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SUMMARY 

Sickle cell disease is among the most common hematologic diseases in the world, 

affecting over 4 million people worldwide. Despite knowing the genetic origin of this 

disease for decades, our ability to treat sickle cell disease is limited. Thus, an improved 

understanding of the mechanisms of sickle pathology is desperately needed. One aspect of 

sickle cell disease pathology that still requires more investigation is the alteration of the 

membrane lipids. Sickle red blood cell membranes are subject to intense physical and 

oxidative damage from sickle hemoglobin. Thus, it is reasonable to hypothesize that sickle 

red blood cell lipid metabolism is dysfunctional. One branch of lipid metabolism that may 

be particularly important in red blood cells is sphingolipid metabolism. Research has 

shown that red blood cell sphingolipids regulate cell death, regulate adhesion to endothelial 

cells, and protect other lipids from oxidation, all of which are areas relevant to sickle cell 

pathology. Despite this, little is known about red blood cell sphingolipid metabolism under 

normal or sickle conditions.  

In this thesis, we combine liquid chromatography-tandem mass spectrometry-based 

sphingolipidomics with computational modeling to characterize sphingolipid metabolism 

in red blood cells and how it is altered in sickle cell disease. First, we collected mechanistic 

information on red blood cell sphingolipid metabolism from the literature and integrated it 

into a computational model. This model was used as a tool for determining the importance 

of different metabolic variables in determining the concentration of sphingolipids in red 

blood cells and plasma. Second, we measured the homeostatic concentrations of 

sphingolipids from normal and sickle red blood cells and extracellular vesicles. From these 



 xiii 

measurements, we were able to determine that sickle red blood cells have significantly 

higher concentrations of many different sphingolipid classes. Further, we identified novel 

changes in the metabolic enzymes of sphingolipid metabolism in sickle red blood cells. 

Finally, we investigated the contribution of the plasma environment and a specific subset 

of red blood cells, the reticuolocytes, to the alterations in red blood cell sphingolipid 

concentrations observed in sickle cell disease. We observed that although there are many 

changes in red blood cell sphingolipid concentrations, there are few changes in plasma 

sphingolipid concentrations in sickle cell disease. Further, incubating red blood cells with 

plasma of the opposite genotype did not affect the red blood cell sphingolipid 

concentrations. Next, we used two different techniques to isolate reticulocyte-enriched and 

reticulocyte-depleted sickle red blood cell populations. We then measured the sphingolipid 

concentrations in the different populations. Our analysis showed that sickle reticulocytes 

have elevated concentrations of sphingolipids compared to sickle erythrocytes, suggesting 

that the increased prevalence of reticulocytes in sickle cell disease may contribute to the 

increased sphingolipid concentrations. However, the differences in reticulocytes are not as 

widespread as those seen when comparing normal and sickle red blood cells. Thus, there 

may be other, unidentified, factors contributing to the alteration of red blood cell 

sphingolipids in sickle cell disease.  

The results of this thesis represent significant contributions to our understanding of 

basic red blood cell biology and to sickle cell disease pathology. Further, the model that 

we constructed can serve as tool to predict how red blood cell sphingolipid metabolism 

will behave under novel pathologic and pharmacologic situations.  
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CHAPTER 1. INTRODUCTION AND SPECIFIC AIMS 

1.1 Introduction 

The central hypothesis of this thesis is that red blood cell sphingolipid metabolism is 

dysfunctional in sickle cell disease red blood cells and that this is the result of changes in 

the red blood cell population itself and in the enviroment. This hypothesis will be tested in 

the following three specific aims.  

1.2 Specific Aims 

Aim 1. To construct a computational model of red blood cell sphingolipid 

metabolism and use it to determine the importance of known changes in sickle red blood 

cells in determining red blood cell sphingolipid concentrations. First, we will construct a 

model of red blood cell sphingolipid metabolism based on known biochemical and 

biophysical details of the metabolic network. Next, we will fit the model to dynamic time-

series data from literature and ensure that the model performs reasonably. Finally, we will 

use the computational model to predict how changes in biophysical and biochemical 

parameters affect sphingolipid concentrations.  

Aim 2. To use LC-MS/MS-based sphingolipidomics and statistical analysis to 

comprehensively characterize differences in sphingolipid concentrations between normal 

and sickle cell disease red blood cells. First, we will use LC-MS/MS analysis to measure 

and compare the concentrations of multiple classes of sphingolipids in normal and sickle 

red blood cells. Then, we will use multivariate statisitical approaches to analyze the LC-
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MS/MS data and infer changes in enzyme activities that may have caused the changes in 

sphingolipid concentrations in sickle cell disease.  

Aim 3. To use LC-MS/MS-based sphingolipidomics to evaluate the importance of 

the plasma environment and reticulocytes in determining the sphingolipid concentrations 

in sickle red blood cells. This aim will attempt to find a mechanistic explanation for the 

changes in red blood cell sphingolipid concentrations observed in aim 2. First, we will 

isolate red blood cells and plasma from normal and sickle genotype donors and measure 

the sphingolipid concentrations in the different samples. Next, we will incubate red blood 

cells in plasma of the opposite genotype to determine if the plasma is capable of altering 

the red blood cell sphingolipid concentrations. Next, we will isolated sickle reticulocyte-

enriched and reticulocyte-depleted red blood cell fractions and use LC-MS/MS to measure 

the sphingolipid concentrations of the different populations. We will use statistical analysis 

to determine whether red blood cell sphingolipid concentrations depend on the percent of 

reticulocytes in the red blood cell population.  

1.3 Significance 

The work presented in this thesis represents a significant contribution to many fields 

of study. The computational model of red blood cell sphingolipid metabolism is the first 

attempt to integrate the currently available information on this system into one place. This 

is not trivial as the unique biophysical properties of lipids present challenges for the 

construction and parameterization of such a model. Thus, this model can serve as a 

templete for future modeling of lipid systems and for how to address the many 

complications involved with biophysical properties of lipids. The sphingolidomic 
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characterization of normal and sickle red blood cells is the most comprehensive to date. 

This characterization will contribute to our knowledge of basic red blood cell biology, but 

also to our knowledge of sickle cell disease pathology. Our sphingolipidomic 

characterization of the interaction of plasma and red blood cells will allow us to determine 

whether the changes in sickle red blood cell sphingolipids are dependent on the cell 

environment. Finally, our sphingolipidomic characterization of sickle reticulocytes is the 

most comprehensive to date. Further, this characterization will allow us to determine 

whether the changes in red blood cell sphingolipids are dependent on changes in the cell 

population itself.  
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CHAPTER 2. BACKGROUND 

2.1 Sickle Cell Disease is a Widespread Genetic Disease 

Sickle cell disease (SCD) is a genetic disease affecting around 100,000 Americans, 

and more than 4 million people worldwide. It is caused by a genetic mutation in the gene 

for the beta-globin subunit of hemoglobin. When sickle hemoglobin is deoxygenated, it 

polymerizes. The polymerized sickle hemoglobin fibers mechanically deform and damage 

the red blood cell membrane. Further, sickle hemoglobin can precipitate onto the inner 

leaflet of the red blood cell membrane and oxidatively damage the membrane [1]. 

Ultimately, the mutation in hemoglobin causes a large number of problems for individuals 

with SCD. These include hemolytic anemia, inflammation, infections, acute and chronic 

pain, organ damage, and painful vaso-occlusive crises. The symptoms experienced are 

heterogeneous from patient to patient and within the same patient over time. Given the 

diverse and often severe symptoms experienced by people with SCD, there is continued 

need to research basic disease mechanisms and to develop new treatment options. 

2.2 Treatment Options for Sickle Cell Disease Remain Limited 

Despite decades of research, treatment options for SCD remain limited. Treatment 

for SCD patients is often aimed at treating each symptom individually. Children with SCD 

are given penicillin and the PCV7 vaccine prophylactically to prevent infections. Patients 

are given NSAIDs and opioids to manage pain. Blood transfusion may be given to dilute 

the population of sickled RBCs with normal RBCs in cases of severe pain or crisis.  This 

however carries the risk of iron overload and alloimmunization. There are currently only 
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two  FDA-approved disease-modifying drugs for SCD, hydroxyurea and L-glutamine. 

Hydroxyurea works by increasing the expression of fetal hemoglobin in RBCs, which 

prevents hemoglobin polymerization [2]. L-glutamine works in part by increasing the 

RBC’s antioxidant defenses [3]. One potential cure for the disease is bone marrow 

transplant from a non-SCD donor. This has been effective in a small number of cases, but 

for many patients a suitable matched donor is difficult to find and morbidity associated 

with graft-versus-host disease is a major concern. Thus, there is still ongoing research to 

better understand disease mechanisms and develop more effective therapies. 

2.3 Sphingolipids Play Many Roles in RBC Biology 

Sphingolipids have been shown to affect many RBC properties and processes. Thus, 

dysfunction of the sphingolipid metabolic system can result in widespread dysfunction in 

RBCs. Thus, sphingolipids may be an underappreciated therapeutic target in SCD.  

2.3.1 Sphingoid Bases  

One study showed that sphingosine inhibits the RBC plasma membrane calcium ATPase 

[4]. This would increase the RBC intracellular calcium concentration. This is consistent 

with other studies that showed that sphingosine increases intracellular calcium, causes cell 

shrinkage, causes phosphatidylserine surface exposure, and increases osmotic fragility [5, 

6]. One study showed that sphingosine can increase the permeability of RBC ghost 

membranes to small ions [7]. This is consistent with another study that showed that 

sphingosine can induce the formation of small pores in RBC ghost membranes [8]. It it not 

known whether sphinganine can exhibit the same effects as sphingosine.  
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2.3.2 Sphingoid Base 1-Phosphate 

One study showed that, unlike sphingosine, addition of exogenous SO1P does not cause 

increased intracellular calcium, cell shrinkage, or phosphatidylserine surface exposure [5]. 

However, when the SO1P exporter MFSD2B was knocked out, the concentrations of SO1P 

and SA1P in mouse RBCs increased dramatically [9]. This buildup causes stomatocytosis 

and hemolysis with SA1P being a stronger hemolytic agent than SO1P. A recent study 

showed that SO1P can bind to deoxygenated hemoglobin which promotes hemoglobin 

binding to the membrane [10]. This leads to release of membrane-anchored glycolytic 

enzymes, increased glycolytic flux, and an increase in 2,3-bisphosphoglycerate 

concentration. This decreases hemoglobin’s affinity for oxygen, facilitates oxygen release, 

and prevents tissue hypoxia.  

2.3.3 Ceramides 

One study showed that ceramide can activate the RBC plasma membrane calcium ATPase 

[4]. Ceramide is thus antagonistic with sphingosine in its action on this protein. Another 

study showned that addition of ceramide to the outer leaflet of RBCs promotes flip-flop of 

other lipids in the membrane [11]. The same study showed that dihydroceramides do not 

exert the same effect. In contrast with sphingosine, ceramide is not capable of forming 

pores in RBC membranes [12]. The production of ceramide is involved in erythrocyte 

apoptosis (eryptosis) resulting from a wide array of stimuli including osmotic shock [13], 

and platelet-activating factor [14]. Ceramide production also plays a role in a novel form 

of erythrocyte necroptosis resulting from exposure to bacterial pore-forming toxins [15]. 

2.3.4 Sphingomyelins 
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Sphingomyelins constitute about 25% of the RBC phospholipids [16], so one of the 

major roles of sphingomyelin is as a structural component of the RBC membrane. 

Breakdown of sphingomyelin to ceramide in RBCs is a sufficient signal to promote 

phosphatidylserine (PS) exposure on the RBC surface, cell shrinkage, endovesiculation, 

membrane protein clustering, microparticle production, and adhesion to endlothelial cells 

[17, 18]. Breakdown of sphingomyelin also results in the leakage of RBC intracellular 

contents [19].  

2.4 Sphingolipid Composition of Human RBCs is Only Partly Characterized 

It is important to establish which sphingolipids have already been quantified in human red 

blood cells in the literature for multiple reasons. First, to establish where gaps in our current 

knowledge of RBC sphingolipid composition are. Second, to provide a basis for 

comparison with the sphingolipid composition of RBCs from SCD individuals. Different 

studies express sphingolipid concentrations in different units. In order to express 

concentrations in a common set of units we use the conversion factor of 1 mL of packed 

RBCs=1010 cells and express all concentrations as pmoles per mL of RBCs. The known 

fatty acyl side chain compositions of the major sphingolipids in red blood cells are 

summarized in Figure 1.  
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Figure 1. Known Fatty Acyl Side Chain Composition of Sphingolipids in Human Red 

Blood Cells 

Values were taken from references described in the text. The figure is not inclusive of all 

minor species detected. It is important to notice that even classes of sphingolipids that are 

immediately adjacent in the sphingolipid metabolic network (see figure 2) do not have the 

same fatty acyl side chain distribution suggesting some bias in the enzymes that 

interconvert them.  

2.4.1 Sphingomyelins 

Sphingomyelins make up about 25 mole% of RBC phospholipids [16]. They have a total 

concentration in RBCs of about 1 μmol/mL of cells [16]. Multiple studies have reported 

on the fatty acyl side chain composition of sphingomyelins in RBCs [16, 20-23]. According 

to these studies, 16:0, 24:0, and 24:1 sphingomyelins are the major contributors to the 

sphingomyelin pool in human RBCs, together contributing over 60% of the pool. Other 

major contributors include 18:0, 22:0, and 24:2 sphingomyelins. Interestingly, the study by 
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Myher et al. also identified minor contributions for sphingomyelins with d16:1, d18:0, and 

d18:2 sphingoid backbones [23].  

Multiple studies have measured the sidedness of sphingomyelin in RBCs by measuring the 

amount of sphingomyelin that is hydrolyzable by extracellular bacterial sphingomyelinase. 

These studies concluded that about 15% of RBC sphingomyelin is in the inner leaflet [22, 

24, 25]. However, this has been challenged by the observation that upon treatment with 

bacterial sphingomyelinase, RBCs undergo endovesiculation, which protects internalized 

sphingomyelin from hydrolysis [26]. A more recent study estimated that about 98% of 

RBC sphingomyelin is in the outer leaflet [27]. Multiple studies have shown that 

sphingomyelin in the RBC membrane laterally segregates into microdomains [28-30]. 

These studies showed that sphingomyelin microdomains seem to disappear when the cells 

are stretched which may be relevant when RBCs squeeze through capillaries and splenic 

sinuses. Further, these studies showed that the sphingomyelin microdomains partly overlap 

with the microdomains of glycosphingolipids like glucosylceramide and GM1. The 

sidedness and lateral segregation of sphingomyelin may have important consequences for 

metabolism as the local concentration of sphingomyelin that sphingomyelinases are 

exposed to will be much higher than the average cell concentration.  

2.4.2 Glycosphingolipids 

A large number of glycosphingolipids have been identified in red blood cells including P 

antigen glycosphingolipids [31-37], I antigen glycosphingolipids [38-42], Lewis antigen 

glycosphingolipids [38, 43], ABO antigen glycosphingolipids [38, 39, 41, 42, 44-53] and 
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other gangliosides [31, 54-57]. There is also one study that identified sulfatide in red blood 

cells [58].  

Multiple studies have reported concentration values for glycosphingolipids in RBCs [31, 

32, 34-36, 59-61]. In RBCs, the globotetraosylceramide concentration is about 0.1 

μmol/mL of cells, the GM3 concentration is about 0.004 μmol/mL of cells, the 

globotriaosylceramide concentration is about 0.01 μmol/mL of cells, the lactosylceramide 

concentration is about 0.02 μmol/mL of cells, and the glucosylceramide concentration is 

about 0.005 μmol/mL of cells. This adds up to about 0.14 μmol/mL of cells.  

Multiple studies have investigated the fatty acyl composition of glycosphingolipids in 

RBCs [33, 34, 59]. These studies showed that the major species of globoteraosylceramide 

are 22:0, 24:0, and 24:1, contributing over 70% of the pool. The major species of 

globotriaosylceramide are 16:0, 24:0, and 24:1, contributing over 70% over the pool. The 

major species of lactosylceramide are 16:0, 18:0, and 18:1, contributing over 70% of the 

pool. The major species of glucosylceramide are 16:0 and 18:0, contributing over 60% of 

the pool.  

Few studies have investigated the membrane sidedness of glycosphingolipids in RBCs. 

One early study using galactose oxidase to label outer leaflet glycosphingolipids showed 

that RBC glycosphingolipids are at least partly in the outer leaflet [62]. This study also 

suggested that these glycosphingolipids are party obscured by cell surface proteins. One 

study showed that the vast majority of the glycosphingolipid GM3 is located on the outer 

leaflet of RBCs [27]. Multiple studies have suggested that glycosphingolipids such as 

glucosylceramide and GM1 laterally segregate into microdomains in the RBC membrane 
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[28-30]. Further, these studies showed that the microdomains of glycosphingolipids like 

glucosylceramide and GM1 partially overlap with the microdomains of sphingomyelin. 

The sidedness and lateral segregation of glycosphingolipids may have important 

implications for metabolism as the local concentration of glycosphingolipids that enzymes 

are exposed to will be much higher than the average cell concentration.  

2.4.3 Ceramides 

The total concentration of ceramides in RBCs is about 0.05 μmol/mL of cells [59, 63]. 

These same studies also investigated the fatty acyl composition of the ceramide pool in 

RBCs. They determined that the major species of ceramide are 16:0, 18:0, 18:1, 22:0, 24:0, 

and 24:1, contributing about 90% of the pool. 20:0, 23:0, 26:0, and 26:1 ceramides have 

more minor contributions. Interestingly, one study also detected a small amount of 

ceramides with 2-hydroxy fatty acyl side chains as well as ceramides with 16:0 and 18:2 

sphingoid backbones [63].  

One study showed that ceramides flip flop between the leaflets of the RBC membrane on 

a timescale of minutes [64]. Thus, it is likely that ceramide is evenly distributed between 

the two leaflets under normal conditions. While the steady-state lateral membrane 

distribution of ceramides in RBC membranes is not known, multiple studies have shown 

that sphingomyelinase-generated ceramide aggregates into microdomains [17, 65-67].  

2.4.4 Sphingoid Bases 

Reported concentrations of d18:1 sphingosine in RBCs very widely. Example values 

include 3 pmol/mL of cells [68], 70 pmol/mL of cells [69], and 100 pmol/mL of cells [70]. 
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This may reflect the very high turnover of d18:1 sphingosine in RBCs as determined partly 

by the high activity of sphingosine kinase 1(see next section). To the best of our knowledge, 

the concentration of d18:0 sphinganine has not been reported in human RBCs.  

To the best of our knowledge, the membrane distribution of LCBs has not been reported in 

RBCs. One study that might lend some insight involved incorporating sphingosine into 

Dioleoylphosphatidylcholine (DOPC) vesicles [71]. When there was no pH gradient 

between the inside and outside of the vesicle, about half of the sphingosine was localized 

on the outer leaflet. In contrast, when the interior the vesicle was made acidic relative to 

the exterior media, all of the sphingosine was sequestered in the inner leaflet. This suggests 

that uncharged sphingosine is able to spontaneously flip-flop between the inner and outer 

leaflet of a membrane, but cationic sphingosine is not able to flip-flop.  

2.4.5  Sphingoid Base 1-Phosphates 

Reported concentrations of d18:1 sphingosine 1-phosphate in RBCs vary, though not to 

the extent of d18:1 sphingosine. Example values include 0.25 nmol/mL of cells [69], 1 

nmol/mL of cells [70], 1.3 nmol/mL of cells [68], 2 nmol/mL of cells [72], and 2.3 

nmol/mL of cells [73]. The concentration of d18:0 sphinganine 1-phosphate in human 

RBCs is about 600 pmole/mL of cells [74].  

To the best of our knowledge, the membrane distribution of LCBPs has not been 

investigated in RBCs.  

2.5 Sphingolipid Metabolic Reactions in RBCs are Poorly Characterized 
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It is important to establish which sphingolipid-metabolizing enzymes are present in RBCs 

because this will affect any interpretation of changes in sphingolipid concentrations 

associated with pathological conditions and because it will limit choices for enzyme 

inhibitors that can be used for therapeutic purposes. The known sphingolipid metabolic 

network in human RBCs is summarized in figure 2.  

Despite the important roles of sphingolipids in RBC biology, the metabolic network 

connecting those sphingolipids is poorly characterized in RBCs. This is largely due to the 

fact that RBCs lose all of their organelles during differentiation. Many of the enzymes of 

sphingolipid metabolism are thought to be associated with specific organelles. For 

examples, serine palmitoyltransferase, 3-ketosphinganine reductase, ceramide synthase, 

dihydroceramide desaturase, S1P phosphatase, and S1P lyase have all been shown to be 

associated with the endoplasmic reticulum. Thus, it is possible that all of these enzymes 

are removed from RBCs during their terminal differentiation. However, this may not be 

the case as there have been counterexamples reported in the literature. For example, 

carnitine palmitoyltransferase, which is usually associated with mitochondria, has been 

detected in the mature RBC membrane [75]. In fibroblasts, S1P lyase, which is usually 

endoplasmic reticulum associated, has been found associated with the plasma membrane 

[76]. Thus, it is possible that sphingolipid metabolizing enzymes may be found in atypical 

places in the RBC. 

To further complicate matters, enzymes that are not permanently associated with the 

RBC may still be able to act on RBC sphingolipids. Soluble acid sphingomyelinase, neutral 

sphingomyelinase, and sphingosine kinase 1 activity have been reported in the plasma [69, 

77]. These enzymes may be able to latch onto the outer leaflet of the RBC membrane and 
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metabolize sphingolipids present there. Further, it is possible that enzymes present in the 

membranes of other cells may be able to metabolize sphingolipids in the RBC membrane. 

This idea is supported by a study showing that sphingomyelinase present in hen RBC 

membranes is capable of degrading sphingomyelin in human RBC membranes when the 

two are mixed together [78].  

 

Figure 2. Known Sphingolipid-Metabolizing Enzymes in Human Red Blood Cells. 

Reactions that have been documented consistently in the literature are shown in yellow. 

Reactions that have been documented inconsistently in the literature are shown in blue. 

Reactions that have never been reported in the literature are shown in green.  

2.5.1 Serine Palmitoyltransferase 

Serine palmitoyltransferase (SPT) catalyzes the conversation of serine and palmitoyl-CoA 

into 3-ketosphinganine, CoA, and CO2 which is the first step in de novo sphingolipid 

metabolism. SPT is the only enzyme in sphingolipid metabolism that has been detected in 
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RBCs by proteomic techniques [79]. SPT can actually be composed of multiple subunits, 

SPTLC 1, 2, and 3. Only SPTLC 1 and 2 have been detected in RBCs [79]. It is not known 

if this enzyme is active in RBCs and, if it is, what its activity level is. Further, since it is 

not known if the subsequent enzyme in sphingolipid de novo biosynthesis, 3-

ketosphinganine reductase, is present in RBCs, it is not clear if SPT meaningfully 

contributes to the broader sphingolipid network.  

2.5.2 Ceramide Synthase 

Ceramide synthase catalyzes the conversion of sphingosine and fatty acyl-CoA to ceramide 

and CoA as well as sphinganine and fatty acyl-CoA to dihydroceramide and CoA. There 

are 6 known isoforms of ceramide synthase in mammals. The expression of ceramide 

synthases in RBCs is not clear. In one study where RBCs were incubated with 3H-

sphingosine, no conversion to 3H-ceramide was detected [80].  In contrast, in other studies 

where RBCs were incubated with 14C-fatty acids, incorporation of the fatty acids into 

ceramide, sphingomyelin, and glycosphingolipids could be detected [81, 82] One study 

where rat erythrocytes were incubated with 3H-fatty acids showed incorporation into 

sphingomyelin [83].  

2.5.3 Ceramidase 

Ceramidase catalyzes the conversion of ceramides into sphingosine and dihydroceramides 

into sphinganine. There are 5 isoforms of ceramidase in mammals: acid ceramidase, neutral 

ceramidase, and alkaline ceramidase 1, 2, and 3. Early studies using heavy isotope tracers 

and activity assays did not detect any ceramidase activity in RBCs [70, 80] Another study 

did not detect any conversion of bacterial sphingomyelinase-generated ceramide to 
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sphingosine in RBCs [84]. However, the bacterial sphingomyelinase-generated ceramide 

was converted to sphingosine after addition of bacterial ceramidase to the RBCs. These 

results do not support the idea of an active ceramidase endogenous to the RBCs. However, 

a later report did detect alkaline ceramidase activity in mouse and human RBCs [85]. This 

report suggested that while RBC may possess activity for all 3 isoforms of alkaline 

ceramidase, alkaline ceramidase 3 may be dominant. This study also showed that systemic 

administration of an alkaline ceramidase inhibitor into mice reduced RBC SO and SO1P 

concentrations. While this reduction cannot uniquely be attributed to RBC alkaline 

ceramidase because the drug was administered systemically, the results may support a role 

for RBC alkaline ceramidase in regulating RBC sphingolipids. A recent report using an 

alkaline ceramidase 2 knockout mouse showed that RBC sphingosine and sphinganine are 

significantly reduced compared to a wildtype control [86]. While this reduction cannot 

uniquely be attributed to RBC alkaline ceramidase 2 because the experiment was done with 

a global knockout mouse, the results may support a role for RBC alkaline ceramidase 2 in 

regulating RBC sphingolipids.  

2.5.4 Sphingosine Kinase 

Sphingosine kinase (SK) catalyzes the conversion of sphingosine and ATP to sphingosine 

1-phosphate and ADP as well as sphinganine and ATP to sphinganine 1-phosphate and 

ADP. SK is the only sphingolipid-metabolizing enzyme that has consistently been detected 

in enzyme activity [70, 72, 87] and tracer [70, 80, 88] studies in RBCs. Sphingosine kinase 

has 2 isoforms: SK 1 and 2. Sphingosine kinase 1 typically has a cytosolic/ plasma 

membrane localization while sphingosine kinase 2 typically has a nuclear localization. 

While it has been claimed that only sphingosine kinase 1 is present in RBCs due to the lack 
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of a nucleus [72], it should be pointed out that a report from our group detected both SK1 

and SK2 in RBCs by western blot [69]. One study reported that SK activity in RBCs is 

increased by signaling through the adenosine pathway which causes phosphorylation of 

SK and movement of SK to the plasma membrane [87]. 

2.5.5 S1P Phosphatase/ Lipid Phosphate Phosphatases 

S1P phosphatases and lipid phosphatase phosphatases (LPPs) can both catalyze the 

dephosphorylation of So1P and SA1P to SO and SA respectively. However, LPPs are less 

specific and can also dephosphorylate ceramide 1-phosphates and lysophosphatidydic 

acids [89]. Since these two groups of enzymes have overlapping activity, it can be difficult 

to distinguish them. The literature on S1P phosphatase/ lipid phosphate phosphatase 

activity in RBCs is somewhat inconsistent. One study did not detect any activity from these 

enzymes [70]. However, a later study using a more sensitive technique detected a small 

amount of activity from these enzymes [90]. It is not clear if this small amount of activity 

came from platelet/ leukocyte contamination or, even if it is genuine, if it has a significant 

impact on RBC sphingolipid metabolism.   

2.5.6 S1P Lyase  

S1P lyase catalyzes the irreversible degradation of SO1P and SA1P to (E)-2-hexadecenal 

and hexadecanal, respectively, and phosphoethanolamine. The literature on S1P Lyase in 

RBCs is somewhat inconsistent. One study did not detect any S1P lyase activity in RBCs 

[70]. However, a later study using a more sensitive assay did detect a small amount of S1P 

lyase activity in RBCs [90]. It is not clear is this small amount of activity came from 



 18 

platelet/ leukocyte contamination or, if it is genuine, if it has a significant impact on 

sphingolipids metabolism in RBCs.  

2.5.7 Sphingomyelinase 

Sphingomyelinase catalyzes the hydrolysis of sphingomyelin into ceramide and 

phosphocholine as well as the hydrolysis of dihydrosphingomyelin into dihydroceramide 

and phosphocholine. There are multiple isoforms of sphingomyelinase including acid 

sphignomyelinase and multiple neutral sphingomyelinases. The literature on 

sphingomyelinase activity in RBCs is somewhat inconsistent. One study did not detect any 

neutral or acid sphingomyelinase activity in RBCs [91]. However, multiple studies have 

detected sphingomyelinase activity in RBCs in response to a variety of stimuli although 

the studies often did not clarify which isoform is active [13, 14, 67]. A study that utilized 

an acid sphingomyelinase knockout mouse showed significant, but not complete, reduction 

in RBC ceramide compared to the wildtype control [92]. While this effect cannot uniquely 

be attributed to RBC acid sphingomyelinase because it was a global knockout, the results 

may support the importance of RBC acid sphingomyelinase in regulating RBC 

sphingolipids.  Another study detected neutral sphingomyelinase activity in RBCs whose 

activity seems to be dependent on the membrane bending of the RBCs [93]. A study from 

our lab detected acid sphingomyeinase and a small amount of neutral sphingomyelinase in 

RBCs [69]. To further confuse the identification of the sphingomyelinase associated with 

RBCs, it has been shown that acid sphingomyelinase can act at neutral pH if the membrane 

that it is attached to has been oxidized or hydrolyzed by phospholipase A2 [94].  

2.5.8 Sphingomyelin Synthase 
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The literature on sphingomyelin synthase in RBCs is not entirely consistent. Early studies 

where RBCs were incubated with 3H-ceramide did not detect any sphingomyelin synthase 

activity [80, 95, 96]. Later reports did identify recovery of sphingomyelin concentration 

after activation of sphingomyelinase in RBCs, suggesting sphingomyelin synthase activity 

[13, 14, 67, 93]. In other studies where RBCs were incubated with 14C-fatty acids, 

incorporation of the fatty acids into sphingomyelin could be detected [81, 82]. In one study 

where RBCs were incubated with NBD-dihydroceramide, conversion into NBD-

dihydrosphingomyelin was detected [97]. One study where rat erythrocytes were incubated 

with 3H-fatty acids showed incorporation into sphingomyelin which indicates the presence 

of sphingomyelin synthase [83].  

2.5.9 Glucosylceramide synthase 

Glucosylceramide synthase (GCS) catalyzes the conversion of ceramide and UDP-glucose 

to glucosylceramide and UDP. There is limited data in the literature on GCS in RBCs. One 

study where RBCs were incubated with 3H-ceramide did not detect incorporation into 

glycosphingolipids [96]. Another study where RBCs were incubated with 14H-fatty acids 

did detect incorporation into glycosphingolipids [82]. Another study where RBCs were 

incubated with NBD-dihydroceramide did not detect conversion into glycosphingolipids 

[97]. 

2.5.10 Glucosylceramidase 

To our knowledge there have not been any studies investigating glucosylceramidase 

(GCDase) activity in RBCs. However, β-glucosidase activity has been detected in RBCs 

[98]. Glucosylceramidase is included in the family of β-glucosidases. One area of research 
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that might offer guidance is the study of Gaucher disease which is a genetic deficiency of 

glucosylceramidase 1. RBC glucosylceramide is significantly elevated in individuals with 

Gaucher disease [61, 99]. While this does not necessarily provide evidence of GCDase in 

RBCs because Gaucher disease is results in the global absence of GCDase, it could support 

the presence of GCDase in RBCs.  

Given the uncertainty around which sphingolipid-metabolizing enzymes are present 

in RBCs and/or act on RBC sphingolipids, it is entirely possible that some sphingolipids 

detected in RBCs under homeostatic conditions are not actively been turned over. In other 

words, these sphingolipids may have been biosynthesized early in the differentiation of the 

erythroid cells and simply reside in the RBC membrane throughout its lifespan. 

2.6 Changes in Red Blood Cell Sphingolipid Metabolism Have Been Observed in 

Sickle Cell Disease 

Several studies have identified changes in the concentrations of sphingolipids and the 

activities of sphingolipid-metabolizing enzymes in sickle cell erythrocytes and plasma. 

Figure 3 summarizes the known changes in red blood cell and plasma sphingolipid 

metabolism.  

A study from our group showed that the activity of both neutral and acid sphingomyelinase 

as elevated in plasma and erythrocytes from sickle individuals [69]. This study furthered 

showed increased levels of circulating microparticles, which may be the result of 

sphingomyelinase-mediated membrane vesiculation. These results are consistent with 

another study which showed elevated neutral sphingomyelinase activity in serum of sickle 

individuals [100]. This study also showed decreases in the concentrations of serum 
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sphingomyelins and ceramides. Taken together, these results suggest that erythrocyte 

sphingomyelin levels may decrease through increased hydrolysis though sphingomyelinase 

and decreased influx of sphingomyelin from plasma. To our knowledge, measurements of 

erythrocyte sphingomyelins in sickle cell have not been reported. While measurements of 

human erythrocyte ceramides in sickle cell have not been made, erythrocytes from a mouse 

model of sickle cell show higher levels of ceramides [101]. This is consistent with the 

higher sphingomyelinase activity observed in erythrocytes and plasma [69, 100].   

Multiple studies have demonstrated elevated sphingosine kinase activity in human sickle 

red blood cells and in red blood cells from a mouse model of sickle cell disease [72, 87]. 

This is concurrent with an increase in the concentration of SO1P in red blood cells [69, 72, 

101] and plasma [69, 72, 101]. A study from our group also demonstrated elevated 

concentrations of sphingosine in red blood cells and plasma [69]. It has been shown that 

the elevation of sphingosine kinase activity is caused by elevated plasma adenosine in 

sickle cell [87]. It has been shown that the elevation in red blood cell SO1P contributes to 

increased sickling, at least in a mouse model of the disease [72]. It has later shown that 

SO1P can bind to deoxyhemoglobin and enhance its binding to the cell membrane [101]. 

This increased the flux of glucose though glycolysis, increases 2,3-bisphosphoglycerate 

concentration, and further decreases binding of oxygen by hemoglobin.  
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Figure 3. Known Changes in Red Blood Cell Sphingolipid Metabolism in Sickle Cell 

Disease. Increases in sphingolipid concentration or enzyme activity in SCD are shown by 

red arrows. Decreases in sphingolipid concentration or enzyme activity in SCD are shown 

by blue arrows. 

 

 

 

 

 

 

 

 

Sphingomyelins

Ceramides

Sphingosine 
1-Phosphate

Sphingosine

Sphingosine

Sphingosine 
1-Phosphate

Ceramide
1-Phosphates

Ceramide
1-Phosphates

Sulfatide

Plasma

Increase has been 
documented in
sickle cell disease

Decrease has been 
documented in
sickle cell disease

RBC
Sphingomyelins

Ceramides



 23 

CHAPTER 3. INTEGRATION OF BIOCHEMICAL AND 

BIOPHYSICAL INFORMATION TO PREDICT THE BEHAVIOR 

OF SPHINGOSINE 1-PHOPSHATE METABOLISM IN RED 

BLOOD CELLS  

3.1 Abstract 

Sphingosine 1-phosphate is a bioactive lipid that plays many roles in the blood including 

regulating endothelial barrier function and regulating energy metabolism in red blood cells. 

Red blood cells are the largest reservoir of sphingosine 1-phosphate in the blood and also 

produce about 50% of plasma sphingosine 1-phosphate.  It has also been shown that blood 

levels of sphingosine 1-phosphate are altered in diseases like sickle cell disease and 

malaria. Despite the importance of sphingosine 1-phosphate in the blood, it is not fully 

understood how its concentration is regulated. In this study, we constructed a 

computational model of red blood cell sphingosine 1-phosphate metabolism combining the 

biophysical and biochemical aspects of sphingosine 1-phosphate metabolism. We validated 

the performance of the model against data on red blood cell sphingosine 1-phosphate 

metabolism in vitro. Our results show that red blood cell and plasma sphingosine 1-

phosphate concentrations are very sensitive to changes in red blood cell ceramide 

concentration, hematocrit, and red blood cell sphingosine kinase activity. These results are 

significant because all three of these variables are altered in sickle cell disease. Thus, our 

results can help guide the development of more effective treatments for sickle cell disease.  
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3.2 Introduction 

Sphingosine 1-phosphate (SO1P) is a bioactive lipid that plays many roles in the 

blood. These include maintaining vascular barrier integrity [102], regulating the trafficking 

of lymphocytes between body compartments [103], and regulating the trafficking of stem 

cells between body compartments [104]. It has been shown that SO1P also regulates the 

binding of hemoglobin to the red blood cell (RBC) membrane which regulates RBC energy 

metabolism [10]. Recently, it was shown that the concentration of SO1P is significantly 

elevated in the RBCs and plasma of individuals with sickle cell disease (SCD) [69, 72]. 

Further, it has been shown that SO1P is significantly lowered in the serum of individuals 

with malaria [105]. Thus, the regulation of the concentration of SO1P in RBCs and in 

plasma is important in both physiologic and pathologic contexts.  

In blood, the majority of SO1P is stored in RBCs, with lesser amounts being stored 

in platelets and plasma [70] . Studies using mice have suggested that about 50% of plasma 

SO1P comes from red blood cells with the remainder primarily coming from endothelial 

cells [106]. Under pathological conditions involving platelet activation, platelets can also 

contribute significantly to plasma SO1P concentration [80]. Despite the important role of 

RBCs in storing and releasing SO1P in blood, the details of how RBC SO1P metabolism 

is regulated remain incompletely understood although some components are known. It has 

been shown that RBCs possess sphingosine kinase 1 activity capable of producing SO1P 

from its precursor sphingosine (SO) [70, 80]. Sphingosine kinase 1 can be activated 

through the adenosine signaling pathway [87]. It was recently been shown that the 

transporter responsible for exporting SO1P from RBCs is the protein MFSD2B [9]. It has 

also been shown that various plasma components including albumin and HDL are capable 
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of extracting SO1P from RBCs [73, 74]. Despite having information on these individual 

components, we do not understand how the integrated system regulates the concentration 

of RBC and plasma SO1P. 

In individuals with SCD, hematocrit (volume percentage of RBCs in blood) is 

significantly reduced. Further, it has been shown that sphingosine kinase 1 activity is 

significantly elevated in SCD RBCs [72]. Finally, it has been shown that the activities of 

neutral and acid sphingomyelinase, which produce ceramide from sphingomyelin, are 

significantly elevated in SCD RBCs [69]. However, it is not clear how important each of 

these factors is in determining the overall increase in SO1P concentration in SCD. In this 

study, we investigated the relative importance of these three factors in determining the 

concentrations of SO1P in RBCs and plasma. To do this, we constructed and validated a 

computational model of RBC SO1P metabolism in vitro. Our results show that RBC and 

plasma SO1P concentrations are sensitive to changes in RBC ceramide concentration, 

hematocrit,  and red blood cell sphingosine kinase activity. Further, our results suggest that 

that changes in RBC ceramide concentration may have the most influence in the context of 

SCD.  

3.3 Results 

3.3.1 Construction of a mathematical model RBC SO1P metabolism in vitro  

We constructed a mathematical model of RBC SO1P metabolism that includes all parts of 

this metabolic system that are currently known. First, SO reversibly exchanges between 

plasma and the RBC membrane outer leaflet. Then, SO reversibly flip-flops between the 

two leaflets of the RBC membrane. SO is phosphorylated to SO1P by sphingosine kinase 
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1. The sphingosine kinase 1 reaction is activated by membrane phospholipids, especially 

phosphatidylserine. SO1P is dephosphorylated back to SO by S1P phosphatase or 

irreversibly degraded by S1P lyase. Inner leaflet SO1P is transported to the outer leaflet by 

MFSD2B. Outer leaflet SO1P can spontaneously flip back to the inner leaflet. Outer leaflet 

SO1P also reversibly exchanges with plasma. Finally, inner leaflet SO is produced from 

the deacylation of ceramide by alkaline ceramidases. A network map representation of the 

system is given in Figure 4. All enzymatic reaction rates were described by Michaelis-

Menten-type equations. All biophysical process rates were described by mass action 

equations. The full details of the how the model equations and parameter values were 

decided upon are described in the methods section.  

 

Figure 4. A Mathematical Model of RBC SO1P Metabolism was Constructed Using 

Known Network Structure. Independent variables, whose values do not change during a 

given experiment, are shown in green boxes. Dependent variables, whose values do change 

during a given experiment, are shown in blue boxes. Activation of a process is shown by a 
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green dotted arrow with a plus sign. Reactions or processes are represented by black 

arrows.   

We first evaluated the ability of our model to fit three different data sets from one study 

[74]. We optimized the values of the model parameters to each data set by using a 

constrained nonlinear optimization algorithm. The full details of the algorithm are given in 

the methods section. For each data set, the optimization algorithm produced 100 optimized 

parameter sets from which the parameter set with the lowest sum of squared errors was 

used for further simulations.  In the first experiment, described in Hanel et al. 2007, Figure 

2, human RBCs were incubated with human plasma at 50% hematocrit for 6 hours. Plasma 

SO1P concentration was measured at different time points during the incubation. We will 

refer to this data set as Data Set 1. The optimized fit of the model to this data set is shown 

in Figure 5. 
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Figure 5. The RBC SO1P Metabolism Model was Fit to Data Set 1. A) Model 

simulation of plasma SO concentration. B) Model simulation of RBC SO concentration. 

C) Model simulation of RBC SO1P concentration. D) Model simulation of plasma SO1P 

concentration.  

In the second experiment, described in Hanel et al. 2007, Figure 4A, human RBCs and 

plasma were incubated at volume ratios of 1:1, 1:2, 1:4, 1:8, and 1:16 for 6 hours. Plasma 

SO1P concentration was measured at different time points during the incubations. We will 

refer to this data set as Data Set 2. The optimized fit of the model to this data set is shown 

in Figure 6.  
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Figure 6. The RBC SO1P Metabolism Model was Fit to Data Set 2. Computational 

model was simultaneously fit to plasma SO1P concentration data for RBCs and plasma 

incubated at volume ratios of A) 1:1 B) 1:2 C) 1:4 D) 1:8 E) 1:16.  

In the third experiment, described in Hanel et al. 2007, Figure 4B, RBCs and plasma/media 

were incubated at 50% hematocrit for 6 hours. The plasma was mixed with RPMI media 

to make plasma percentages of 25%, 50%, 75%, and 100%. Plasma/media SO1P 

concentration was measured at different time points during the incubations. We will refer 

to this data set as Data Set 3. The optimized fit of the model to this data set is shown in 

Figure 7.  
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Figure 7. The RBC SO1P Metabolism Model was Fit to Data Set 3. Computational 

model was simultaneously fit to plasma SO1P concentration data for RBCs incubated at 

50% hematocrit with plasma mixed with media to make plasma percentages of A) 25% B) 

50% C) 75% D) 100%.  

In order to ensure that similar parameter sets are able to provide good model fits to all three 

data sets, we used principal component analysis to visualize the 100 optimized parameters 

fits for each data set together in principal component space. The parameter set taken from 

literature values was also included for comparison. The results of this analysis are shown 

in Figure 8. As Figure 8 shows, the is almost complete overlap of the optimized parameter 

sets for all three data sets in one cluster. Examining the loadings of principal component 1, 

it can be seen that the most significant contributors to that principal component are the 
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initial concentrations of RBC SO and RBC SO1P. Examining the loadings of principal 

component 2, the most significant contributors to that principal component are the initial 

concentration of RBC SO and one of the parameters controlling the rate of exchange of 

SO1P between the RBC membrane and plasma, k6,5. The best-fit parameter values for all 

three data sets are given in Table 1 with the parameter set taken from literature for 

comparison. In order to decide on a parameter set to use for further model predictions, we 

evaluated the total sum of squared errors for all three data sets when using each of the three 

best-fit parameter sets. The total sum of squared errors for all three data sets for each of the 

best-fit parameter sets are 5.34*106 for best-fit parameter set 1, 2.24*106 for best-fit 

parameter set 2, and 3.80*106 for best-fit parameter set 3. Thus, we used best-fit parameter 

set 2 for model predictions.  
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Figure 8. Principal Component Analysis was Performed on the 100 Optimized 

Parameter Sets for Each Data Set. A) The 100 optimized parameter sets for each of the 

three data sets as well as the parameter set derived from literature were plotted in principal 

component space. Parameter sets for data set 1 are given in blue, parameter sets for data 

set 2 are given in red, parameter sets for data set 3 are given in green, and the literature 

data set is given in black. B) The loadings of each model parameter in principal component 
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1 were calculated. C) The loadings of each model parameter in principal component 2 were 

calculated.   

Table 1. The Best-Fit Values of Model Parameters for All Three Data Sets Were 

Determined Through Nonlinear Optimization 

Parameter 

Name 

Literature 

Value 

Best-Fit 

Value for 

Data Set 1 

Best-Fit 

Value for 

Data Set 2 

Best-Fit 

Value for 

Data Set 3 

Units 

Mean 

Square 

Error 

Data Set 1: 

781,000 

Data Set 2: 

108,000 

Data Set 3: 

72,900 

808.6 1,681.2 1,258.3 pmole/mL 

k1,2 1.39 
0.03064535 0.01435555 0.01687903 

min-1mL-1 

k2,1 0.01 0.00722663 0.10449552 0.09597118 min-1mL-1 

k2,3 2.77 98.6063044 0.05992106 0.02775253 min-1 

k3,2 2.77 88.7642583 0.18061132 207.619465 min-1 

V3,4 10,200 116,098.952 102.065064 185,903.232 pmole/min/mL 
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V4,0 0.0068 0.01620506 0.00656226 0.43415209 pmole/min/mL 

V4,3 0.0198 0.0166201 0.05874975 0.67541816 pmole/min/mL 

V4,5 11,900 4,976.86366 12,583.4054 48,4215.764 pmole/min/mL 

k5,4 0.00083 0.0021011 9.11E-06 6.18E-05 min-1 

k5,6 1.023 0.40399136 0.03307294 0.06029206 min-1mL-1 

k6,5 1.39 0.55610986 0.0289528 0.01391022 min-1mL-1 

k7,3 57.8 608.947961 2,069.94733 2.26212189 pmole/min/mL 

X1,0 100 1.45274271 47.0444719 4.78161073 pmole/mL 

X2,0 50 93.9102973 0.00333579 56.4719848 pmole/mL 

X3,0 50 0.93935367 0.03391118 1.16529494 pmole/mL 

X4,0 1000 1,129.42461 948.587869 1,222.15931 pmole/mL 

X5,0 1000 0.82825168 51.5637221 2.01976342 pmole/mL 

 

3.3.2 Model Predictions 

Once we were confident that the model could simulate the behaviour of the system under 

multiple experimental conditions with similar parameter values, we investigated the 
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sensitivity of the steady-state in vitro RBC and plasma SO1P concentrations to changes in 

critical model parameters. It has been shown that in SCD, hematocrit is decreased, 

sphingosine kinase activity is increased [72], and ceramide concentration is increased 

[101]. We evaluated the steady-state concentrations of RBC and plasma SO1P in vitro as 

functions of these three parameters. The results are shown in Figure 9. Figure 9A and B 

show that as the hematocrit drops from a normal value of 45% to a typical SCD value of 

25%, the RBC SO1P concentration drops from 3,192 to 1,335 pmole/mL and the plasma 

SO1P concentration drops from 3,641 to 1,522 pmole/mL. Figure 9C and D show that as 

the sphingosine kinase 1 activity rises 50%, which is typical of SCD, the RBC SO1P 

concentration rises from 3,850 to 5,117 pmole/mL and the plasma SO1P concentration 

rises from 4,392 to 5,838 pmole/mL. Figure 9E and F show that as the concentration of 

ceramide increases by 300%, which is typical of SCD [101], the RBC SO1P concentration 

rises from 3847 to 9433 pmole/mL and the plasma SO1P concentration rises from 4,392 to 

10,761. We also estimated the sensitivities of RBC and plasma SO1P to these three 

parameters numerically. The results are given in Table 2. As the table shows, both 

concentrations are more sensitive to changes in hematocrit than the other 2 parameters. 

However, when we take into account the fact that the percent changes in both hematocrit 

and sphingosine kinase 1 activity in SCD are only about 50% while the percent change in 

RBC ceramide concentration in SCD is 300%, the increase in ceramide concentration in 

SCD ultimately has a bigger effect.  
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Table 2. Sensitivities of RBC and PLA SO1P Concentrations were Estimated 

 Hematocrit Sphingosine Kinase 

1 Activity 

RBC Ceramide 

Concentration 

RBC SO1P 

Concentration 

1.737 0.710 0.793 

Plasma SO1P 

Concentration 

1.982 0.809 0.905 

 

 

Figure 9. Dependency of RBC and Plasma SO1P Concentrations on Model 

Parameters was Estimated. The dependency of the  in vitro steady-state RBC SO1P 

concentration on A) hematocrit, C) sphingosine kinase activity, and E) RBC ceramide 

concentration were estimated. The dependency of the in vitro steady-state plasma SO1P 
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concentration on B) hematocrit, D) sphingosine kinase, and F) RBC ceramide 

concentration were estimated. The best-fit parameter sets for data set 2 was used in this 

analysis.  

3.4 Discussion 

We have constructed and validated a computational model of RBC SO1P metabolism in 

vitro using known biochemical and biophysical aspects of the system. The construction of 

the model was illuminating as it made clear which details of this system are known and 

which are not. For example, fundamental biophysical parameters for SO and SO1P such as 

partition coefficients and transbilayer diffusion rates have not been reported and had to be 

estimated by indirect methods. Thus, there is still a need for experimental investigation of 

these details. Further, the distributions of SO and SO1P between RBC membrane leaflets 

has never been reported. Thus, model predictions of concentrations of SO and SO1P in 

individual leaflets could not be directly validated and further experimental work in this 

area is needed.  

The first major result of our modeling study is that plasma and RBC SO1P concentrations 

are very sensitive to changes in hematocrit. Our model predicts that as the hematocrit drops 

from the physiologic range of 40-45% hematocrit to levels seen in SCD (20-25%), the RBC 

and plasma SO1P concentrations are expected to drop by about 50%. This result is 

consistent with data from normal and non-sickle anemic individuals [73, 107]. However, 

RBC and plasma SO1P concentrations increase in SCD [69]. Thus, other changes affecting 

the metabolic network must occur to outweigh the decrease in concentration caused by 

anemia.  
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Another key result of this study is that the concentrations of RBC and plasma SO1P are 

very sensitive to changes in the concentration of RBC ceramide. The total concentration of 

ceramide in human RBCs has been estimated to be about 50 μM [63]. It has been shown 

that RBCs possess the capacity to synthesize ceramide from sphingomyelin through neutral 

sphingomyelinase [93] and acid sphingomyelinase [69]. The RBC neutral 

sphingomyelinase seems to be activated by membrane bending. Acid sphingomyelinase 

activity can be released into circulation by endothelial cells during inflammation [108]. 

Because SCD is characterized by significant mechanical deformations of the RBC 

membrane and chronic inflammation, we expect both of these enzymes to increase RBC 

ceramide. Indeed, we have previously shown that the activities of both sphingomyelinases 

are increased in SCD RBCs [69]. RBCs also possess sphingomyelin synthase activity 

which can reversibly convert ceramide to sphingomyelin [93]. The physiologic role of 

sphingomyelin synthase in RBCs and whether or not sphingomyelin synthase activity is 

altered in SCD are not currently known. Ceramide can also be deacylated to sphingosine 

by alkaline ceramidases in RBCs [85]. As noted previously in this study, these enzymes 

are very sensitive to intracellular calcium concentrations. While the steady-state 

concentration of free calcium in RBCs is maintained at very low levels, it has been shown 

that RBC calcium concentration transiently increases in response to a variety of stimuli 

[109, 110]. This would result in transiently higher activity of alkaline ceramidase. To 

support the importance of ceramidase in maintaining RBC and plasma SO1P 

concentrations, it has been shown that when alkaline ceramidase 2 is knocked out in mice, 

the RBC and plasma SO1P concentrations drop by more than 50% [86]. It has been shown 

that the  calcium concentration in SCD RBCs is significantly higher than in normal RBCs 
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[111]. Thus, we expect that alkaline ceramidase activity to be higher in SCD RBCs than in 

normal RBCs and to contribute to the increase in RBC and plasma SO1P concentrations.  

Another key result of our study is that the concentrations of RBC and plasma SO1P are 

sensitive to changes in sphingosine kinase 1. It has been shown that under conditions of 

sphingosine kinase 1 knockout, the SO1P concentration in RBCs drops to near-zero and 

the plasma SO1P concentration drops by half [101]. The fact that plasma SO1P only drops 

by half with sphingosine kinase 1 knockout is likely due to the activity of sphingosine 

kinase 2, which is present in other cell types such as endothelial cells [106]. These other 

sources of plasma SO1P are outside the scope of our current model which is restricted to 

RBCs and plasma in vitro. It has been shown that the RBC and plasma concentrations of 

SO1P are elevated in individuals with SCD and in a mouse model of SCD [69, 72]. It has 

further been shown that the activity of sphingosine kinase 1 increases by about 50% in 

SCD RBCs compared to normal RBCs [87]. Our modeling results are consistent with these 

observations.  

In conclusion, our model which incorporates the known biochemical and biophysical 

details of RBC SO1P metabolism has allowed us to determine the relative importance of 

different variables known to be significantly altered by transient physiologic stresses and 

under pathological conditions.  This will allow us to design more effective therapeutic 

strategies in sickle cell disease and other contexts where RBC SO1P is important.  

3.5 Methods 

3.5.1 Model Construction 
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When parameterizing the rate equations, we needed to convert parameters and 

concentrations into a single set of units. It has been shown that the rates of lipid metabolic 

reactions depend on the interfacial concentrations lipids, not the bulk concentrations. 

Therefore, lipid enzyme kinetic parameters are often reported in units of mole% of 

interfacial molecules. When expressing cellular lipid concentrations, different units are 

used including lipid per cell, per unit DNA, per unit protein, and per unit lipid phosphate. 

Thus, some unit conversion is necessary. We chose to convert all model parameters and 

outputs into units of pmole/mL of cells because this is the units that the experimental data 

are expressed in. To do this, we assume that the RBC concentration of phospholipid is 

about 4 μmol/mL of cells [16, 112], the molar ratio of cholesterol to phospholipid in RBC 

membranes is about 0.8 [16], giving a total of 7.2 μmol total lipid/mL of cells. Based on 

these values, we used the following conversion factor to convert x mole% to y pmoles/mL.  

𝑦
𝑝𝑚𝑜𝑙𝑒𝑠

𝑚𝐿 𝑐𝑒𝑙𝑙𝑠
=

𝑥 𝑝𝑚𝑜𝑙𝑒𝑠 ∗ 100

𝑝𝑚𝑜𝑙𝑒𝑠 𝑙𝑖𝑝𝑖𝑑 𝑖𝑛 1 𝑙𝑒𝑎𝑓𝑙𝑒𝑡
∗

1

100
∗

1 𝑝𝑚𝑜𝑙𝑒 𝑙𝑖𝑝𝑖𝑑 𝑖𝑛 1 𝑙𝑒𝑎𝑓𝑙𝑒𝑡

2 𝑝𝑚𝑜𝑙𝑒𝑠 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑝𝑖𝑑

∗
7.2 ∗ 106 𝑝𝑚𝑜𝑙𝑒𝑠 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑝𝑖𝑑

𝑚𝐿 𝑐𝑒𝑙𝑙𝑠
 

Reference concentrations for all dependent and independent variables were taken from 

literature and are compiled in table 1.  

Table 3. Reference Concentrations of Model Dependent and Independent Variables 

were Collected 

Variable Name/ Number Concentration Reference 

RBC SO/ X2+X3 100 pmole/mL [70] 
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RBC SO1P/ X4+X5 2*103 pmole/mL [70] 

RBC Inner Leaflet 18:1 Cer/X7 2.5*106 pmole/mL  [63] 

ATP/X8 1000 μM [113] 

Inner Leaflet 

Phosphatidylserine/X9 

560 μM [16] 

Other Inner Leaflet Lipids/X10 3040 μM [16] 

Based on the network map presented above, we wrote the following system of differential 

equations to describe the dynamic mass balances in the system.  

Differential Equations Rate Equations 

𝑋1̇ =
𝑉𝑅

𝑉𝑃
𝑣2,1 − 𝑣1,2 

𝑣1,2 = 𝑘1,2𝑋1𝑉𝑅 

𝑋2̇ =
𝑉𝑃

𝑉𝑅
𝑣1,2 + 𝑣3,2 − 𝑣2,1 − 𝑣2,3 

𝑣2,1 = 𝑘2,1𝑋2𝑉𝑃 

𝑋3̇ = 𝑣0,3 + 𝑣2,3 + 𝑣4,3 − 𝑣3,2 − 𝑣3,4 𝑣2,3 = 𝑘2,3𝑋2 

𝑋4̇ = 𝑣3,4 + 𝑣5,4 − 𝑣4,0 − 𝑣4,3 − 𝑣4,5 𝑣3,2 = 𝑘3,2𝑋3 

𝑋5̇ = 𝑣4,5 +
𝑉𝑃

𝑉𝑅
𝑣6,5 − 𝑣5,4 − 𝑣5,6 𝑣4,5 =

𝑉𝑚𝑎𝑥,4,5
𝑋4 ∗ 𝑋8

𝐾𝑚,4,5,4 ∗ 𝐾𝑚,4,5,8

1 +
𝑋4

𝐾𝑚,4,5,4
+

𝑋8

𝐾𝑚,4,5,8
+

𝑋4 ∗ 𝑋8

𝐾𝑚,4,5,4 ∗ 𝐾𝑚,4,5,8

 

𝑋6̇ =
𝑉𝑅

𝑉𝑃
𝑣5,6 − 𝑣6,5 

𝑣5,4 = 𝑘5,4𝑋5 
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 𝑣5,6 = 𝑘5,6𝑋5𝑉𝑃 

 𝑣6,5 = 𝑘6,5𝑋6𝑉𝑅 

 

𝑣3,4 =
𝛽 ∗ 𝑉𝑚𝑎𝑥,3,4

𝑋3𝑋8𝑋9

𝐾𝑚,3,4,3𝐾𝑚,3,4,8𝐾𝑚,3,4,9
+ 𝑉𝑚𝑎𝑥,3,4

𝑋3𝑋8𝑋10

𝐾𝑚,3,4,3𝐾𝑚,3,4,8𝐾𝑚,3,4,10

(1 +
𝑋8

𝐾𝑚,3,4,8
+

𝑋8𝑋9

𝐾𝑚,3,4,8𝐾𝑚,3,4,9
+

𝑋8𝑋10

𝐾𝑚,3,4,8𝐾𝑚,3,4,10
+

𝑋3𝑋8𝑋9

𝐾3,4,3𝐾3,4,8𝐾3,4,9
+

𝑋3𝑋8𝑋10

𝐾3,4,3𝐾3,4,8𝐾3,4,10
)
 

 

𝑣4,0 =
𝑉𝑚𝑎𝑥,4,0

𝑋4
𝐾𝑚,4,0,4

1 +
𝑋4

𝐾𝑚,4,0,4

 

 

𝑣4,3 =
𝑉𝑚𝑎𝑥,4,3

𝑋4
𝐾𝑚,4,3,4

1 +
𝑋4

𝐾𝑚,4,3,4

 

 

𝑣7,3 =
𝑉𝑚𝑎𝑥,7,3

𝑋7
𝐾𝑚,7,3,7

1 +
𝑋4

𝐾𝑚,7,3,7

 

 

Here, 𝑋𝑖
̇  is the time derivative of the concentration of dependent variable i, the vi,j 

terms refer to the flux converting lipid i into lipid j. An i value of 0 indicates production. 

A j value of 0 indicates degradation. The details of each v term are given in the next section. 

VR refers to the size of RBC compartment and VP refers to the size of the plasma 

compartment. Depending on the experimental data source, different units of the size of the 

RBC compartment have been used including cell number, cell volume, or mg of cellular 

protein. For the sake of standardization, we will define VR by the mL of RBCs and VM as 

the number of mL of plasma.  
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Biophysical Processes 

Sphingosine Exchange with Media 

Multiple studies have shown that RBCs readily uptake SO from media and metabolize it 

[70, 80, 88]. Mechanistically, this process can be broken into 2 steps: the reversible 

dissociation from albumin and the reversible absorption into the outer leaflet of the RBC 

membrane. The binding affinity of albumin for SO has not been reported, but affinity has 

been reported for SO1P. The KD for SO1P binding to bovine albumin has been reported to 

be about 40 μM (40,000 pmol/mL) [114]. While the additional phosphate group on SO1P 

may affect the KD value, this is the best estimate currently available for SO binding to 

albumin. The equilibrium relationship between albumin-bound SO and free SO is given by 

the following equation.  

𝑋𝑖,𝐴𝑙𝑏,𝑒𝑞

𝑋𝑖,𝑎𝑞,𝑒𝑞
=

𝐴𝑙𝑏

𝐾𝐷
 

Partitioning of a surfactant into a membrane is typically characterized by a partition 

coefficient, which is defined as follows.  

𝐾𝑃 =

𝑛𝑆,𝑜𝑚

𝑛𝐿,𝑜𝑚

𝑋𝑆,𝑎𝑞
 

Here nS,om is the number of surfactant molecules in the outer membrane, nL,om is the number 

of lipid molecules in the outer membrane, and CS,aq is the concentration of surfactant in 

aqueous solution. The partition coefficient of SO into membranes has not been reported. 
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However, it has been shown the partition coefficient and critical micelle concentration 

(CMC) of a surfactant are related through the following inverse relationship [115].  

𝐾𝑃 =
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝐶𝑀𝐶
 

Across many different surfactants with diverse structures, the value of the constant is about 

1. The value of the constant for lysophopshatidylcholine (LPC), which is structurally closer 

to SO, is about 0.1. [116]. The CMC of SO has been estimated to be about 1 μM (1000 

pmol/mL) [117]. Putting these together gives an estimate of the partition coefficient for SO 

of about 10-4 mL/pmol. The equilibrium relationship between outer leaflet SO and aqueous 

SO is given by the following equation.  

𝑋𝑖,𝑜𝑚,𝑒𝑞

𝑋𝑖,𝑎𝑞,𝑒𝑞
= 𝐾𝑃 ∗ 𝑋𝐿,𝑜𝑚 

Putting the two mechanistic steps together, we can estimate the overall equilibrium of SO 

between albumin and the outer RBC membrane to be as follows.  

𝑋𝑖,𝐵𝑆𝐴,𝑒𝑞

𝑋𝑖,𝑜𝑚,𝑒𝑞
=

𝑋𝑖,𝐵𝑆𝐴,𝑒𝑞

𝑋𝑖,𝑎𝑞,𝑒𝑞

𝑋𝑖,𝑎𝑞,𝑒𝑞

𝑋𝑖,𝑜𝑚,𝑒𝑞
=

𝐴𝑙𝑏

𝐾𝐷

1

𝐾𝑃 ∗ 𝑋𝐿,𝑜𝑚
=

𝐴𝑙𝑏

40,000

1

10−4 ∗ 3.6 ∗ 106

= 6.94 ∗ 10−8𝐴𝑙𝑏 

The concentration of lipids in the outer membrane was assumed to be half the total 

concentration of lipids in RBCs (7.2*106 pmoles/mL of cells). For our parameter 

estimation, a typical plasma albumin concentration of 500 μM (752,00 pmole/mL) was 

used.  

We use the following equations to describe this exchange. 
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𝑣1,2 = 𝑘1,2𝑋1𝑉𝑅 

𝑣2,1 = 𝑘2,1𝑋2𝑉𝑃𝐴𝑙𝑏 

Kinetic parameters for SO exchange between membranes and albumin have not been 

reported. The best approximation available is for 18:1 fatty acid (oleic acid). In one study 

the transfer of oleic acid from albumin to isolated RBC membranes took less than 1 minute 

to reach equilibrium [118]. Using a half-time of 30 seconds and solving for k1,2 gives 

𝑘1,2 =
ln (2)

0.5 𝑚𝑖𝑛 ∗ 1 𝑚𝐿
= 1.39 𝑚𝑖𝑛−1𝑚𝐿−1 

 The remaining rate constant can be estimated by solving for the steady-state of media SO, 

X1.  

𝑋1̇ = 0 = 𝑘2,1𝑋2𝐴𝑙𝑏𝑉𝑃

𝑉𝑅

𝑉𝑃
− 𝑘1,2𝑋1𝑉𝑅 

𝑋1,𝑆𝑆

𝑋2,𝑆𝑆
=

𝑘2,1 ∗ 𝐴𝑙𝑏

𝑘1,2
 

Comparing this to equation 5, we can see that 

𝑘2,1

𝑘1,2
= 6.94 ∗ 10−8 

𝑘2,1 = 6.94 ∗ 10−8 ∗ 1.39 = 9.65 ∗ 10−8 𝑚𝑖𝑛−1𝑚𝐿−1 

Sphingosine Flip Flop 
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To the best of our knowledge, the transbilayer diffusion (flip flop) of SO in RBC 

membranes has not been measured. The closest approximation that is available is the 

behavior of free fatty acids. Flip flop of 18:1 fatty acid (oleic acid) in RBC membranes 

happens in less than 15 seconds [118]. Thus, we expect SO to rapidly distribute between 

the membrane leaflets. We used the following rate equations to describe SO flip flop.  

𝑣2,3 = 𝑘2,3𝑋2 

𝑣3,2 = 𝑘3,2𝑋3 

Until more information becomes available, we will assume k2,3=k3,2=ln(2)/0.25 min = 2.77 

min-1 

MFSD2B-Mediated SO1P Flopping 

The protein MFSD2B has recently been identified as the SO1P transporter in RBCs, 

although it is not clear how it operates mechanistically [9]. To date, there has only been 

one study that has investigated the kinetic parameters of RBC SO1P transport. This study 

was performed in rat RBCs before the identification of MFSD2B as the SO1P transporter 

[88]. The study identified ATP-dependent and ATP-independent transport of SO1P in RBC 

membranes. The study showed that the ATP-dependent transporter exhibited Michaelis-

Menten-type dependence on both SO1P and ATP concentrations. However, this study did 

not investigate the kinetic mechanism of the transport reaction. Until more information 

becomes available, we will assume that a random order mechanism is appropriate. 

Importantly, this study showed that SO1P transport occurred even without the presence of 

a carrier protein in the media which suggests that the transporter could be operating as a 



 47 

floppase. The same study also showed that the ATP-dependent SO1P transporter is not 

reversible. Taking all of these observations into account, a plausible rate equation for 

transport/flopping of SO1P from the inner leaflet to the outer leaflet of the RBC membrane 

is as follows.  

𝑣4,5 =
𝑉𝑚𝑎𝑥,4,5

𝑋4 ∗ 𝑋8
𝐾𝑚,4,5,4 ∗ 𝐾𝑚,4,5,8

1 +
𝑋4

𝐾𝑚,4,5,4
+

𝑋8
𝐾𝑚,4,5,8

+
𝑋4 ∗ 𝑋8

𝐾𝑚,4,5,4 ∗ 𝐾𝑚,4,5,8

 

Vmax,4,5=11,900 pmol/mL/min [88]. The activity of MFSD2B in human RBCs has not been 

measured. The only available measurement of activity is in rat RBC membranes. 

Kobayashi et al reported a maximum transport rate of about 700 pmol/min/mg membrane 

protein. We converted this to a rate per total protein by assuming that membrane protein 

accounts for 5% of total RBC protein.  

Km,4,5,4= 72,000 pmole/mL [88]. The Km value for SO1P was reported as 21 μM in the 

original paper. Unfortunately, the original paper did not contain enough experimental detail 

to allow us to properly convert this to mole%. Therefore, for the time being, we used a Km 

of 2 mole% which is near the Km values of the 2 enzymes that use SO1P in RBCs, S1P 

lyase and S1P phosphatase (see below).  

Km,4,5,8=130 μM [88] 

SO1P Flipping 

To the best of our knowledge, the rate of flip flop for SO1P in RBC membranes has not 

been reported. The flip flop rate constant of  the structurally-similar lipid, 18:1 
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lysophosphatidylcholine (LPC), was estimated to be about 0.00083 min-1 [119].  Until 

measurements become available for SO1P, we will use the value for 18:1 LPC. Though 

SO1P flip flop could be bidirectional, we assume that MFSD2B-mediated flopping will 

dominate passive flopping so we only consider passive flipping in this model. We use the 

following equation to describe the rate of SO1P flipping.  

𝑣5,4 = 𝑘5,4𝑋5 

k5,4 = 0.00083 min-1 [120] 

SO1P Exchange with Media 

As with SO, the exchange of SO1P between the RBC outer membrane and albumin is 

mechanistically divided into 2 steps: reversible desorption from the outer RBC membrane 

and reversible binding to albumin.  Though the partition coefficient of SO1P into 

membranes has not been measured, we could use the same inverse relationship that we 

used with SO to convert the CMC of SO1P into an estimate of the partition coefficient. 

The CMC of SO1P has been measured to be about 14 uM (14,000 pmol/mL) [117]. Using 

the inverse relationship results in an estimate of Kp for SO1P of 7.1*10-6 mL/pmole. The 

dissociation constant for SO1P binding to bovine albumin has been measured to be about 

40 uM (40,000 pmole/mL) [114]. Putting these two mechanistic steps together, the overall 

equilibrium of the exchange of SO1P between the RBC outer membrane and albumin is as 

follows.  

𝑋𝐴𝑙𝑏,𝑒𝑞

𝑋𝑜𝑚,𝑒𝑞
=

𝑋𝐴𝑙𝑏,𝑒𝑞

𝑋𝑎𝑞,𝑒𝑞

𝑋𝑎𝑞,𝑒𝑞

𝑋𝑜𝑚,𝑒𝑞
=

𝐴𝑙𝑏

𝐾𝐷

1

𝐾𝑃 ∗ 𝑋𝐿,𝑜𝑚
=

𝐴𝑙𝑏

40,000

1

7.1 ∗ 10−6 ∗ 3.6 ∗ 106

= 9.78 ∗ 10−7𝐴𝑙𝑏 
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The exchange kinetics of SO1P between the outer leaflet of the RBC membrane and the 

media is assumed to obey the following equations.  

𝑣5,6 = 𝑘5,6𝑋5𝑉𝑃𝐴𝑙𝑏 

𝑣6,5 = 𝑘6,5𝑋6𝑉𝑅 

Kinetic details for SO1P exchange between membrane and albumin have not been reported. 

Thus, we used kinetic information for the structurally-related molecule oleic acid. The 

remaining rate constant can be estimated by solving for the steady-state of media SO1P, 

X6.  

𝑋6̇ = 0 = 𝑘5,6𝑋5𝐴𝑙𝑏𝑉𝑃

𝑉𝑅

𝑉𝑃
− 𝑘6,5𝑋6𝑉𝑅 

𝑋6,𝑆𝑆

𝑋5,𝑆𝑆
=

𝑘5,6 ∗ 𝐴𝑙𝑏

𝑘6,5
 

Comparing this to equation x, we can see that 

𝑘5,6

𝑘6,5
= 9.78 ∗ 10−7 

𝑘5,6 = 9.78 ∗ 10−7 ∗ 1.39 = 1.36 ∗ 10−6 

Biochemical Processes 

Sphingosine Kinase 1 

Multiple studies have shown that RBCs express sphingosine kinase 1 (SK1) activity [70, 

72, 87]. Sphingosine kinase 1 catalyzes the following bi-bi reaction.  
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Sphingosine + ATP →Sphingosine 1-Phosphate + ADP 

It has been reported that SO1P does not exert product inhibition on this reaction up to a 

concentration of at least 10 μM (~0.25 mole% in their assay), which is orders of magnitude 

higher than the physiologic concentration of SO1P in RBCs [121]. Therefore, we will not 

include product inhibition in this model.  

SK1 is a water-soluble enzyme that must attach to the membrane surface in order to access 

its substrate, SO. Thus, in addition to depending on the interfacial concentration of its 

substrate, the rate of the reaction also depends on the bulk concentration of membrane 

surface area similar to what has been shown for phospholipase A2 [122]. It has been 

suggested that once it has bound to the membrane, the ATP-binding site of SK1 is blocked 

[123]. Thus, there would be an enforced order to the reaction scheme where ATP must bind 

to SK1 before attachment to the membrane and SK1 must attach to the membrane before 

it can bind SO. Thus, SK1 would effectively follow an ordered ter-ter reaction scheme. 

Further, SK1 can bind to and become activated by phosphatidylserine (PS) [124, 125]. 

Because the reaction can occur without the presence of PS, PS will be considered a non-

essential activator. The mechanistic rate equation encapsulating all the above detail derived 

using the rapid equilibrium assumption is as follows.  

 𝑣3,4

=
𝛽 ∗ 𝑉𝑚𝑎𝑥,3,4

𝑋3𝑋8𝑋9
𝐾𝑚,3,4,3𝐾𝑚,3,4,8𝐾𝑚,3,4,9

+ 𝑉𝑚𝑎𝑥,3,4
𝑋3𝑋8𝑋10

𝐾𝑚,3,4,3𝐾𝑚,3,4,8𝐾𝑚,3,4,10

(1 +
𝑋8

𝐾𝑚,3,4,8
+

𝑋8𝑋9
𝐾𝑚,3,4,8𝐾𝑚,3,4,9

+
𝑋8𝑋10

𝐾𝑚,3,4,8𝐾𝑚,3,4,10
+

𝑋3𝑋8𝑋9
𝐾3,4,3𝐾3,4,8𝐾3,4,9

+
𝑋3𝑋8𝑋10

𝐾3,4,3𝐾3,4,8𝐾3,4,10
)
 

Vmax,3,4 = 10,200 pmol/min/mL [87].  
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Km,3,4,3 = 12,600 pmole/mL [121] 

Km,3,4,8 = 77 μM [121] 

Km,3,4,9 = 0.0042 μM [125] 

Km,3,4,10 = 0.052 μM [125] 

β = 2 [124]  

S1P Lyase 

There is some uncertainty about the presence of S1P lyase in RBCs. An early study did not 

detect any activity from this enzyme in RBCs [70]. A later study, using a more sensitive 

assay, did detect a small amount of activity [90]. Further evidence for the presence of a 

small amount of S1P lyase activity in RBCs comes from the fact that in RBCs stored under 

blood bank conditions for 4 weeks, the SO1P concentration decreases by about 75% while 

the concentration of hexadecenal increases by about 100%. Thus, we included this enzyme 

in our model. Since S1P lyase is an integral membrane protein, the rate of the reaction 

depends only on the interfacial concentration of its substrate. S1P lyase catalyzes the 

following uni-bi reaction.  

SO1P → ethanolamine phosphate +hexadecenal 

We use the following rate equation to describe S1P lyase. 

𝑣4,0 =

𝑉𝑚𝑎𝑥,4,0
𝑋4

𝐾𝑚,4,0,4

1 +
𝑋4

𝐾𝑚,4,0,4
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Vmax,4,0 = 0.0068 pmol/mL/min [90]. Selim et al. reported an activity of 0.0004 

pmol/min/mg membrane protein. We converted this to total protein by assuming that 

membrane protein accounts for 5% of total protein.  

Km,4,0,4 = 51,804 pmol/mL [126]. We used the Km of the synthetic SO1P analogue, NBD-

SO1P. In the assay, Triton X-100 concentration was maintained at 1 mM and the Km was 

estimated to be 14.6 μM or 1.43 mole%.  

S1P Phosphatase 

There is some uncertainty about the presence of S1P phosphatase activity in RBCs. An 

early study did not detect any activity from these enzymes in RBCs [70]. A later study, 

using a more sensitive assay, did detect a small amount of activity [90]. Thus, we included 

this enzyme in our model. S1P phosphatase catalyzes the following uni-bi reaction.  

SO1P → sphingosine + orthophosphate 

We used the following rate equation to describe S1P phosphatase. 

𝑣4,3 =
𝑉𝑚𝑎𝑥,4,3

𝑋4
𝐾𝑚,4,3,4

1 +
𝑋4

𝐾𝑚,4,3,4

 

Vmax,4,3 =0.0198 pmol/mL/min [90]. Selim et al. reported an activity of 0.00117 

pmol/min/mg membrane protein. We converted this to total protein by assuming that 

membrane protein accounts for 5% of total protein.  
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Km,4 = 90,000 [89]. To the best of our knowledge, the Km value of S1P phosphatase for 

SO1P has not been reported. Until more data become available, we will use the value for a 

related enzyme, phosphatidate phosphatase 2B.  

Alkaline Ceramidase 

Some papers have suggested that RBCs possess some level of alkaline ceramidase (ACER) 

activity [85, 86], while other studies contradict this [70, 80]. One of the key differences 

between these studies is the concentration of calcium used in assays. In one study that 

detected alkaline ceramidase activity in RBCs, the calcium concentration used in the assay 

was 1 mM whereas no calcium was added in one study that did not detect alkaline 

ceramidase activity. Calcium is required for ACER 2 activity and significantly activates 

ACER3 [127, 128]. The normal concentration of ionized calcium in resting RBCs is about 

50 nM [129]. Thus, the in situ activities of these enzymes in RBCs are likely to be much 

less than reported in activity assays. Since ACER3 is less dependent on calcium and also 

has a higher activity than ACER2 in RBCs, we included this enzyme in our model. ACER3 

catalyzes the group of uni-bi reactions of the form 

Ceramide → sphingosine + fatty acid 

It has been shown that ACER3 does not catalyze the reverse reaction [128]. ACER3 has 

been shown to only catalyze the hydrolysis of long-chain unsaturated ceramides [130]. The 

only long-chain ceramide that has been quantified in human RBCs is 18:1 ceramide. Thus, 

we will use the following equation described this reaction.  
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𝑣7,3 =
𝑉𝑚𝑎𝑥,7,3

𝑋7
𝐾𝑚,7,3,7

1 +
𝑋4

𝐾𝑚,7,3,7

 

Vmax,7,3 =57.8 pmole/mL/min [85]. Xu et al. reported an activity of alkaline ceramide 

towards 18:1 ceramide of 12 pmole/min/mg membrane protein at pH 9.4 and 1 mM 

calcium. Taking into account the fact that membrane protein only represents 5% of total 

RBC protein, that the activity of alkaline ceramidase at pH 7.2 is about 50% the activity at 

pH 9.4, and that the activity at 50 nM calcium is about 57% of the activity at 1 mM calcium 

(Mao 2001), the final activity estimate is 0.17 pmole/min/mg protein.  

Km,7,3,7 = 104,760 pmol/mL [127]. The Km of ACER3 towards 18:1 ceramide has not been 

reported. Therefore, for the time being, we used the Km of ACER2 towards 18:1 ceramide, 

which is 2.91 mole%.  

Ceramide Synthase 

Ceramide synthase was not included in the model because it has not been detected in RBCs 

[80].  

3.5.2 Extracting Experimental Data from Literature 

All of the data used to calibrate and evaluate model performance was taken from 

previously published literature. However, all the data were originally in graphical form, 

not tabular form. Therefore, the numerical values had to be extracted from the figures. To 

do this, we used the digitize2.m function in MATLAB.  

3.5.3 Parameter Estimation Using Nonlinear Optimization 
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The best fit parameters were estimated through nonlinear optimization. First, a 

search region for each parameter was set between 0.01 times and 100 times the value 

estimated from literature. Next, 100,000 sets of parameters were generated using a latin 

hypercube design using the lhsdesign function in MATLAB so that each parameter guess 

falls within the appropriate bounds. The model was numerically integrated using the 

ode15s function in MATLAB. From here, the objective function was evaluated for each 

parameter set. We used the sum of squared errors as the objective function as follows 

𝑆𝑆𝐸 = ∑ (𝑦𝑖 − 𝑦�̂�)
2

𝑚

𝑖=1
 

Here, m is the number of data points, yi is the average value of data point i, and 𝑦�̂� is the 

model prediction for data point i. The 1% of parameter sets that gave the lowest values 

were then passed to the fmincon function, which uses the interior point method, for 

nonlinear optimization. At the end of optimization, the parameter set that gave the lowest 

SSE value was considered to be the best fit parameter set. Mean squared error was also 

calculated to the best-fit parameter sets by dividing the sum of squared errors by the number 

of data points fit.  

3.5.4 Evaluation of Optimized Parameter Clustering 

In order to determine if the 100 optimized parameter sets for each experiment all cluster in 

the same region of parameter space we performed principal component analysis on the 

optimized parameter sets using the pca function in MATLAB. The parameter scores for 

principal components 1 and 2 were plotted to visualize the parameter clusters.  
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CHAPTER 4. CONCENTRATION CHANGES IN THE 

MEMBRANE SPHINGOLIPIDS OF SICKLE RED BLOOD 

CELLS AND EXTRACELLULAR VESICLES 

4.1 Abstract 

Sickle cell disease is a genetic disease affecting 4.4 million people worldwide and 

100,000 people in the United States. Despite decades of research into this disease, few 

treatment options are available. Thus, a better understanding of fundamental disease 

mechanisms is needed to enable new treatment options. Studies have shown that 

sphingolipids play important roles in red blood cells including promoting production of 

extracellular vesicles. Further, studies focusing on specific parts of the sphingolipid 

metabolic network have identified alterations in sickle cell disease red blood cells. 

However, an evaluation of the entire sphingolipid metabolic network has not been 

conducted in sickle cell red blood cells or extracellular vesicles. In this study we 

investigated whether red blood cell and plasma-derived extracellular vesicles sphingolipid 

concentrations are altered in sickle cell disease. We quantified the concentrations of 89 

sphingolipids in non-sickle and sickle genotype red blood cells and extracellular vesicles 

using liquid chromatography tandem mass spectrometry. We then used statistical 

techniques to infer changes in the underlying enzymes of the metabolic network. We 

demonstrate that the concentrations of many sphingolipids including ceramides, 

dihydroceramides, hexosylceramides, lysosphingomyelins, sphingoid bases, and sphingoid 

base 1-phosphates are significantly elevated in sickle cell disease red blood cells. In 

contrast, there are few alterations in sphingolipid concentrations in extracellular vesicles. 
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The statistical analysis indicates elevations in the activities of multiple enzymes such as 

ceramide kinase. The results of this study suggest that red blood cell sphingolipid 

concentrations are widely altered in sickle cell disease and that these alterations can be 

traced to enzymes which may be useful therapeutic targets.  

4.2 Introduction 

Sickle cell disease (SCD) is a genetic disease affecting 4.4 million people worldwide 

and 100,000 people in the United States. SCD is caused by a mutation in the gene for the 

beta-globin subunit of hemoglobin. Because of this mutation, sickle hemoglobin 

polymerizes in low-oxygen environments which distorts the red blood cell (RBC) 

membrane into its characteristic sickle shape. Sickle hemoglobin is also less stable than 

normal hemoglobin which leads to sickle hemoglobin precipitating onto the RBC 

membrane, forming Heinz bodies [1]. Because of this sickle hemoglobin, RBCs have more 

oxidative damage to lipids and proteins, they express more phosphatidylserine on their 

surface, they release more proinflammatory extracellular vesicles (EVs), and they have a 

dramatically shortened lifespan [131-133]. These pathologic changes in the RBCs lead to 

many symptoms for people with this disease, including chronic inflammation, organ 

damage, anemia, painful vaso-occlusive crises, and a significantly shortened life 

expectancy. Due to the severe reduction in quality of life and the significant healthcare 

costs, continued investigation into disease mechanisms and development of new therapies 

is necessary. 

Current treatment options for SCD are limited. There are two FDA-approved disease-

modifying drugs for SCD: hydroxyurea and L-glutamine. Hydroxyurea works by elevating 
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the concentration of fetal hemoglobin in red blood cells which outcompetes sickle 

hemoglobin and prevents hemoglobin polymerization in RBCs [2]. L-glutamine works in 

part by increasing RBC’s antioxidant defenses. While both of these treatments have some 

efficacy, they do not work in all patients [3]. Other treatment options such as analgesics 

and blood transfusions mainly reduce symptoms. Bone marrow transplant is currently the 

only curative option for SCD although it is often difficult to find a compatible donor. 

Recently, gene editing has been investigated as a curative option for SCD [134]. However, 

it seems unlikely that this option will be available in the developing world, where most 

people affected by the disease live, for some time. Thus, a better understanding of the 

fundamental mechanisms of SCD is needed to enable new treatment options. 

Sphingolipids have been shown to play important roles in RBC biology. Increasing the 

concentration of ceramide in RBCs has been shown to cause increased exposure of 

phosphatidylserine on their surface, increased release of EVs, and clustering of proteins in 

the cell membrane [17]. Increasing sphingosine concentration in red blood cells has been 

shown to cause increased intracellular calcium and increased phosphatidylserine surface 

exposure [5]. This is consistent with its ability to inhibit the plasma membrane calcium 

ATPase [4]. Like ceramide, sphingosine is also capable of forming pores in RBC 

membranes [8]. Sphingosine 1-phosphate has been shown to bind to deoxygenated 

hemoglobin and enhance its affinity for the red blood cell membrane[10]. This alters red 

blood cell energy metabolism. Thus, sphingolipids play many roles in RBC biology and 

they may be a novel target for intervention in SCD. 

The overlap of RBC functions that are regulated by sphingolipids and RBC functions that 

are altered in sickle cell disease suggests that sphingolipids may play a role in SCD 
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pathology. Indeed, a few studies have shown that some aspects of the sphingolipid 

metabolic network are altered in SCD red blood cells. One group has shown that 

sphingosine kinase activity is significantly elevated in SCD RBCs and that this contributes 

to an elevation in sphingosine 1-phosphate concentration in SCD RBCs [72]. Our group 

has shown that acid sphingomyelinase activity is significantly elevated in SCD RBCs and 

plasma [69]. However, these studies have only focused on two points in a large and 

complicated network. Further, to date, a comprehensive evaluation of SCD RBC 

sphingolipids has not been performed. 

In this study, we asked the questions, “what are the concentrations of sphingolipids in 

normal RBCs?”, “are those concentrations altered in SCD RBCs?” and “which metabolic 

reactions are active in normal RBCs and are those connections altered in SCD RBCs?”. To 

answer these questions, we quantified the concentrations of 89 different sphingolipids in 

normal genotype (AA) donors and SCD (SS) donors using liquid chromatography tandem 

mass spectrometry. We then used multivariate statistical techniques to infer the changes in 

sphingolipid-metabolizing enzyme activities between AA and SS RBCs. 

4.3 Results 

4.3.1 Sphingolipid Concentrations are Significantly Elevated in SS RBCs 

We isolated RBCs and plasma-derived EVs from the whole blood of 10 AA genotype and 

10 SS donors.  We then extracted and quantified 89 sphingolipids in the RBCs and EVs by 

liquid chromatography tandem mass spectrometry (Figure 10A). These included 32 

sphingomyelins, 13 hexosylceramides, 16 ceramide 1-phosphates, 13 ceramides, 7 

dihydroceramides, 4 lysosphingomyelins, 2 sphingoid bases and 2 sphingoid base 1-
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phosphates. In cells, these sphingolipids are interconverted by a complex metabolic 

network (Figure 10B).  

 

Figure 10. Sphingolipid Analysis of Human AA and SS RBCs and EVs. A) RBCs and 

EVs were isolated from whole blood. Sphingolipids were then extracted and analyzed by 

LC-MS/MS. B) Sphingolipids are interconverted by enzymes in a complex metabolic 
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network. Some lipids can have different fatty acyl side chains represented by carbon 

number: double bond number. Lipids are given in black, enzymes are given in blue. 

Sphingolipid amounts were scaled by total protein amount to compute absolute 

concentrations. The RBC sphingolipid concentrations are shown in Figure 11. 
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Figure 11. Sphingolipid Concentrations in AA and SS RBCs were Measured by LC-

MS/MS. A) Sphingoid Bases B) Sphingoid Base 1-Phosphates C) Ceramides D) 

Dihydroceramides E) Sphingomyelins F) Lysosphingomyelins G) Ceramide 1-Phosphates 

H) Hexosylceramides. AA samples are represented in blue, SS samples are represented in 

red. Concentrations are in units of pmoles/mg of total protein.  * indicated p<0.05 using 

Welch’s t-test compared to AA.  

Figure 11 shows that the SS RBC samples consistently have higher concentrations of 

ceramides, dihydroceramides, hexosylceramides, lysosphingomyelins, sphingoid bases, 

and sphingoid base 1-phosphates. This confirms that the dysfunction of RBC sphingolipid 

metabolism is not limited to sphingosine 1-phosphate, but is widespread.  

4.3.2 Sphingolipid Concentrations are not Significantly Altered in SS EVs 

We quantified the same 89 sphingolipids in plasma-derived EVs from 6 AA genotype and 

6 SS genotype donors. The absolute concentrations are shown in Figure 12. The figure 

shows that, in contrast to RBCs, there are few changes in the concentrations of 

sphingolipids in plasma-derived EVs. SS EVs have lower concentrations some C1Ps, but 

higher concentrations of some HexCers.  
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Figure 12. Sphingolipid Concentrations in AA and SS EVs were Measured by LC-

MS/MS. A) Sphingoid Bases B) Sphingoid Base 1-Phosphates C) Ceramides D) 

Dihydroceramides E) Sphingomyelins F) Lysosphingomyelins G) Ceramide 1-Phosphates 

H) Hexosylceramides. AA samples are represented in blue, SS samples are represented in 

red. Concentrations are in units of pmoles/mg of total protein.  * indicates p<0.05 using 

Welch’s t-test compared to AA.  

4.3.3 Principal Component Analysis Shows Separation of RBC and EV Samples by 

Genotype 

The previous analysis investigated differences in individual sphingolipids and identified 

those that are significantly different in SS samples. Next, we investigated whether the 

sphingolipid profile of SS samples as a whole are different from that of AA samples. We 

performed principal component analysis using centered and scaled sphingolipid 

concentration data from RBCs and EVs. The scores of each RBC sample in principal 

components 1 and 2 are plotted against each other in figure 13A. Figure 13A shows that 

the RBC samples from the 2 genotypes do separate along both principal components 1 and 

2, supporting the idea that the sphingolipid profiles as a whole are different between the 

two genotypes. Principal components 1 and 2 together capture over 60% of the total 

variation in the data. The scores of each EV sample in principal components 1 and 2 are 

plotted against each other in figure 13B. Figure 13B shows that the EV samples from the 

2 genotypes do separate along principal component 2.  
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Figure 13. Principal Component Analysis was Performed on RBC and EV 

Sphingolipid Concentration Data. A) RBC sphingolipid concentrations were rendered in 

principal component space. Principal component 1 explains about 42% of the variance in 

the data and principal component 2 explains about 19% of the variance in the data. B) EV 

sphingolipid concentrations were represented in principal component space. Principal 

component 1 explains about 74% of the variance in the data and principal component 2 

explains about 13% of data variance. AA samples are shown as blue dots and SS samples 

are shown as red dots. 

4.3.4 The Relationships Between RBC Sphingolipids are Altered in SCD 

Having established that there are significant changes in the concentrations of sphingolipids 

in SS RBCs, we then investigated the causes of these changes. Sphingolipids are connected 

by a complex metabolic network (Figure 10B). However, in SS RBCs it is not known if 

the activities of sphingolipid-metabolizing enzymes are altered. It has previously been 

shown that changes in correlation coefficients between pairs of metabolites can be used to 

identify enzyme activities that may be altered in different cellular states [135]. Thus, we 

performed correlation analysis on each pair of sphingolipids in the RBC samples. The 

results are rendered in heat map form in Figure 14. As Figure 14 shows, the overall pattern 

of correlations between sphingolipids is very different between AA and SS RBCs.  
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Figure 14. Correlation Coefficients were Calculated for Every Pair of Sphingolipids 

in AA and SS RBC Samples Correlation Coefficient were calculated for pairs of 

sphingolipids in A) AA RBCs and B) SS RBCs. Red indicates a correlation coefficient 

greater than 0. Green indicates a correlation coefficient less than 0. Black indicates a 

correlation coefficient close to 0. 

Next, we particularly focused on whether there were changes in the values of the 

correlation coefficient of pairs of sphingolipids between AA and SS RBCs that are 

connected by a metabolic enzyme. It is important to note that sphingolipids with a fatty 

acyl side chain can only be interconverted with other sphingolipids with the same side 

chain. For example, 16:0 ceramide can be converted to 16:0 sphingomyelin, but not 18:1 

sphingomyelin. We rendered the results of this analysis in Figure 15. For pairs of 

sphingolipids connected by sphingosine kinase, such as SO and SO1P, the correlation 

coefficient shift from negative in AA RBCs to positive in SS RBCs, indicating an increase 

in enzyme activity. This is consistent with previously published data [72]. For pairs of 

sphingolipids connected by ceramidase, such as ceramides and SO, the correlation 

coefficients shift from non-statistically significant values in AA RBCs to larger, 

statistically-significant values in SS RBCs indicating an increase in enzyme activity. For 

pairs of sphingolipids connected by sphingomyelinase, the correlation coefficients shift 

from statistically-significant positive values in AA RBCs to non-statistically significant 

values in SS RBCs, indicating lower enzyme activity. For pairs of sphingolipids connected 

by hexosylceramidase, the correlation coefficients shift from positive, statistically-

significant values in AA RBCs to non-statistically significant values in SS RBCs, 

indicating a decrease in enzyme activity. Finally, for pairs of sphingolipids connected by 
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ceramide kinase, the correlation coefficients shift from mostly negative values in AA RBCs 

to positive values in SS RBCs, indicating an increase in enzyme activity.  

 

Figure 15. Correlation Analysis was Performed on RBC Sphingolipid Concentration 

Data. A-G) A representative scatter plot was generated for each group of relationships 

alongside a heat map representation of the correlation coefficients of all relationships for 

the group. A) SO/SO1P relationship B) SA/SA1P relationship, C) Ceramide/SO 

relationships D) Dihydroceramide/SA relationships, E) Sphingomyelin/Ceramide 
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relationships F) Hexosylceramide/Ceramide relationships G) Ceramide/ Ceramide 1-

Phosphate relationships H) A Western Blot was Performed on AA and SS RBCs staining 

for ceramide kinase (green) and β-Actin (Red).  Band intensities were quantified using 

ImageJ. * indicates p<0.05 using Welch’s t-test compared to AA. 

In order to corroborate the results of the correlation analysis, we investigated the expression 

of the enzyme ceramide kinase. The expression of this enzyme has not been reported in 

RBCs. We examined the expression of this enzyme in 3 AA donors and 3 SS donors via 

Western blot. The results are shown in Figure 15H. As Figure 15H shows, there is a 

significantly higher expression of ceramide kinase in SS RBCs compared to AA RBCs. 

This is in agreement with the results of our correlation analysis.  

4.4 Discussion 

4.4.1 Current Study Results Agree with Previous Data  on AA RBCs and Expand 

Knowledge about  SS RBCs  

In this study, we quantified the concentrations of 89 sphingolipids in AA and SS RBC 

samples as well as AA and SS plasma-derived EVs. To our knowledge, this is the most 

comprehensive evaluation of sphingolipid concentrations in human RBCs for AA or SS 

donors. Multiple previous reports have measured sphingolipid concentrations in AA RBCs. 

However, these studies have only measured subsets of sphingolipids at a time such as 

sphingomyelins [23], ceramides [59, 63], glycosphingolipids [59], sphingoid bases [69], 

and sphingoid base 1-phosphates [69, 72]. Further, many of these previous studies did not 

present absolute concentrations of individual sphingolipids, only percentages of total 

sphingolipids measured. This makes absolute comparison between data sets difficult. 

When our AA RBC sphingolipid data are considered as percentages, our data agree with 

these previous studies. For sphingomyelins, hexosylceramides, and ceramides, the 16:0, 
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24:0, and 24:1 fatty acyl chains are dominant with other fatty acyl chains only making 

minor contributions. The results of our current study confirm the presence of a large 

concentration of SO1P noted in previous studies [69, 72] and expand on it by showing a 

similarly high concentration of SA1P. 

To our knowledge, few studies have investigated changes in RBC sphingolipid 

concentrations in human SS RBCs. A few studies have demonstrated that SO1P 

concentration is significantly elevated in SS RBCs, which is confirmed by our study [69, 

72]. A previous study from our group also showed the SO concentration is elevated in SS 

RBCs [69]. One study utilizing flow cytometry and a unique sulfatide-binding protein 

showed a significant increase in the surface expression of the complex glycosphingolipid 

sulfatide in SS RBCs [58]. To our knowledge, this is the only report to identify the presence 

of sulfatide in RBCs, AA or SS. One recent study showed significant elevations in the 

concentrations of ceramides and C1Ps in RBCs in a mouse model for SCD, but did not 

report absolute concentrations [101]. Thus, the current study is the first major expansion 

of our knowledge of how sphingolipid concentrations are altered in human SCD RBCs.  

4.4.2 Current Study Results Expand Knowledge of Plasma EV Sphingolipid Composition 

In this study, we quantified the concentrations of 89 sphingolipids in plasma-derived EVs 

from AA and SS donors. To our knowledge, this is the first sphingolipid characterization 

of plasma EVs in AA or SS individuals. There were few differences in sphingolipid 

concentrations between AA and SS EVs in contrast to the extensive differences in RBCs. 

This may be due to the generation of EVs from specific sites on the RBC membrane that 

are not strongly affected by overall changes in sphingolipid concentrations. For example, 
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sphingolipids have been shown to be heterogeneously distributed in the RBC membrane 

[136]. This study also showed that sphingolipid-enriched domains are preferentially 

present in low-curvature areas in the RBC membrane. Thus, there may be differences in 

the concentrations of sphingolipids in EV-generating areas (high-curvature) and non-EV 

generating areas (low-curvature) or the RBC membrane. It has been shown that individuals 

with SCD have higher numbers of EVs in their plasma from RBCs and other cell types 

[137]. A previous report from our group showed that the increased activity of 

sphingomyelinase in SS RBCs contributes to increased EV production [69]. Thus, it seems 

that although individuals with SCD produce more plasma EVs, the sphingolipid 

composition of those particles is not very different.  

4.4.3 Current Study Results Expand Knowledge of Enzymatice Changes in RBC 

Sphingolipid-Metabolizing Enzymes 

In this study, we performed correlation analysis on the concentrations of sphingolipids that 

are connected by a metabolic enzyme in order to determine changes in the activities of 

those enzymes. Previously, it has been shown that the activity of sphingosine kinase is 

elevated in SS RBCs [69, 87]. Our results, which show a change in correlation coefficient 

from negative in AA RBCs to positive in SS RBCs are consistent with this increase in 

activity. Our regression analysis also indicated an increase in the activities of ceramidase 

and ceramide kinase and a decrease in the activity of hexosylceramidase. To our 

knowledge, the activities or expression levels of these enzymes have not been measured in 

SS RBCs. Thus, to validate our predictions, we measured ceramide kinase activity in AA 

and SS RBCs via Western blot. Our results showed a significantly higher expression of 

ceramide kinase in SS RBCs. To our knowledge, this is the first time the expression of 
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ceramide kinase has ever been reported in RBCs. Overall, the results of our correlation 

analysis are consistent with existing data and indicate that the increased concentrations of 

sphingolipids in SS RBCs are caused by changes in the activities of multiple enzymes in 

the sphingolipid-metabolic pathway.  

4.4.4 The Observed Elevations in Sphingolipid Concentrations May Contribute to Sickle 

Pathology 

Our results showed significant increases in the concentrations of many ceramide species in 

SS RBCs. Previous studies have shown that increasing the concentration of ceramide in 

RBCs, either by adding artificial short-chain 6:0 ceramide or by incubating RBCs with 

bacterial sphingomyelinase causes increased cell surface exposure of phosphatidylserine, 

which is a marker of apoptosis, increased intracellular calcium, cell shrinkage, membrane 

endovesiculation, and EV release [17]. Thus, our observation of higher ceramide 

concentrations is consistent with the observation that sickle RBCs express more cell 

surface phosphatidylserine [132] and that there are higher concentrations of RBC-derived 

EVs in SS plasma [137]. The increased RBC ceramide concentration may also play a role 

in the shortened lifespan of SCD RBCs given that PS exposure is a signal for removal from 

circulation by macrophages and endothelial cells. Thus, the elevated ceramide in SS RBCs 

could be a mechanistic cause for these pathologic changes. We also observed significantly 

elevated concentrations of several dihydroceramides in SCD RBCs. Multiple studies have 

shown that despite the small difference in structure between ceramides and 

dihydroceramides (a single double bond in the sphingoid base backbone), 

dihydroceramides are relatively biologically inert. For example, dihydroceramide is not 

capable of inducing lipid membrane scrambling whereas ceramide is [11]. Thus, it is not 
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clear if the increases in RBC dihydroceramide concentrations have a mechanistic impact 

of SCD pathology. 

We observed significant increases in the concentrations of hexosylceramides in SS 

RBCs.  To our knowledge, it is not known whether hexosylceramides per se play a 

functional role in RBC biology. Rather, it is their downstream metabolic precursors that 

have recognized functions in RBCs. For example, triaosylceramide and tetraosylceramide, 

which are downstream products of glucosylceramide, are blood group antigens that are part 

of the P antigen system. Interestingly, the P antigens act as receptors for parvovirus B19, 

which is a common cause of infections for people with SCD [138]. Further, sulfatide, which 

is a downstream product of galactosylceramide, has been shown to play a role in cell 

adhesion of RBCs to the endothelium [58]. Further, increased sulfatide expression was 

shown to cause increased adhesion of SCD RBCs to endothelial cells.  

We observed increases in the concentrations of sphingoid bases in SCD RBCs. One study 

showed that increasing the concentration of RBC sphingosine by incubating the cells with 

high concentrations of extracellular sphingosine causes the cells to expose surface 

phosphatidylserine, increase intracellular calcium, and shrink in size [5]. This was 

corroborated by another study which showed that incubating RBCs with sphingosine 

increased intracellular calcium and made the RBCs much more fragile to osmotic stress 

[6]. Some of these effects are likely due to the inhibition of RBC plasma membrane calcium 

ATPase which exports calcium from the RBCs [4]. Further, it has been shown that 

sphingosine can form pores in RBC membranes [8] and increase their permeability to small 

ions [7]. Thus, increased RBC sphingosine may contribute to membrane leakiness to small 

ions in SCD. It is not known if sphinganine exhibits similar effects on RBCs. 
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We observed significant increases in sphingoid base 1-phosphates in SCD RBCs. It has 

been shown that incubating RBCs with high concentrations of extracellular SO1P does not 

cause eryptosis, unlike its precursor SO [5]. However, knockout of the SO1P export protein 

MFSD2B, which causes an enormous buildup of SO1P and SA1P in the cells, does cause 

stomatocytosis and hemolysis [9]. Further, it was shown that buildup of SA1P in the RBCs 

is even more potent and inducing hemolysis than buildup of SO1P [9]. It has been shown 

that SO1P can modulate glycolysis by affecting the localization of glycolytic enzymes 

[101]. This is apparently mediated by a direct interaction with deoxygenated hemoglobin. 

Previous research in mice has shown that RBCs contribute at least 50% of plasma SO1P, 

with platelets and endothelial cells also being major contributors [106]. SO1P in the plasma 

is critical for maintaining proper endothelial barrier integrity [102]. Further, SO1P 

regulates the trafficking of many types of immune cells through the cell surface S1P 

receptors [103]. Thus, the elevation in RBC SO1P that we observed in this study is 

consistent with the observed vascular dysfunction and high levels of circulating immune 

cells observed in people with SCD. We previously reported that the increase in RBC SO1P 

occurs concurrently with an increase in plasma SO1P [69]. It is not clear whether the 

increase in SA1P that we observed in this study has any mechanistic impact on SCD 

pathology. 

Altogether, this study has identified widespread dysfunction in the sphingolipid metabolic 

network in SS RBCs. Altered RBCs sphingolipid concentrations can contribute to SCD 

pathology in the RBCs and in the whole body. Thus, the entire sphingolipid metabolic 

network could serve as a novel therapeutic target for SCD treatment. Further research will 

be needed to determine which enzymes will serve as the most potent therapeutic target.  
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4.5 Materials and Methods 

4.5.1 Red Blood Cell and Plasma Isolation 

Whole blood was centrifuged at 200xg for 20 minutes to separate RBCs/white 

blood cells (WBCs) from platelet-rich plasma. The plasma supernatant was centrifuged 

again at 1000xg for 10 minutes to pellet platelets. The platelet-poor plasma supernatant 

was removed and used for further experiments. The RBCs/WBCs from the first 

centrifugation were washed once in 2 volumes of PBS and centrifuged at 700xg for 7 

minutes. The PBS/plasma supernant was then removed. 3 volumes of PBS was added to 

the RBCs/WBCs and the cell suspension was layered onto 2 volumes of Ficoll-Paque 

Premium (GE Healthcare) and centrifuged at 400xg for 45 minutes to separate the RBCs 

and WBCs. After centrifugation, the buffy coat was carefully removed. RBCs were washed 

once with 2 volumes of PBS and centrifuged at 700xg for 7 minutes.  

4.5.2 Sphingolipid Extraction  

Sphingolipids were extracted from RBCs using a modification of the procedure described 

elsewhere [139]. Sphingoid base-type sphingolipids (SO, SA, SO1P, SA1P, LSM) and 

complex sphingolipids (ceramides, dihydroceramides, sphingomyelins, hexosylceramides, 

ceramide 1-phosphates) were extracted separately due to their different physical properties. 

The total sample volume was brought up to 400 μL by adding deionized water. Two 150 

μL aliquots from each RBC sample were taken for sphingoid base analysis for complex 

sphingolipid analysis. An aliquot was also kept for total protein quantification using a BCA 

assay. 1.5 mL of a 2:1 mixture of methanol:methylene chloride was added to each 

sphingoid base sample and 1.5 mL of a 2:1 mixture of methanol:chloroform was added to 
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each complex sphingolipid sample. Next, 50 pmoles of internal standard mixture (Avanti 

Polar Lipids) was added to each sample. Samples were incubated overnight at 48°C to 

extract lipids. Next, 150 μL of 1 M KOH in methanol was added to each sample and the 

cell were incubated at 37°C for 2 hours. This is to cleave the ester bonds of contaminating 

glycerophospholipids. After incubating, 5 μL of glacial acetic acid was added to all samples 

to neutralize the KOH. pH was checked using pH strips. 1 mL of chloroform and 2 mLs of 

deionized water were added to all complex sphingolipid samples to induce phase 

separation. Sphingoid base and complex sphingolipid samples were centrifuged at 1400 xg 

for 8 minutes to pellet cell debris. For sphingoid base samples, the supernatant was 

transferred to a new glass tube. For complex sphingolipid samples, the bottom chloroform 

phase was transferred to new glass tubes. For sphingoid base samples, 0.5 mL of the 2:1 

methanol:methylene chloride mixture was added to the cell debris in the original glass 

tubes. For complex sphingolipid samples, 1 mL of chloroform was added to the cell debris 

in the original glass tubes. The original tubes were all centrifuged at 1400 xg for 8 minutes. 

For sphingoid base samples the second supernatant was added to the first supernatant. For 

complex sphingolipid samples, the second bottom phase was added to the first bottom 

phase. Remaining cell debris was discarded. Organic solvents were removed by vacuum 

drying overnight in a Savant SpeedVac.  

4.5.3 Preparation of Samples for LC-MS/MS Analysis 

Dried sphingoid base samples were resuspended in 300 μL of a 3:2 mixture of mobile phase 

A1:mobile phase B1 solvent. Mobile phase A1 consisted of 58:41:1 methanol:water:formic 

acid and 5 mM ammonium formate. Mobile phase B1 consisted of 99:1 methanol:formic 

acid and 5 mM ammonium formate. Dried complex sphingolipid samples were 
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resuspended in 300 uL of mobile phase A2. Mobile phase A2  consisted of 97:21:1 

acetonitrile:methanol:formic acid and 5 mM ammonium formate. Resuspended samples 

were centrifuged at 18,000 xg for 10 minutes to remove any remaining cell debris. The top 

200 μL was transferred to an autosampler tube.  

4.5.4 Sphingolipid LC-MS/MS Analysis 

Sphingoid base samples were separated using a 2.1(i.d.) x 150 mm Phenomenex C18 

column and a binary solvent system at a flow rate of 300 μL/min. Prior to injection, the 

column was equilibrated with 100% Mobile phase A1. After injection, the solvent 

composition was held a 100% A1 for 5 minutes followed by a linear gradient to 100% B1 

over 15 minutes. The solvent composition was held at 100% B1 for 5 min, was dropped 

back to 100% A over 1 minute, and was then held at 100% A for 4 minutes. Complex 

sphingolipid samples were separated using a 2.1(i.d) x 150 mm Supelcosil NH2 column 

and a binary solvent system at a flow rate of 300 μL/min.  Prior to injection, the column 

was equilibrated with 100% mobile phase A2. After injection, the solvent composition was 

held at 100% A for 5 minutes followed by a linear gradient for 1 minute. The solvent 

composition was held at 100% B for 14 minutes, was dropped back to 100% A over 1 

minute, and was held at 100% A for 9 minutes. Since glucosylceramide and 

galactosylceramide are not separated by this chromatography method, their concentrations 

are reported together as hexosylceramide.  

4.5.5 Multivariable Data Analysis 

Heat map generation, principal component analysis, and correlation analysis were all 

performed in MATLAB R2018a (Mathworks).  
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4.5.6 Image Analysis 

Western blot bands were quantified using ImageJ (NIH). Peak area of the ceramide kinase 

band was scaled by the β-actin band to give a relative intensity.  

4.5.7 Statistics 

Pairwise comparisons between AA and SS samples were performed using Welch’s t-test 

using GraphPad Prism 6. No correction was made for multiple comparisons.  
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CHAPTER 5. EFFECTS OF PLASMA ENVIRONMENT AND 

RETICULOCYTES ON SICKLE RED BLOOD CELL 

SPHINGOLIPIDS 

5.1 Abstract 

Sickle cell disease is one of the most common hematologic disease in the world, affecting 

4.4 million people around the world and over 100,000 people in the United States. Despite 

decades of research into the disease, we do not fully understand the molecular mechanisms 

leading to disease symptoms. We previously showed that sickle cell disease red blood cells 

have higher concentrations of many sphingolipids compared to normal red blood cells. 

These changes in concentrations could contribute significantly to disease pathology. 

However, the causes of the changes in sphingolipid concentrations are not clear. We 

proposed two hypotheses. First, we hypothesized that changes in plasma sphingolipid 

concentrations could change red blood cell sphingolipid concentrations by exchange of 

sphingolipids. Second, we hypothesized that sphingolipid concentrations in reticulocytes 

may be different than in mature erythrocytes and that the increased prevalence of 

reticulocytes in the sickle red blood cell population is the cause of the previously observed 

concentration differences. To test the first hypothesis, we collected the plasma and red 

blood cells from normal and sickle cell donors and measured their sphingolipid 

concentrations. We also, incubated red blood cells with plasma of the opposite genotype 

and measured the resulting sphingolipid concentrations. We employed two different 

methods to produce reticulocyte-enriched and reticulocyte-depleted populations of sickle 

red blood cells and then we measured the concentrations of sphingolipids in these cell 
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populations. Our results showed that the sphingolipid concentrations in sickle plasma are 

not significantly different from normal plasma. Our results further showed that sickle 

reticulocytes have elevated concentrations of multiple sphingomyelins compared to sickle 

erythrocytes. Thus, the alterations in red blood cell are not due to changes in plasma, but 

are partly explained by the increased sphingolipid concentration of reticulocytes.  

5.2 Introduction 

Sickle cell disease (SCD) is a genetic disease affecting more 4.4 million people worldwide 

and over 100,000 people in the United States. In a previous study, we showed that the 

sphingolipid concentrations in sickle cell disease genotype (SS) red blood cells (RBCs) 

were significantly different from those in normal genotype (AA) RBCs. Specifically, we 

reported significant increases in hexosylceramides, ceramides, dihydroceramides, 

lysosphingomyelins, sphingoid bases, and sphingoid base 1-phosphates in SS RBCs. 

However, the cause of the observed changes in RBC sphingolipid concentrations was not 

clear.  

One hypothesis is that changes in plasma (PLA) sphingolipid concentrations could result 

in changes in RBC sphingolipid concentrations through exchange of the sphingolipids. It 

has been shown that the plasma contains a high concentration of sphingolipids [140, 141]. 

Due to their low solubility in water, sphingolipids are bound to lipoproteins and albumin 

with different sphingolipids being concentrated in different carrier proteins [140]. Since 

lipoproteins and albumin are synthesized in the liver, it is possible that plasma sphingolipid 

concentrations are regulated by the liver. One notable exception to this is sphingosine 1-

phosphate (SO1P). Studies have shown that RBCs contribute at about 50% of plasma SO1P 
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with endothelial cells being the other major contributor [106]. It has been shown that 

sphingoid bases rapidly transfer from albumin to RBCs in vitro [70, 88]. Further, it has 

been shown that sphingoid base 1-phosphates transfer from RBCs to albumin and to HDL 

[73]. The exchange of complex sphingolipids is less well studied, but a few studies suggest 

that sphingomyelin can exchange between RBCs and lipoproteins over a long timescale 

[142]. A previous study from our group showed that there are significant increases in the 

concentrations of sphingosine and sphingosine 1-phosphate in SCD plasma [69]. Recently, 

it was reported that the concentrations of ceramides and sphingomyelins are significantly 

lowered in serum from SCD individuals [100]. Thus, it is possible that differences in PLA 

sphignolipids could result in differences in RBC sphingolipids.  

A second hypothesis is that reticulocytes (RET) have different sphingolipid  concentrations 

than mature erythrocytes and the increased prevalence of RETs in the sickle RBC 

population alters the average properties of the sickle RBC population. In a normal genotype 

individual, RETs make up 1-2% of the total RBC population. In an individual with SCD, 

RETs make up 10-20% of the total RBC population. Thus, properties of the reticulocytes 

will significantly affect the average properties of the RBC population in SCD though not 

in the normal genotype case. It is known that reticulocytes still retain residual mitochondria 

and some fragments of the endoplasmic reticulum and Golgi apparatus [143]. Thus, it is 

possible that enzymes associated with those organelles are still present in reticulocytes. 

Indeed, it has been shown that fatty acid beta-oxidation, a metabolic pathways that take 

place in the mitochondria, is absent in mature erythrocytes, but are active in reticulocytes 

[144]. Several other aspects of lipid metabolism appear to be different in reticulocytes 

compared to mature erythrocytes. Erythrocytes lack the enzyme acetyl-CoA carboxylase 
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which prevents de novo fatty acid biosynthesis whereas the full metabolic pathway is active 

in reticulocytes [145]. Further, reticulocytes seem to be able to synthesize 

glycerophospholipids de novo whereas erythrocytes cannot [146]. Thus, there are several 

known metabolic differences between reticulocytes and erythrocytes. However, little is 

known about sphingolipid concentrations in reticulocytes.  

In this study we asked whether sphingolipid concentrations in SS PLA are different from 

those in AA PLA. Further, we asked whether changing the PLA environment of RBCs 

could alter their sphingolipid concentrations. Finally, we asked whether the sphingolipid 

concentrations in SS RETs are different from those in SS erythrocytes. To answer these 

questions, we isolated RBCs and PLA from AA and SS individuals and measured their 

sphingolipid concentrations. We also incubated RBCs with PLA of the opposite genotype 

and measured the resulting RBC sphingolipid concentrations. Further, we used 

discontinuous gradient density centrifugation and magnetic activated cell sorting (MACS) 

to isolate sickle reticulocyte-enriched RBC populations of different purities and then 

quantified their sphingolipid concentrations.  

5.3 Results 

5.3.1 Sphingolipid Concentrations in SS RBCs are Elevated Compared to Those in AA 

RBCs 

We extracted and quantified the concentrations of 18 sphingolipids in RBC samples from 

17 AA and 25 SS donors by LC-MS/MS. These included 7 sphingomyelins, 7 ceramides, 

2 sphingoid bases, and 2 sphingoid base 1-phosphates. Our blood fractionation procedure 
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is shown diagrammatically in Figure 16. The results of the quantification of RBC 

sphingolipids are shown in Figure 17.  

 

Figure 16. Sphingolipid Analysis of Human AA and SS RBCs and PLA.  Human RBCs 

and PLA were isolated from whole blood. Sphingolipids were then extracted and analyzed 

by LC-MS/MS. 
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Figure 17. Sphingolipid Concentrations in AA and SS RBCs were Quantified by LC-

MS/MS. A) Sphingoid bases B) Sphingoid Base 1-Phosphates C) Ceramides D) 

Sphingomyelins. Results from AA samples are shown in blue,  results from SS samples are 

shown in red. Concentrations are given in units of  pmoles/mg protein. * indicates p<0.05 

compared to AA using a t-test with correction for multiple comparisons using the Holm-

Sidak method.  

As Figure 17 shows, the concentrations of 4 of the sphingomyelins, all 8 of the ceramides, 

both of the sphingoid bases, and both of the sphingoid base 1-phosphates were significantly 

elevated in SS RBCs.  

5.3.2 Only Sphingosine and Sphingosine 1-Phosphate Concentrations are Elevated in SS 
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We also extracted and quantified the concentrations of the same 18 sphingolipids in PLA 

samples from 16 AA and 19 SS donors. The results of the quantification of PLA 

sphingolipids are shown in Figure 18. As Figure 18 shows, only the concentrations of SO 

and SO1P are significantly elevated in SS PLA.  

 

Figure 18. Sphingolipid Concentrations in AA and SS PLA were Quantified by LC-

MS/MS. A) Sphingoid bases B) Sphingoid Base 1-Phosphates  C) Ceramides D) 

Sphingomyelins. Results from AA samples are shown in blue,  results from SS samples are 

shown in red. Concentrations are given in units of pmoles/mg protein. * indicates p<0.05 

compared to AA using a t-test with correction for  multiple comparisons using the Holm-

Sidak method.  
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  The previous analysis examined each sphingolipid individually and identified 

those that are significantly different between AA and SS samples. Next, we evaluated 

whether the sphingolipid profile of SS samples as a whole is different from that of AA 

samples. To do this, we performed principal component analysis on the RBC and PLA 

samples. The scores of the RBC samples in principal components 1 and 2 are plotted 

against each other in Figure 19A. Together, principal components 1 and 2 capture over 

70% of the variation in the data. As Figure 19A shows, AA and SS RBC samples separate 

from one another along principal components 1 and 2. The scores of the PLA samples in 

principal component 1 and 2 are plotted against each other in Figure 19B. Together, 

principal components 1 and 2 capture over 50% of the variation in the data. As Figure 18B 

shows, AA and SS PLA samples also separate from one another, though only along 

principal component 2.  

 

Figure 19. Principal Component Analysis was Performed on RBC and PLA 

Sphingolipid Concentration Data. A) RBC sphingolipid concentrations were represented 

in principal component space. B) PLA sphingolipid concentrations were represented in  

A B
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principal component space. AA samples are shown as blue dots and SS samples are  shown 

as red dots.  

5.3.4 Plasma Environment Does Not Significantly Affect RBC Sphingolipid 

Concentrations 

In order to investigate whether changes in the plasma environment in individuals with SCD 

can explain the changes observed sphingolipid concentrations in SCD RBCs, we incubated 

AA and SS RBCs in AA and SS PLA for 24 hours and subsequently measured the 

sphingolipid concentrations in the RBCs and PLA. The resulting concentration data were 

analyzed by 2-way ANOVA with multiple comparison tests. The RBC sphingolipid 

concentrations are shown in Figure 20.  
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Figure 20. AA and SS RBCs were Incubated in PLA from AA and SS Donors and the 

RBC Sphingolipid Concentrations were Measured. RBC concentrations of A) 

sphingoid bases B) sphingoid base 1-phosphates C) ceramides and D) sphingomyelins 

were measured after incubating RBCs with plasma of different genotypes. AA RBCs 

incubated with AA PLA is indicated by solid blue bars, AA RBCs incubated with SS PLA 

is indicated by blue bars with red stripes, SS RBCs incubated with AA PLA is indicated 

by red bars with blue stripes, and SS RBCs incubated with SS PLA is indicated by solid 

red bars. * indicates p<0.05 in a 2-way ANOVA with post hoc multiple comparison t-tests.  

As Figure 20A shows, there were no significant effects of either RBC genotype or PLA 

genotype on RBC sphingoid base concentrations. In contrast, Figure 20B shows that the 

RBC genotype, but not the PLA genotype did have a significant effect on RBC sphingoid 
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base 1-phosphate concentrations. As Figure 20C shows, the RBC genotype, but not the 

PLA genotype had a significant effect on RBC 16:0, 18:0, 22:0, 24:0, and 24:1 ceramide 

concentrations. Finally, as Figure 20D shows, neither the RBC genotype nor the PLA 

genotype had an effect on RBC sphingomyelin concentrations. Thus, the genotype of the 

PLA did not affect the concentrations of any RBC sphingolipid concentrations. The 

sphingolipid concentrations in the PLA after the incubation are shown in Figure 21. As 

Figure 21 shows, the PLA genotype did not have a significant effect on any of the PLA 

sphingolipid concentrations. The RBC genotype had a significant effect on PLA SO1P 

concentration only.  
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Figure 21. AA and SS RBCs were Incubated in PLA from AA and SS Donors and the 

PLA Sphingolipid Concentrations were Measured. PLA concentrations of A) sphingoid 

bases B) sphingoid base 1-phosphates C) ceramides and D) sphingomyelins were measured 

after incubating RBCs with plasma of different genotypes. AA RBCs incubated with AA 

PLA is indicated by solid blue bars, AA RBCs incubated with SS PLA is indicated by blue 

bars with red stripes, SS RBCs incubated with AA PLA is indicated by red bars with blue 

stripes, and SS RBCs incubated with SS PLA is indicated by solid red bars. * indicates 

p<0.05 in a 2-way ANOVA with post hoc multiple comparison t-tests.  
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Next, we investigated whether differences in sphingolipid concentrations in the SS RETs 

could explain the elevations in SS RBC sphingolipid concentrations. To do this, we first 

fractionated SS RBCs using discontinuous density gradient centrifugation on Optiprep. 

After fractionation, an aliquot was taken from each layer to analyze reticulocyte percentage 

by flow cytometry and an aliquot was taken for sphingolipid quantification by LC-MS/MS. 

Our procedure is shown diagrammatically in Figure 22A. Next, we performed linear 

regression analysis on the SS RBC sphingolipid concentration data and the reticulocyte % 

values from flow cytometry. The results of this analysis are shown in Fig 23. SO was the 

only sphingolipid that had a statistically significant positive slope (p<0.0491).  

 

Figure 22. Sphingolipid Analysis of Human SS Reticulocytes. A) Packed SS RBCs were 

fractionated using Optiprep discontinuous density gradient centrifugation. The reticulocyte 

percentage in each layer was determined by flow cytometry. Sphingolipids were also 

extracted and analyzed by LC-MS/MS. B) Packed SS RBCs were fractionated using 
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MACS into reticulocyte-enriched and reticulocyte-depleted RBC populations. The 

reticulocyte percentage in each populations was determined by flow cytometry. 

Sphingolipids were also extracted and analyzed by LC-MS/MS. 

 

Figure 23. Linear Regression Analysis on RBC Sphingolipid Concentrations and 

Reticulocyte % was Performed for Optiprep-Separated SS RBCs. Linear regression 

between the concentrations of A) sphingoid bases B) sphingoid base 1-phosphates C) 

ceramides and D) sphingomyelins and the reticulocyte% in SS RBC populations was 

performed. p-values were calculated for the null hypothesis that the regression slope is 0. 
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Solid black lines indicate the best-fit line. Dotted black curves indicate the 95% confidence 

interval of the best-fit line.  

One limitation of the Optiprep-based SS RBC fractionation is that we could only reach 

about 30% RET purity. Thus, we used an alternative approach for isolating RETs of a 

higher purity. We used the magnetic activated cell sorting (MACS) technique using Anti-

CD71-coated magnetic beads to separate CD71+SS RETs from the rest of the SS RBC 

population. After separation, we quantified the percentage of reticulocytes in each fraction 

using flow cytometry and the sphingolipid concentrations using LC-MS/MS. Our 

procedure is shown diagrammatically in Figure 22B. Next, we performed linear regression 

analysis on the SS RBC sphingolipid concentration data and the reticulocyte % values from 

flow cytometry. The results of this analysis are shown in Fig 24.  
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Figure 24. Linear Regression Analysis of RBC Sphingolipid Concentrations and 

Reticulocyte % was Performed for MACS-Separated SS RBCs. Linear regression 

between the concentrations of A) sphingoid bases B) sphingoid base 1-phosphates C) 

ceramides and D) sphingomyelins and the reticulocyte% in SS RBC populations was 

performed. p-values were calculated for the null hypothesis that the regression slope is 0. 
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Solid black lines indicate the best-fit line. Dotted black curves indicate the 95% confidence 

interval of the best-fit line.  

As Figure 24A shows, and in agreement with the Optiprep-based SS RBC fractionation, 

the regression slope for SO was statistically significant, indicating that SS RETs have a 

concentration of SO that SS erythrocytes. Figure 24B shows that there were no statistically-

significant relationships between sphingoid base 1-phosphate concentrations and 

reticulocyte %. Figure 24C shows that only 24:1 Cer had a statistically-significant negative 

regression slope, indicating SS RETs have lower concentrations of this ceramide species 

than SS erythrocytes. Finally, Figure 24D shows that 20:0, 22:0 and 24:0 SM all had 

statistically-significant positive regression slopes and 18:1 SM had a statistically-

significant negative regression slope.  

5.4 Discussion 

In this study, we measured the concentrations of 18 sphingolipids in human RBC samples 

from AA and SS donors. We showed that the concentrations of sphingoid bases, sphingoid 

base 1-phosphates, ceramides, and sphingomyelins are elevated in SS RBCs. This is largely 

in agreement with previous studies from our group and others [69, 72]. However, this is 

the first study we are aware of that showed an elevation in sphingomyelin concentrations 

in SS RBCs. Considering that our current study used more donor samples than our previous 

study, we likely had more statistical power to detect differences in sphingomyelin 

concentrations.  

We also measured the concentrations of 18 sphingolipids in human PLA samples from AA 

and SS donors. We showed that, in contrast to RBCs, there were few significant differences 

in sphingolipid concentrations in SS PLA. SO and SO1P were the only sphingolipids with 
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significantly elevated concentrations in SS PLA. The elevations in the concentrations of 

SO and SO1P in SS PLA are consistent with a previous report from our group [69]. A 

recent report showed that serum from SS donors has lower concentrations of many 

ceramides and sphingomyelins [100]. It has been shown that the serum and plasma 

concentrations of SO1P differ significantly due to release of SO1P from activated platelets 

[147]. Thus, it is possible that the differences between our current plasma sphingolipid 

results and the previous serum sphingolipid report are similarly rooted in platelet 

activation.  

We incubated AA and SS RBCs with AA and SS PLA and subsequently measured the 

sphingolipid concentrations in the RBCs and PLA. We showed that while the PLA 

genotype did not significantly affect the concentrations of any of the RBC sphingolipids, 

the RBC genotype did significantly affect the concentrations of many RBC sphingolipids. 

This suggests that the differences in RBC sphingolipid concentrations observed in SCD are 

not mediated by the PLA. We also showed that the genotype of the RBC does have an 

impact on the PLA concentration of SO1P. It has been shown that RBCs actively produce 

and SO1P by the action of sphingosine kinase 1 [87] and export SO1P by the action of 

MFSD2B [9]. Thus, the effect of RBC genotype on PLA SO1P may reflect elevated 

activity of one or both of these proteins.  

We used two different methods to fractionate SS RBCs into populations with varying 

enrichments of RETs and measured the concentrations of sphingolipids in the different 

populations. To the best of our knowledge, our study is the most comprehensive study of 

the sphingolipid content of human reticulocytes to date. Previous studies of the 

sphingolipid composition of reticulocytes have been deficient in that 1) they have mostly 
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been in animals and not humans, 2) they have only measured sphingomyelin, and 3) they 

have not measured the acyl chain subspecies of sphingomyelin. A study using rat 

erythrocytes showed that the sphingomyelin content as a percent of total phospholipid 

content decreases during in vitro differentiation from reticulocyte to erythrocyte [148]. 

This is consistent with our observation the RET+ SS RBCs have higher sphingomyelin 

concentrations than RET- SS RBCs.  

Little is known about sphingolipid metabolism in reticulocytes. One study showed no 

difference in sphingosine kinase 1 activity between mature erythrocytes and reticulocyte 

in transgenic mouse model of sickle cell disease [72]. We could not find any other 

references to sphingolipid metabolism in reticulocytes in the literature. Multiple studies 

have shown that reticulocytes possess parts of lipid metabolism that mature erythrocytes 

do not. These include de novo biosynthesis of fatty acid and glycerophospholipids. Thus, 

it is possible that reticulocytes also contain additional sphingolipid metabolic activity.  

Not much is known about functional roles of sphingolipids in reticulocytes beyond the 

recognized roles they play in RBCs generally. A recent report demonstrated that SO1P 

regulates the expression of the mitophagy genes Pink1 and Bnip3l in mouse late erythroid 

cells [149]. They further showed that exogenously adding SO1P could promote erythroid 

differentiation. These results may provide an explanation for the elevated SO1P that we 

have observed in SS RBCs relative to AA RBCs as SS erythroid progenitors are undergoing 

erythropoiesis at an accelerated rate. Another study in mice showed that intravenous 

administration of sphingomyelin resulted in an increase in iron utilization by the bone 

marrow and an increase in the number of circulating reticulocytes [150].  
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5.5 Materials and Methods 

5.5.1 Isolation of Red Blood Cells and Plasma from Whole Blood 

Whole blood was centrifuged at 200xg for 20 minutes to separate RBCs/WBCs 

from platelet-rich plasma. The plasma supernatant was centrifuged again at 1000xg for 10 

minutes to pellet platelets. The platelet-poor plasma supernatant was removed and used for 

further experiments. The RBCs/WBCs from the first centrifugation were washed once in 2 

volumes of PBS and centrifuged at 700xg for 7 minutes. The PBS/plasma supernant was 

then removed. 3 volumes of PBS was added to the RBCs/WBCs and the cell suspension 

was layered onto 2 volumes of Ficoll-Paque Premium (GE Healthcare) and centrifuged at 

400xg for 45 minutes to separate the RBCs and WBCs. After centrifugation, the buffy coat 

was carefully removed. RBCs were washed once with 2 volumes of PBS and centrifuged 

at 700xg for 7 minutes.  

5.5.2 Fractionation of SS RBCs using discontinuous density gradient centrifugation 

Optiprep density gradient medium (Sigma Aldrich) was mixed with PBS to make solutions 

with densities of 1.08, 1.09, and 1.10 mg/mL. These solutions were gently stacked on top 

of each other, with the 1.10 mg/mL layer at the bottom. A 1:1 mixture of SS RBCs and 

PBS was gently place on top of the Optiprep layers. The tubes containing the RBCs and 

Optiprep were centrifuged to fractionate the RBCs between the different layers. After 

centrifugation, the layers were separated for further analysis.  

5.5.3 Fractionation of SS RBCs using MACS 
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100 μL of SS RBCs were mixed with 800 μL of 0.2% BSA in PBS and 200 μL of Anti-

CD71-coated magnetic beads (Miltenyi Biotec). The cell suspensions were mixed on a 

rotor at 4°C for 1 hour to allow the magnetic beads to bind to the reticulocytes. LS MACS 

columns (Miltenyi Biotec) were attached to a QuaddroMACS Separator stand (Miltenyi 

Biotec). The columns were wetted by passing 3 mL of BSA/PBS through the columns. The 

volumes of the cell suspensions were brought up to 3 mL with BSA/PBS and the entire cell 

suspension was layered onto the MACS column. The populations of RBCs that did not 

bind to the columns were collected in 15 mL tubes below the columns. The columns were 

washed with 3 more mL of BSA/PBS to completely wash out unbound cells. New 15 mL 

tubes were placed under the columns and the columns were removed from the stand. The 

column was washed twice with 3 mL of BSA/PBS to wash out the magnetic-bead bound 

RBCs. The resulting populations of RBCs will be referred to as RET+RBCs for the 

reticulocyte-enriched RBC population, and RET-RBCs for the reticulocyte-depleted RBC 

population.  

5.5.4 Quantification of reticulocyte percent by flow cytometry 

RBC populations were stained with Thiazole Orange as described previously [151]. 

Thiazole Orange is a nucleic acid stain. Since reticulocytes still have residual mRNA, but 

mature erythrocytes do not, Thiazole Orange can be used to distinguish the two cell types. 

The percentage of positively stained cells in each sample was determined using a BD 

LSRFortessa flow cytometer.  

5.5.5 Sphingolipid Extraction for Steady-State Sphingolipidomic Analysis 
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Sphingolipids were extracted from RBCs populations using a modification of the procedure 

described elsewhere [139]. Samples were allowed to thaw on ice for 15 minutes. The total 

sample volume was brought up to 350 μL with deionized water. Sphingoid base-type 

sphingolipids (SO, SA, SO1P, SA1P, LSM) and complex sphingolipids (ceramides, 

sphingomyelins, hexosylceramides) were extracted separately due to their different 

physical properties. Two 150 μL aliquots from each RBC sample were taken for sphingoid 

base analysis and for complex sphingolipid analysis. An aliquot was also kept on ice for 

total protein quantification using a BCA assay. 1.5 mL of a 2:1 mixture of 

methanol:methylene chloride was added to each sphingoid base sample and 1.5 mL of a 

2:1 mixture of methanol:chloroform was added to each complex sphingolipid sample. 

Next, 50 pmoles of internal standard mixture (Avanti Polar Lipids) was added to each 

sample. Samples were incubated overnight at 48°C to extract lipids. Next, 150 μL of 1 M 

KOH in methanol was added to each sample and the cell were incubated at 37°C for 2 

hours. This is to cleave the ester bonds of contaminating glycerophospholipids. After 

incubating, 4 μL of glacial acetic acid was added to all samples to neutralize the pH. pH 

was checked using pH strips. 1 mL of chloroform and 2 mLs of deionized water were added 

to all complex sphingolipid samples to induce phase separation. Sphingoid base and 

complex sphingolipid samples were centrifuged at 1400 xg for 8 minutes to pellet cell 

debris. For sphingoid base samples, the supernatant was transferred to a new glass tube. 

For complex sphingolipid samples, the bottom chloroform phase was transferred to new 

glass tubes. For sphingoid base samples, 0.5 mL of the 2:1 methanol:methylene chloride 

mixture was added to the cell debris in the original glass tubes. For complex sphingolipid 

samples, 1 mL of chloroform was added to the cell debris in the original glass tubes. The 
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original tubes were all centrifuged at 1400 xg for 8 minutes. For sphingoid base samples 

the second supernatant was added to the first supernatant. For complex sphingolipid 

samples, the second bottom phase was added to the first bottom phase. Remaining cell 

debris was discarded. Organic solvents in the sample tubes were removed by vacuum 

drying overnight in a Savant SpeedVac.  

5.5.6 Total protein quantification using BCA assay 

Total protein concentrations in RBC and media samples were quantified using a BCA assay 

(Thermo Scientific) according to manufacturer’s instructions. Protein absorbance was 

measured using a SpectraMax spectrophotometer (Molecular Devices). 

5.5.7 Preparation of samples for LC-MS/MS Analysis 

Dried sphingoid base samples were resuspended in 300 μL of a 3:2 mixture of mobile phase 

A1:mobile phase B1 solvent. Mobile phase A1 solvent consisted of 58:41:1 

methanol:water:formic acid and 5 mM ammonium formate. Mobile phase B1 solvent 

consisted of 99:1 methanol:formic acid and 5 mM ammonium formate. Dried complex 

sphingolipid samples were resuspended in 300 μL of mobile phase A2 solvent. Mobile 

phase A2 solvent consisted of 97:2:1 acetonitrile:methanol:formic acid and 5 mM 

ammonium formate. Resuspended samples were centrifuged at 16,000 xg for 10 minutes 

to remove any remaining cell debris. The top 200 μL from each was then transferred to an 

autosampler tube for analysis.  

5.5.8 Sphingolipid LC-MS/MS Analysis 



 102 

Sphingoid base samples were separated using a 2.1(i.d.) x 150 mm Phenomenex C18 

column and a binary solvent system at a flow rate of 300 μL/min. Prior to injection, the 

column was equilibrated with 100% Mobile phase A1. After injection, the solvent 

composition was held a 100% A1 for 5 minutes followed by a linear gradient to 100% B1 

over 15 minutes. The solvent composition was held at 100% B1 for 5 min, was dropped 

back to 100% A over 1 minute, and was then held at 100% A for 4 minutes. Complex 

sphingolipid samples were separated using a 2.1(i.d) x 150 mm Supelcosil NH2 column 

and a binary solvent system at a flow rate of 300 μL/min.  Prior to injection, the column 

was equilibrated with 100% mobile phase A2. After injection, the solvent composition was 

held at 100% A for 5 minutes followed by a linear gradient for 1 minute. The solvent 

composition was held at 100% B for 14 minutes, was dropped back to 100% A over 1 

minute, and was held at 100% A for 9 minutes. Since glucosylceramide and 

galactosylceramide are not separated by this chromatography method, their concentrations 

are reported together as hexosylceramide.  

5.5.9 Statistical Analysis 

For comparisons of sphingolipid concentrations between two groups, statistical 

significance was determined using unpaired t-tests correction for multiple comparisons 

using the Holm-Sidak method. For determination of the effects of RBC and PLA gentotpe 

on RBC and PLA sphingolipid concentrations, 2-way ANOVA was performed with post-

hoc t-tests corrected for multiple comparisons with the Holm-Sidak method.  
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CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 

6.1 Overall summary 

This work represents a significant contribution to multiple fields of study including 

hematology, lipid biochemistry, and mathematical biology. Specifically, we have 

expanded our understanding of normal red blood cell biology, sickle cell pathology, and 

the roles that sphingolipids play in both cases. Further, we have constructed the first 

computational model of RBC SO1P metabolism. This model can be a powerful tool in 

contexts where RBC SO1P plays an important role including hypoxia stress [10], sickle 

cell disease [87] , and immunomodulation [103]. 

In aim 1, we compiled, for the first time, all of the biochemical and biophysical 

information currently available in the literature on human red blood cell SO1P metabolism 

into a computational model. The construction of the model in and of itself is useful as it 

highlights what is known and what is not known about RBC sphingolipid metabolism. 

Despite many gaps in our knowledge, we constructed a model that reasonably represents 

RBC SO1P metabolism in vitro. We then fit our model to multiple dynamic data sets 

allowing for fine-tuning of enzyme activities and biophysical transport processes. We 

showed that RBC and PLA SO1P concentrations are highly sensitive to changes in 

hematocrit and less sensitive to changes in the activity of sphingosine kinase 1 and the 

RBC concentration of ceramide.  

In aim 2, we expanded our scope and examined differences in the entire sphingolipid 

metabolic between normal and sickle RBCs. We used LC-MS/MS to measure the 
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concentrations of 89 sphingolipids in both RBC populations making this the most 

comprehensive sphingolipidomic analysis conducted to date in normal or sickle RBCs. We 

identified widespread eleveations in the concentrations of sphingolipids in sickle red 

RBCs. Further using correlation analysis, we showed evidence of alterations of many of 

the enzymes that interconvert ceramides with other classes of sphingolipids in sickle RBCs.  

In aim 3, we focused on identifying the cause of the changes in sphingolipid 

concentrations in sickle RBCs. We measured the concentrations of sphingolipids in normal 

and sickle plasma. We showed that there are few differences in sickle plasma compared to 

normal plasma. We then used two different technqiues to isolate sickle RBC populations 

of varying degree of enrichment in reticulocytes. We then measured the concentrations of 

sphingolipids in these different RBC populations. We showed that reticulocyte-enriched 

populations consistently have elevated concentrations of sphingomyelins as well as the 

sphingoid base sphingosine.  

6.2 Expansion of time-series experiments and modeling to complex sphingolipids 

The scope of our modeling efforts was limited to the immediate metabolism of SO1P 

because many of the biochemical details of complex sphingolipid metabolism are not 

known in RBCs. Generating time series data by perturbing complex sphingolipid 

metabolism directly may give us enough information to overcome this limitation.  

The time-series experiments performed as part of this thesis were limited to the addition of 

SO to RBCs in vitro. This was partly for practical reasons. First, SO can bind to albumin 

which makes it easy to disperse SO into aqueous cell media at high concentrations. Second, 

SO has a modest solubility in water. Studies have shown that the rate of transfer of a lipid 
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from one carrier to another is directly proportional to the water solubility of the lipid. Thus, 

it is relatively easy to deliver SO to RBCs on a short time scale. Expanding our analysis to 

the complex sphingolipids requires overcoming some practical challenges. First, long-

chain complex sphingolipids do not bind to albumin. Thus, an alternative carrier must be 

used to get complex sphingolipids into cell media. Second, long-chain complex 

sphingolipids have little to no water solubility. Thus, even if a carrier is used, it will take 

long periods of time to achieve any significant delivery to the RBCs.  

As a first step towards expanding our time-series methodology to complex sphingolipids, 

short-chain complex sphingolipids can be used. Short chain complex sphingolipids with 

C2 or C6 (though apparently not C12) fatty acyl side chains are still able to bind to albumin. 

Further, they still exhibit a modest solubility in water which enables relatively fast transfer 

to cells. The downside of using these short-chain sphingolipids is that they are not naturally 

occuring. Thus, the rates at which enzymes process these short-chain sphingolipids may be 

very different from those for natural long-chain sphingolipids.  

6.3 Use of stable isotope tracers in dynamic time-series analysis 

In the dynamic time-series studies performed for this thesis, RBCs were exposed to 

relatively large extracellular concentrations of SO to induce dynamic behavior in the 

metabolic pathway. This was done in order to bring the concentrations of sphingolipids in 

very small samples above the limit of detection of the mass spectrometer and to create 

clearly observable dynamics. However, it is possible that exposure to such large 

concentrations of SO may have been stressful for the cells. While it is possible that using 
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smaller concentrations of SO could alleviate these concerns, it is also possible that using 

stable isotopes is a better solution.  

6.4 Extension of model to the in vivo context 

The modeling studies presented in this thesis were strictly focused on the behavior of RBC 

SO1P metabolism in vitro. However, enough detail is known about SO1P relase from 

RBCs and metabolism in plasma that the model could easily be extended to the in vivo 

context. Further details could be incorporated such as differences in the binding and 

metabolism of SO1P bound to albumin or HDL in plasma. Further, models of the other 

major contributors to plasma SO1P, endothelial cells and platelets, could be built and 

integrated with the red blood cell model to give a moreintegrated picture of SO1P 

metabolism in blood.  
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