min and 30min dwell time. At 15min, dwell time highest Icorr values of 2.09 x 10-

6 A/cm2 and 1.16 x 10-6 A/cm2 were obtained for Ti and Ti2.5wt%B4C respectively. Similar to 

1000°C, Ti5wt%B4C sintered at 15min dwell time generally showed higher corrosion 

resistance. The relationship between the varying microstructures and the Ecorr and Icorr values 

with the different sintering conditions was also similar to those previously discussed in Table 

25. In addition, the presence Ti3B4 phase in Ti5wt%B4C at 75MPa resulted in reduced Icorr 

value and positive OCP value. 

 

 

Figure 5.7. Potentiodynamic polarization curves of Ti and TMCs sintered at 1100°C in 
3.5%NaCl 
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Table 27 . Corrosion potential (Ecorr) and corrosion current density (Icorr) of Ti and TMCs 
sintered 1100°C under static conditions 

  Ecorr(V) 
Sample 3min & 25MPa 15min & 25MPa 30min  & 25MPa 3min  & 75MPa 
Ti -0.32 -0.38 -0.34 -0.30 
Ti2.5wt%B₄C -0.36 -0.34 -0.32 -0.35 
Ti5wt%B₄C -0.08 -0.08 -0.17 -0.09 

  Icorr (A/cm2) x 10-6 
Sample  3min & 25MPa 15min & 25MPa 30min  & 25MPa 3min  & 75MPa 
Ti 0.01 2.09 0.003 1.02 
Ti2.5wt%B₄C 1.12 1.16 1.04 1.56 
Ti5wt%B₄C 0.10 0.01 0.10 0.01 

 

In general, sintering at 1100°C improves corrosion resistance of Ti and TMCs than 1000°C, 

which is in good agreement with the OCP values obtained as presented in Figure 5.4. This 

was attributed to increased reinforcing phases content, reduced particles clusters and finer TiB 

and TiC phases resulting in positive OCP and Ecorr and reduced Icorr values. In addition, 

although the reinforcing phases content increase with dwell time as determined by semi-

quantitative analysis, the Ecorr and Icorr values remain insignificantly affected. In the present 

study the Ecorr values of Ti - (TiB + TiC) composites   were in the range of -0.47V to -0.23V 

and -0.38V to -0.08V sintered respectively at 1000°C and 1100°C. In comparison to literature 

for corrosion tests in NaCl based solutions, Toptan et al. (2016) reported Ecorr value of -

0.297V  for hot pressed Ti-B4C composites at 1100°C with partially reacted B4C particles. 

Other researchers shown in Table 27 have reported Ecorr values in the range of -0.42V to -

0.4V  and -0.18 to 0.05V  for TiB2 and TiC single phases fabricated by different methods 

(Alkhateeb et al., 2011; Coving Jr et al., 1975; Monticelli et al., 2001; Onuoha et al., 2017; 

Shvets et al., 2016; Verkhoturov et al., 1988). So, depending on the different processing 

conditions the values of Ecorr and OCP may  vary. 
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Table 28. Corrosion properties TiB2 and TiC in NaCl solution in literature 
Phase 
Process 
Reference 

Corrosion 
Conditions 

RD 
(%) 

OCP 
(V) 

Ecorr 
(V) 

References  

SPS 
1000°C 
Ti2.5wt%B4C 
Ti5wt%B4C 
 
1100°C 
Ti2.5wt%B4C 
Ti5wt%B4C 
 

 
3.5wt% NaCl 
 

 
 

99% 
99% 

 
 

99% 
99% 

 
 

-0.3 to -0.17V 
-0.485 to -0.034V 

 
 

-0.307 to -0.29V 
0.02 to 0.11V 

 
 

-0.46  to -0.34 
-0.47 to -0.23 

 
 

-0.36 to -0.32 
-0.17 to -0.08 

 
Present study  
 

HP 
1100°C 
Ti24vol%B4C 

9g/L NaCl - - -0.297 Toptan et al. (2016) 

Cold compacting 
and sintering 
TiB2 

Synthetic sea 
water 

66 - -0.420 (Verkhoturov et al., 1988) 

Press and sintered 
TiB2 sinter 

Substitute sea 
water 

- - 
 

± -0.4 
 

(Coving Jr et al., 1975) 

Hot pressing 
TiB2 

3.5wt% NaCl 
 

97  ± -0.4 (Monticelli et al., 2001) 

TiB2 
Chemical Vapour 
Deposition 

0.5M NaCl 
 

- @ 0h: -0.457 
@ 6h: -0.409 

± -0.4 (Alkhateeb et al., 2011) 

TiC 
SPS 

3.5wt%NaCl 98 -0.209± 0.035 -0.173 ± 0.094 (Onuoha et al., 2017) 

TiC1.0 sinter 
Hot pressing 

3wt%NaCl - - 0.050 (Shvets et al., 2016) 

TiC 
Cold compacting 
and sintering 

Synthetic sea 
water 

87 
55 

- 
- 

-0.180 
-0.160 

(Verkhoturov et al., 1988) 

 

 

5.4 Open circuit potential under sliding conditions in 3.5%NaCl for Ti and 

TMCs sintered at 1000°C and 1100°C 
This section presents OCP measurements performed to evaluate the tendency of Ti and TMCs 

to corrode under tribocorrosion conditions. The influence of applied load on the stability of 

OCP values with relation to induced friction in sliding, the effect of SPS parameters and 

reinforcing phase’s addition to Ti were investigated. The OCP evolution was studied in three 

sections, the first 1800s presents OCP values without applied load, and secondly the 2N load 

was applied for 3600s with expected potential drop and lastly the load was removed for 1800s 

and the OCP values may or not recover.  The OCP behaviour of samples sintered at 1000°C at 

3min to 30min with pressure ranging from 25 to 75MPa is presented in Figure 5.8. 
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Figure 5.8. Open circuit potential under sliding of Ti and TMCs sintered at 1000°C with 
varying dwell time 

 

In Figure 5.8 at 1000°C, it was observed that when the load was applied the samples had 

different potential drops. At 3min 25MPa the largest potential drop being that of Ti with 

0.67V to -0.69V, followed by Ti2.5wt%B4C with 0.35V to -0.36V and smallest drop was 

obtained for Ti5wt%B4C with -0.12V to -0.19V. This could clearly indicate that OCP values 

of Ti5wt%B4C were slightly affected when load was applied, showing good load carrying 

ability by the harder reinforcing phases preventing material removal. The potential drop is an 

indication of electrochemical activity, which is associated  with the removal of passive film at 

the tribological contact area exposing the bare material to the solution and  also detachment of 

materials debris (Mischler et al., 2014). Galvanic coupling is then generated between the 

unworn (passive) and worn (de-passivated) surface and may result in negative potential shift 

(López-Ortega et al., 2018). 

 

Under sliding conditions in rotating motion the OCP values of Ti5wt%B4C were the highest 

from the beginning of applied load. The OCP values of Ti2.5wt%B4C after applied load 

gradually increased reaching those of Ti5wt%B4C. While the OCP values of Ti were lowest 

 

Sliding 

Load ends 
Load starts 



166 
 

and showed a gradual increase with some fluctuations. These fluctuations are associated with 

breakage of passive layer (depassivation) and the re-growth (repassivation) on the worn area 

(López-Ortega et al., 2018). As the load ends for 3min 25MPa, the OCP values of 

Ti5wt%B4C increased reaching values close to pre-sliding figures, however of Ti and 

Ti2.5wt%B4C did not recover. This could also indicate good tribocorrosion response of 

Ti5wt%B4C compared with Ti and Ti2.5wt%B4C. The potential increase when the load end 

was due to formation of passive layer on the depassivated area, known as repassivation. This 

indicates a restoration process of the potential and it gives information material ability to 

recover after sliding (López-Ortega et al., 2018). 

 

The dwell time was increased to 15min despite the different potential drops. The data indicate 

that all the samples potential were restored after sliding. At 30min dwell time under sliding 

conditions potential drop of Ti5wt%B4C was high from 0.26V to -0.32V after load was 

removed the OCP values did not recover in comparison to 3min dwell time. However, the 

OCP values for Ti5wt%B4C still remain the highest compared to the rest of samples under 

sliding conditions. With increase of pressure to 75MPa the potential drop of Ti5wt%B4C was 

increased from 0.68V to -0.47V compared to the effect of dwell time. Ti2.5wt%B4C had the 

smallest potential drop and highest OCP values under sliding and the OCP values of all the 

samples recovered when the load ended. Although there was no specific trend with increasing 

the B4C content, the results indicate that reinforcing phases significantly improve the 

tribocorrosion properties of Ti at the respective dwell time and pressure.  

 

Similar OCP trends were observed at 1100°C as shown in Figure 5.9, however the difference 

was the reduced potential drops after the load was initiated. As observed at 3min for 

Ti5wt%B4C the OCP values sharply decreased and quickly increased after load was initiated 

showing repassivation by the oxide film. In general, increasing the temperature to 1100°C 

lead to a good OCP restoration at the respective dwell times and pressure for all the samples 

in contrast to 1000°C. Moreover, Ti5wt%B4C still exhibits best tribocorrosion properties as 

the OCP were positively shifted. It seems that when Ti5wt%B4C was homogenized to coarser 

TiB and TiC reinforcing phases at 30min the potential drop was increased, similar behaviour 

was observed at 1000°C. While the potential drops of Ti2.5wt%B4C which was characterized 

with homogenized TiB and TiC reinforcing phases at the respective dwell time and pressure 

were comparably the same. 
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Figure 5.9. Open circuit potential under sliding of Ti and TMCs sintered at 1100°C with 
varying dwell times 

 

The relationship between the microstructure variation and OCP under tribocorrosion 

conditions is shown in Figure 5.10. The particles clusters present in Ti2.5wt%B4C sintered at 

3min 25MPa raised the OCP values at the start of sliding at 1000°C as shown in Figure 

5.10(a). While particles clusters combined with TiB and TiC phases obtained at 15min 

resulted in decreased OCP values, which later during sliding increased gradually exceeding 

those at 3min. Further homogenization to TiB and TiC phases at 30min led to a negative shift 

of the OCP values. Particles clusters with coarsened TiB and TiC phases obtained at 75MPa 

did not affect the 25MPa OCP values. This could indicate that the compact particles clusters 

are able to carry the load in contrast the evenly distributed TiB and TiC phases in lower 

quantities. 

 

Further increase of B4C content to 5wt% in Figure 5.10(b) resulted in almost insignificant 

difference of OCP values under sliding. The three varying microstructures obtained from 3-

30min OCP values were in the same range, with a slight decrease at 30min at the start of 

sliding. The 3min and 15min OCP behaviour was the same, suggesting that the higher volume 
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fraction of particles clusters and, TiB and TiC phases were able to carry the load imparted. 

Addition of short fiber (TiB) and hard ceramic particle (TiC) reinforcements (Choi et al., 

2013) into titanium matrix significantly improved the wear resistance by direct strengthening 

effect taking place due to the ability of the reinforcing phases to carry the load (Blau et al, 

2017 and Prakash et al, 2016). Also by indirect strengthening taking place by alterations on 

the Ti  matrix structure, such as induced dislocations, Orowan strengthening, grain size 

refinement and modification of the matrix microstructure as a consequence of the addition of 

the reinforcing phase (chawla et al, 2006). However, at 75MPa the higher volume fraction of 

particles clusters with coarsened TiB and TiC phases resulted was undesirable as a negative 

shift of OCP values was observed. Nevertheless, the influence of the varying microstructures 

on the OCP values behaviour under sliding conditions co-relates with the OCP values without 

sliding (see Figure 5.9).  

 

 

 

Figure 5.10. Microstructure variation effect at the different dwell times (3-30min) and 
Pressure (25-75MPa) on the OCP under sliding of TMCs sintered at (a & b) 1000°C and (c  & 

d) 1100°C 
 

Increasing temperature to 1100°C the Ti2.5wt%B4C clusters transformed into homogeneous 

TiB and TiC phases at all sintering conditions. In Figure 5.10(C) The 15min TMC OCP 

a c 

b d 

Sliding  
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values indicated superior resistance to tribocorrosion in comparison to other sintering 

conditions. This behaviour is similar to OCP values measured without load  (see Figure 5.9).  

While Ti5w%B4C characterized with particles clusters (3min 25MPa) showed superior OCP 

values in the beginning of sliding, the values gradually decreased with time as shown in 

Figure 5.10(d). The TiB whiskers within clusters have been reported to have lower load 

bearing efficiency in comparison with the uniformly distributed ones (Tabrizi et al., 2015).  

 

The TMC at 30min with coarser TiB and TiC phases OCP values gradually increased with 

time exceeding those at 3min (clusters) at the end of sliding. It seems that the coarser TiB and 

TiC phases (30min) carry the imparted load best than the finer phases (15min). Opposite 

behaviour was observed under OCP without load the finer phases showed more positive OCP 

values than the coarser ones.  Ti5w%B4C obtained at 75MPa OCP values were relatively the 

lowest, the microstructure was characterized with particles clusters combined with coarser 

TiB, TiC phases and Ti3B4 phase. 

 

Figure 5.11 presents the friction coefficient (COF) measured during sliding after 1800s of 

OCP measurements for samples sintered at 15min dwell time at 1000°C and 1100°C. As 

observed, generally the COF values for all samples gradually increases as sliding progress 

under OCP. The COF values of Ti and Ti2.5wt%B4C at 1000°C were higher than 

Ti5tw%B4C. The higher COF values in Ti2.5wt%B4C could be attributed to pulling out of 

TiB and TiC clusters due to stresses created in Ti matrix as sliding continues. In turn, the 

clusters acted as third body abrasive medium inducing higher wear in the larger surface area 

of Ti thus the higher COF values were reached. The lower COF values obtained for Ti in the 

beginning of the load in comparison to Ti2.5wt%B4C could be due to the absence of third 

body abrasives suggesting that only the counter ball was doing the wear.  
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Figure 5.11. Coefficient of friction during OCP as function of time for Ti, Ti2.5wt%B4C and 
Ti5wt%B4C sintered at dwell time of 15min at 1000°C and 1100°C 

 

At 1100°C Ti5wt%B4C exhibited lower COF values at the the start of sliding and gradually 

increased but remained lowest in contrast to Ti and Ti2.5wt%B4C which is an indication of 

improved wear resistance. This behavior could be attributed to the reduced surface area of Ti 

matrix by the high amount of compact TiB and TiC clusters that help carry load in 

Ti5wt%B4C in contrast to Ti2.5wt%B4C. Moreover, as the load starts the counter material 

was in contact with the reinforcing phases hence lower COF values.  At 1100°C Ti5wt%B4C 

the COF values at the beginning were still lower however they gradually increased exceeding 

those of Ti2.5wt%B4C.  
 

5.5. Potentiodynamic polarization behaviour under sliding in 3.5%NaCl for 

Ti and TMCs sintered at 1000°C and 1100°C 
Presented in Figure 5.12 are the polarization curves under sliding in 3.5%NaCl for Ti and 

TMCs sintered at 1000°C. The Ecorr and Icorr values are shown in Table 28. At 3min dwell 

time it is evident that increasing the amount of reinforcing phases results in positive Ecorr shift. 

The polarization behaviour of Ti showed passivation except at 15min. However, that of 

Ti2.5wt%B4C and Ti5wt%B4C did not show passivation compared with polarization curves 

without sliding load.  The presence of the reinforcing phases may have resulted in weaker 

protective oxide layer with discontinuities exposing the material to the chloride ions. Under 

sliding conditions whereby greater material surface alteration was caused by mechanical and 

electrochemical mechanisms, this weaker oxide layer could not be easily restored (Han et al., 

2015). 
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Figure 5.12. Potentiodynamic polarization curves under sliding for Ti and TMCs sintered at 
1000°C in 3.5%NaCl 

 

There was no particular order of the Ecorr values with increasing dwell time from 3min to 

30min, but for Ti5wt%B4C the Ecorr values became more negative from -0.25V to -0.49V as 

illustrated in Table 28. The Icorr values for Ti5wt%B4C were much lower reaching 1.41 x 10-6 

A/cm2 at 15min then rapidly increased to 4.64 x 10-6 A/cm2 at 30min. Highest Icorr values were 

observed in Ti2.5wt%B4C with 25.71 x 10-6 A/cm2. This could suggest that when the 

microstructure was homogenized with increasing dwell time (3min to 30min) from particles 

clusters to form coarser TiB and TiC in high contents, the Icorr values were negatively affected 

or the TMCs exhibited poor tribocorrosion resistance in contrast to 15min TMCs with finer 

TiB and TiC. 
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Table 29. Corrosion potential (Ecorr) and corrosion current density (Icorr) of Ti and TMCs 
sintered 1000°C under sliding conditions 
  Ecorr(V)  

Sample  3min & 25MPa 15min & 25MPa 30min  & 25MPa 3min  & 75MPa 

Ti -0.79 -0.47 -0.72 -0.59 

Ti2.5wt%B₄C -0.38 -0.63 -0.29 -0.11 

Ti5wt%B₄C -0.25 -0.42 -0.49 -0.19 

  Icorr (A/cm2) x 10-6 

Sample  3min & 25MPa 15min & 25MPa 30min  & 25MPa 3min  & 75MPa 

Ti 8.25 15.17 7.39 0.68 

Ti2.5wt%B₄C 10.20 5.49 25.71 37.13 

Ti5wt%B₄C 3.29 1.41 4.64 8.17 

 

These Ecorr values are consistent with the OCP measurements at 30min (see Figure 5.9) 

showing large potential drop as load initiates without restoration when the load was removed. 

Also the OCP values were negatively shifted under applied load when the dwell time was 

increased to 30min showing higher tendencies to corrosion under sliding in contrast to 15min. 

When the pressure was increased to 75MPa although the Ecorr values became more positive, 

the Icorr values were increased to 37.13 x 10-6 A/cm2 and 8.17 x 10-6 A/cm2 for Ti2.5wt%B4C 

and Ti5wt%B4C respectively.  So at 1000°C, the TMCs exhibited good tribocorrosion 

resistance at 15min dwell time and performed very poor at 30min and 75MPa.  

 

Presented in Figure  5.13 are the polarisation curves  in tribocorrosion conditions for Ti and 

TMCs sintered at 1100°C in 3.5%NaCl, the Ecorr and Icorr values are presented in Table 22. 

Generally similar to 1000°C the Ecorr values of TMCs were also positively shifted at 1100°C. 

Polarisation behaviour of Ti at 3min showed unstable passivation region while only at 15min 

it was stable. Similar to 1000°C, the polarisation behaviour at 1100°C of the TMCs did not 

show any passivation region in contrast to polarisation behaviour without load (Figure 5.7). 

However, a diffferent behaviour of Ecorr values with increasing dwell time was observed 

compared with 1000°C which showed no particular order. In Table 29 The Ecorr values of Ti (-

0.61V to -0.74V) became more negative with increasing dwell time from 3min to 30min. That 

of Ti2.5wt%B4C (-0.52V to -0.47V) and Ti5wt%B4C(-0.39V to -0.29V) became more 

positive.  This could indicate that Ti will preferentially start to corrode first compared with 

Ti2.5wt%B4C and Ti5wt%B4C.   
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Figure 5.13. Potentiodynamic polarization curves under sliding for Ti and TMCs sintered at 
1100°C in 3.5%NaCl 

 

Table 30. Corrosion potential (Ecorr) and corrosion current density (Icorr) of Ti and TMCs 
sintered 1100°C under sliding conditions 

  Ecorr(V) 
Sample  3min & 25MPa 15min  & 25MPa 30min  & 25MPa 3min  & 75MPa 
Ti -0.61 -0.73 -0.74 -0.56 
Ti2.5wt%B₄C -0.52 -0.53 -0.47 -0.51 
Ti5wt%B₄C -0.39 -0.29 -0.29 -0.41 

  Icorr (A/cm2) x 10-6 
Sample  3min & 25MPa 15min  & 25MPa 30min  & 25MPa 3min  & 75MPa 
Ti 9.57 7.07 6.04 11.91 
Ti2.5wt%B₄C 1.01 2.05 2.01 2.16 
Ti5wt%B₄C 0.38 0.05 3.73 1.01 

 

In addition to the positively shifted  Ecorr values of TMCs, the Icorr were also reduced  with 

addition of reinforcing phases showing lower material dissolution in contrast to Ti. The Icorr 

values obtained  for Ti (9.57 to 6.04 x 10-6A/cm2) decreased  and Ti2.5wt%B4C (1.01 to 
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2.01A x 10-6/cm2) increase with dwell time and that of Ti5wt%B4C (0.38 to 0.05A x 10-6/cm2) 

decreased at 15min.   At 75MPa similar to 1000°C, there was a positive Ecorr shift for all the 

samples, except Ti5wt%B4C with only a minor difference (-0.39V to -0.41V). Moreover, the 

Icorr values behaviour at 75MPa was similar to 1000°C, they increased for Ti2.5wt%B4C and  

Ti5wt%B4C. So, similar to 1000°C improved tribocorrosion resistance was obtained for 

Ti5wt%B4C  with the lowest Icorr value of 0.05A x 10-6/cm2 at 15min. Moreover, the 

microstructure variations at the different sintering conditions influence on the Ecorr and Icorr 

values is similar to those discussed without sliding (Table 26). The tribocorrosion perfomance 

of Ti5wt%B4C was consistent with results obtained from corrosion without applied load. 

 

It is worth noting that the current density recorded during polarization tests of material 

subjected to sliding is actually the sum of current in the worn and unworn areas (López-

Ortega et al., 2018). As such the current densities induced are normally higher compared with 

those obtained without sliding, while the Ecorr values shift negatively as illustrated in Figure 

5.14. There is a correlation between the COF induced during sliding with the current density. 

Figures 5.15 and 5.16 show the COF values  measured during polarisation for samples 

sintered at 15min dwell time at 1000°C and 1100°C respectively. It could be observed that the 

COF values correlated with polarisation curves and  varied with the applied potential in the 

cathodic and anodic region. In the cathodic region at lower potentials the COF values for most 

of the samples were lower. 

 

 

Figure 5.14.  Potentiodynamic polarisation curves for corrosion and tribocorrosion for 
samples sintered at 15min dwell time at 1100°C 
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With the progression of polarization there was a transition of COF values from cathodic to 

anodic region  especially for Ti and Ti2.5wt%B4C. The current density fluctuations which 

could be due to formation of unstable corrosion pits, transitioned into a smoother curve. As a 

result in the anodic region at higher potentials, the COF values were increased which could be 

due to the unstable corrosion pits formed without the ability to repassivate (Obadele et al., 

2016). In contrast, for Ti5wt%B4C sintered at 1000°C the  COF values were gradually 

decreased in the anodic region. There are two possibilities for decrease of COF values at 

higher anodic potentials. Firstly, the formation of a passive oxide film could smoothen and 

seal of corrosion pits created in the wear track (López-Ortega et al., 2018). Secondly, the 

surface roughness created by corrosion pits may lead to a reduced surface area in the contact 

between material and counter ball hence reduction of COF values (Takadoum, 1996). The 

COF values are summarized in Figure 5.17. Their behaviour was similar to those measured 

during OCP (see Figure 5.11). In both conditions, at the beginning of sliding, COF values 

were higher for Ti and Ti2.5wt%B4C,  and lower for  Ti5wt%B4C.  

 

Figure 5.15. Potentiodynamic polarization curves relation to evolution of coefficient of 
friction for Ti and TMCs sintered at 15min dwell time and 1000°C 

 

 

Anodic  Cathodic 
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Figure 5.16. Potentiodynamic polarization curves relation to evolution of coefficient of 
friction for Ti and TMCs sintered at 15min dwell time and 1100°C 

 

 
Figure 5.17 Overall coefficient of friction during potentiodynamic polarisation as function of 

time for Ti and TMCs sintered at dwell time of 15min at 1000°C and 1100°C  
 

5.6 Wear tracks morphology 
Figure 5.18 shows SEM images of worn tracks of the samples after tribocorrosion 

polarization tests for Ti and TMCs sintered at 15min dwell time at 1000°C and 1100°C. 

Figure 5.18 (a) presents worn track for Ti sintered at 1000°C with a larger width. In this case, 

a combination of plastic deformation, smearing, deep grooves and debris deposition on the 
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sides on the wear track are results in severe damage. Addition of reinforcing phase to 2.5wt% 

as shown in Figure 5.18 (b) reduced the worn track width and the shallow grooves with debris 

deposition on both sides of the track indicated improved wear resistance. Further increase of 

reinforcing phases to 5wt% (Figure 5.18 (c)) leads to a slight deposition of debris on the sides 

of track and the grooves were fading. Increasing the temperature to 1100°C generally reduced 

surface damage. In Figure 5.18 (d) debris compacts were observed in Ti and the wear track 

width was reduced with minor grooves. In Figure 5.18 (e) the damage morphology changed 

for Ti2.5wt%B4C. Pits/holes were observed showing detachment of reinforcing phases which 

could have acted as third body abrasive inducing more wear. Figure 5.18 (f) shows wear 

morphology of Ti5wt%B4C. As observed, there was less surface damage on the TMC, which 

validates the improved tribocorrosion resistance of the TMC. So at 1100°C, the surface of 

Ti5wt%B4C was insignificantly affected. In addition, the wear tracks profiles shown in Figure 

5.19 support this assumption. The wear depth reduces generally with increasing amount of 

reinforcing phases.  
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Figure 5.18. SEM images of worn surfaces after potentiodynamic polarization for Ti, 
Ti2.5wt%B4C and Ti5wt%B4C sintered at dwell time of 15min at (a-c) 1000°C and (d-f) 

1100°C 
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Figure 5.19. Surface profiles of Ti, Ti2.5wt%B4C and Ti5wt%B4C samples sintered at 15min 
dwell time subjected to potentiodynamic polarisation (a-c) 1000°C and (d-f) 1100°C 

 

The wear tracks became wider and shallow when dwell time was increased to 30min (Figure 

5.20) and this is supported by wear profiles (Figure 5.21), in contrast to those sintered at 

15min, which were deeper and narrow. This could indicate that the surface area in the 

tribological contact between the samples and counter material was increased due to material 
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softening at higher dwell time. As a result, the anodic/wear track area was also increased 

resulting in higher Icorr values than with samples sintered at 15min dwell time. Similar to 

15min dwell time there was less damage on the Ti5wt%B4C TMCs which were fully 

transformed into finer TiB and TiC reinforcing phases. As observed in Figure 5.20 (c) the TiB 

whisker that was perpendicular to the imparted sliding load broke without any signs of 

detachment showing the strong bond with Ti matrix. In contrast to  Toptan et al. (2016) who 

reported detachment of partially reacted B4C particles, as sliding continued, stresses were 

created around the particles and were later pulled out causing more surface damage. This 

could indicate that TiB and TiC reinforcing phases would offer improved reinforcement 

compared with partially reacted B4C.  

 

Furthermore, it has to be noted that on the unworn area where no mechanical degradation is 

observed, normal corrosion took place. Presented in Figure 5.22 is the pitting and galvanic 

corrosion mechanism observed on Ti and TiB whiskers respectively. We have to consider that 

in the present system of  Ti - (TiB + TiC) there are mixed corrosion potentials involved with 

different reactions taking place. On the TMC it was observed that galvanic corrosion took 

place on the Ti/TiB interface. This resulted in preferential dissolution of TiB whisker, 

suggesting that the corrosion potential of the TiB was more negative than Ti making it less 

noble (Sivakumar et al., 2015). This type of corrosion is common in metal matrix composites  

it has been reported that selective corrosion usually take place at the matrix/reinforcement 

interface and results in dissolution of the reinforcement (Doni et al., 2014).  
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Figure 5.20. SEM images of worn surfaces after potentiodynamic polarisation for Ti, 
Ti2.5wt%B4C and Ti5wt%B4C sintered at dwell time of 15min at (a-c) 1000°C and (d-f) 

1100°C 
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Figure 5.21. Surface profiles of Ti, Ti2.5wt%B4C and Ti5wt%B4C samples sintered at 30min 
dwell time subjected to potentiodynamic polarisation (a-c) 1000°C and (d-f) 1100°C 
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Figure 5.22. Corrosion morphology on Ti and TMC 
 

To compare the wear data for all the samples under sliding polarisation, the volume loss was 

calculated considering the  depth and width of the worn tracks  measured using Sensofar 

Interferometric and Confocal Microscope. As observed in  Figure 5.23 at both tempeartures 

there was no specific trend with increasing the dwell time and pressure to volume loss. 

However, it can be seen that the volume loss of CP-Ti is reduced with addition of reinforcing 

phases. It was suggested that the poor tribological properties of titanium and its alloys are 

attributed to their low work-hardening and low plastic shearing resistance (Molinari et al., 

1997). The addition of reinforcing phases improves the hardness of CP-Ti hence the lower 

volume loss of the TMCs. The particles clusters formed at 1000°C  have low strength, are 

centers for stress concentration and crack nucleation sites. As a result they may breakout and 

be pulled out during sliding causing severe damage resulting in higher material loss(Ni et al., 

2006; Tabrizi et al., 2015). Generally homogenized TiB and TiC  at 1100°C  provided better 

strengthening as the  TMCs yielded lower material loss. 
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Figure 5.23 Volume loss of CP-Ti and TMCs subjected to polarisation during sliding  
 

 

Summary 
The corrosion and tribocorrosion behaviour of Ti in 3.5%NaCl solution was improved by 

addition of TiB and TiC reinforcing phases. The Ecorr values were positively shifted with 

increasing amount of reinforcing phases. Under corrosion conditions, the corrosion resistance 

was improved by the inert physical barrier role of the reinforcing phases. While in 

tribocorrosion conditions, the load carrying capacity of the reinforcing phases contributed to 

the lower wear loss. In general, the OCP, Ecorr and Icorr values obtained under corrosion and 
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tribocorrosion conditions correlated due to the same microstructural features observed. The 

particles clusters and coarser reinforcing phases contributed to more negative OCP and Ecorr 

values with higher Icorr values. In essence they reduced the corrosion resistance of the TMCs 

and they are not a desirable microstructural feature. Increasing the temperature to 1100°C at 

15min dwell time the microstructure was homogenized to finer TiB and TiC reinforcing 

phases compared with 30min, the Icorr values and the surface damage was reduced. Further 

increase of dwell time to 30min led to coarsening of TiB and TiC reinforcing phases and 

matrix softening, which resulted in higher Icorr values and severe surface damage. Ti5wt%B4C 

sintered at 1100°C and 15min yielded overall improved corrosion and tribocorrosion 

performance compared with other samples. In the present study  the mechanism of material 

degradation is by mechanical and chemical. The reinforcing phases under study enhanced  the 

composites properties differently. Predominantly the TiC phase showed to be corrosion 

resistant while the TiB phase with a whisker morphology was wear  resistant. 
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General conclusion 
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This research focused on improving the corrosion and tribocorrosion properties of CP-Ti by 

incorporating Titanium boride (TiB) and Carbide (TiC) reinforcing phases during reactive 

sintering in the SPS of mixtures of pure titanium with differeny grades of Boron Carbide 

(B4C) powders. The relationship between microstructure evolution at varying SPS sintering 

conditions and corrosion and tribocorrosion behaviour of TMCs was investigated. 

 

Microstructure evolutions of two CP-Ti materials with varying interstitial content, revealed a 

delayed transformation for the material with high content of oxygen (α-phase stabiliser) and 

that with high hydrogen content (β-phase stabiliser) it was promoted at lower temperatures 

and pressures. Due to the detrimental effect of hydrogen content in CP-Ti properties, the 

powder with lower hydrogen content was chosen for synthesis of TMCs. Incomplete reaction 

resulted from using coarser B4C particles which in turn lowered the relative densities. These 

TMCs were not suitable for further characterizations due to unreacted B4C which required 

high temperatures for complete consumption. The reaction for TMCs with finer B4C particles 

was highly spontaneous and higher amount of denser reinforcing phases were formed at lower 

temperatures resulting in higher relative densities. The TMCs were characterized with 

particles clusters which emerged from the former finer B4C particles segregated in the grain 

boundaries of Ti.  

 

As such, further microstructure characterization and mechanical properties evaluation were 

performed on TMCs with finer B4C particles. TEM characterization of the FIB lamellae 

extracted from the interface of Ti and particles clusters revealed partially reacted B4C 

particles at 800°C. On evaluating the phases detected at 800°C, it could be suggested that in 

the SPS the reaction  progressed rapidly at set-point temperature. This was attributed to the 

large surface area of fine B4C powder and the high temperatures reached on the surface of 

particles reaching melting point and vaporization thus enhancing atoms interdiffusion thanks 

to the pulsed electric current in the SPS. At 1100°C the particles clusters with unreacted B4C 

observed at 800°C transformed into Ti-B and Ti-C compounds. Depending on the amount of 

reinforcing phases content in the TMCs the particles clusters were homogenized to TiB and 

TiC phases with increase of dwell time and temperature. 

 

On the effect of microstructure on the mechanical properties, the hardness values increased 

with increasing reinforcing phase’s content, the presence of particles clusters and coarsening 

of TiB and TiC reinforcing phases.  The corrosion and tribocorrosion behaviour relation to 
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microstructure of TMCs was consistent with TMCs sintered at 1000 and 1100°C. Increasing 

reinforcing phase’s content and homogenized finer TiB and TiC reinforcing phases increased 

corrosion and tribocorrosion resistance. While the particles clusters and coarse TiB and TiC 

lowered the resistance to corrosion and tribocorrosion. The COF values of Ti5wt%B4C under 

polarisation were lower at higher potentials in comparison to CP-Ti. This showed the capacity 

of reinforcing phases to carry the applied load and thus improving the wear resistance of CP-

Ti. In addition the material loss was reduced with increasing amount of reinsforcing phases by 

also lowering the material loss. In general, Ti5wt%B4C characterized with homogenized TiB 

and TiC reinforcing phases exhibited the best corrosion and tribocorrosion resistance. 

 

Perspectives 

The findings of this study indicate that Ti based TiB and TiC composites can be actively used 

in engineering applications whereby corrosion and tribocorrosion properties are of utmost 

importance. Such applications include the automotive industry whereby the demand for 

lightweight parts required for reducing the weight and emission of harmful exhaust gases to 

the atmosphere is very crucial. However, before up scaling such materials processed by 

powder metallurgy technique for industrial use, thorough investigation on the material 

tribocorrosion properties on this research topic is required.  
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Appendix I 
I.I Mass required for sintering Ti5wt%B4C composites 
  

ρcomposite = xTi ρTi × xB4C    
ρB4C  

                   =  (0.95 ×  4.51)  +  (0.05 ×  2.52) 

                     =  4.2845 +  0.126 

                     = 4.4105g/cm3 

m =  ρV 

     =  4.4105 ×  0.1 

       =  0.441g (Ø8mm and 2mm in thickness pellets) 

 

I.II Theoretical density of sintered Ti5wt%B4C composites 
mTi = 0.95 x 0.441  

        =  0.41895g 

 

nTi  =
m

M
  

        =
0.41895

47.88
 

         = 0.00875mol 

 

𝑚B4C =  0.05 x 0.441  

           =  0.02205g 

 

xB4C    
=

m

M
 

             =
0.02205

55.25
 

             = 0.000399095mol 
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5Ti + B4C → TiC + 4TiB (assuming a complete reaction) 

B4C is a limiting reactant therefore: 

1mol B4C = 1mol TiC 

0.000399095mol B4C =  xmol TiC 

Therefore: xmol TiC = 0.000399095mol 

 

mTiC =  nM 

          =  0.000399095 X 59.89  

          =  0.0239017995g 

 

1mol B4C = 4mol TiB 

0.000399095mol B4C = xmol TiB 

Therefore: xmol TiB = 0.00159638mol 

mTiB  =  nM  

           =  0.00159638 x 58.69  

           =  0.0936915422g 

 

mTi(unreacted) = mreactants – mproducts 

                            =  (mTi  + mB4C) –  (mTiC +  mTiB) 

                            =  (0.41895 +  0.02205) –  (0.0239017995 +  0. 0936915422) 

                            =  0.441 –  0.1178172215 

                            = 0.323182778g 

 

mproducts = mTiC   + mTiB  +  mTi(unreacted)     

                   =  0.0239017995 +  0.0936915422 +  0.323182778 

                   =  0.441g 
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xTiC =
0.0239017995

0.441
 

          = 0.0541990918 

xTiB  =
0.0936915422

0.441
 

          = 0.2124524766 

xTi   =
0.323182778

0.441
 

         = 0.7328407664 

 

ρproduct  = xTicρTic + xTiBρTiB  +  xTiρTi 

             =  (0.0541990918 ×  4.93) + (0.2124524766 × 4.56) + (0.7328407664 × 4.51) 

            =  0.2672015226 +  0.9687832933 +  3.305111856 

            =  4.54g/cm3 

 

I.III Theoretical volume percentage of reinforcing phases in Ti5wt%B4C 
 

VTiB =

wTiB

ρTiB
wTiB

ρTiB
+

wTiC

ρTiC
+

wTi

ρTi

 × 100% 

 

VTiB =

0.2124524766
4.56

0.2124524766
4.56

+
0.0541990918

4.93 +
0.7328407664

4.51

 × 100% 

 

VTiB =  21% 
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Table 31. Theoretical volume percentage of reinforcing phases in complete chemical reaction 
 Ti Ti1wt%B4C Ti2.5wt%B4C Ti5wt%B4C Ti10wt%B4C 

Ti (vol%) 100 95 87 74 47 

TiB (vol%) 0 4 11 21 43 

TiC (vol%) 0 1 2 5 10 
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Resumé 
La faible résistance à l'usure du titane et de ses alliages limite leur application dans laquelle 
l'effet combiné de l'usure et de la corrosion peut être rencontré. À cet égard, l'ajout de phases 
céramiques sous forme de whiskers (TiB) ou de particules (TiB2 et TiC) dans une matrice à base 
de titane pour former des composites avancés à matrice de titane (TMC), peut aider à réduire les 
pertes de matériau et à prolonger la durée de vie. Dans cette étude, les composites de titane à 
base de TiB2, TiB et TiC ont été produits par Spark Plasma Sintering (SPS) réactif de titane pur 
commercial (CP-Ti) et de poudres B4C de différentes tailles de particules. On s'est rendu compte 
qu'à une température de consigne de 800°C, la réaction avait commencé en raison des avantages 
du courant pulsé dans le SPS. L'analyse SEM / FIB / TEM sur le matériau fritté à 800°C a 
montré une phase grise continue, constituée d'amas de particules de B4C partiellement réagies 
ségrégés aux joints des grains de la matrice Ti. À 1100°C, les réactifs ont complètement réagi et 
se sont transformés en clusters de divers composés riches en B et C (Ti-B et Ti-C). 
L'homogénéisation de la microstructure a été obtenue à des temps de séjour de 0 à 30 min pour 
éliminer les amas formés. Le comportement en corrosion et en tribocorrosion du CP-Ti et des 
TMC a été étudié dans des solutions 3,5% molaire de NaCl. Les résultats ont montré qu'une 
quantité croissante des phases de renforcement à 5% en poids réduisait la sensibilité à la 
corrosion et à la tribocorrosion des TMC frittés à 1100°C, car les valeurs de potentiel en circuit 
ouvert étaient positivement décalées pour Ti5wt% B4C. De graves dommages à la surface avec 
des rainures profondes dans CP-Ti ont été observés dans les pistes usées indiquant une usure 
adhésive. Aucun retrait des phases de renforcement TiB et TiC n'a été observé pour Ti5wt% 
B4C, en raison de la forte force de liaison interfaciale avec la matrice Ti. 
Mots-clés: CP-Ti, composites à matrice de titane, SPS, propriétés mécaniques, 
tribocorrosion 
 
Abstract  
The poor wear resistance of titanium and its alloys limit their application in which the combined 
effect of wear and corrosion may be encountered. In this regard, addition of ceramic phases in 
the form of whiskers (TiB) or particles (TiB2 and TiC) in titanium based matrix to form 
advanced titanium matrix composites (TMCs), can aid reduce material loss and prolong the 
service life. In this study TiB2, TiB and TiC based titanium composites were produced by 
reactive Spark Plasma Sintering (SPS) of commercial pure titanium (CP-Ti) and B4C powders of 
varying particles sizes. It was realized that at 800°C set-point temperature the reaction had 
initiated due to the benefits of pulsed current in the SPS. SEM/FIB/TEM analysis on the material 
sintered at 800°C showed a continuous grey phase, constituted of clusters of partially reacted 
B4C particles segregated at Ti matrix grain boundaries. While at 1100°C, the reactants 
completely reacted and transformed into clusters of various compounds high in B and C (Ti-B 
and Ti-C). Microstructure homogenization was achieved at dwell times of 0-30 min to remove 
the formed clusters. Corrosion and tribocorrosion behaviour of CP-Ti and TMCs was 
investigated in solutions 3.5% molar of NaCl. The results showed that increasing amount of the 
reinforcing phases to 5wt% reduced the corrosion and tribocorrosion susceptibility of the TMCs 
sintered at 1100°C, as the open circuit potential values were positively shifted for Ti5wt%B4C. 
Severe surface damage with deep grooves in CP-Ti was observed in worn tracks indicating 
adhesive wear. No pulling out of TiB and TiC reinforcing phases was observed for Ti5wt%B4C, 
due to the strong interfacial bond strength with the Ti matrix. 
Keywords: CP-Ti, Titanium matrix composites, SPS, mechanical properties, tribocorrosion  
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