Title
On Fano fourfolds with nef bundle $\Lambda^2 \mathcal{T}_X$ and $\rho(X) \geq 2$

Author(s)
Yasutake, Kazunori

Citation
北海道大学数学講究録 代数幾何学シンポジウム 記録

Issue Date
2013-02

URL
http://hdl.handle.net/2433/214967

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
On Fano fourfolds with nef bundle Λ^2T_X and $\rho(X) \geq 2$

Yasutake Kazunori (Kyushu University)

Abstract

In this poster, I explain about the structure of Fano fourfolds whose the second exterior power of tangent bundle Λ^2T_X is nef and Picard number $\rho(X)$ is at least 2.

Definition of nef vector bundle

X: smooth proj. var. / \mathbb{C}, E: vector bundle on X,

$\pi: \mathbb{P}(E) \to X$: projectivization, ξ: tautol. div.

$(\emptyset) \in$ nef (ample) \iff ξ: nef (ample)

Known results

One of a generalization of Mori’s Theorem (Hartshorne conjecture), K. Cho and E. Sato gave a characterization of smooth quadric as a variety with ample bundle Λ^2T_X.

Ample case. Cho-Sato [CS]

X sm. proj. variety with ample vect. bundle Λ^2T_X

$\Rightarrow X \cong \mathbb{P}^n$ or \mathbb{F}_4 : smooth quadric hypersurface

As a further generalization of this theorem, F. Campana and T. Peternell classified threefolds with nef bundle Λ^2T_X.

Nef case in 3 dim. Campana-Peternell [CP1]

X sm. proj. threefold with nef vect. bundle Λ^2T_X

\Rightarrow Either T_X: nef, the blowing up of \mathbb{P}^3 at a point.

or del Pezzo threefold of degree ≥ 2 with $\rho(X) = 1$

Problem

Classify smooth projective fourfolds with nef vector bundle Λ^2T_X.

Fourfolds with nef tangent bundle are already classified by F. Campana-T. Peternell, N. Mok and J.-M. Hwang. We review the classification in Fano case.

Fano fourfolds with T_X nef, [CP2], [M] [H]

X: smooth Fano fourfold with nef tangent bundle T_X.

Then X is one of the following:

- \mathbb{P}^1, \mathbb{Q}_4, $\mathbb{P}^3 \times \mathbb{P}^1$, $\mathbb{Q}_5 \times \mathbb{P}^1$, $\mathbb{P}^2 \times \mathbb{P}^2$;
- $\mathbb{P}^4 \times \mathbb{P}^3 \times \mathbb{P}^2$, $\mathbb{P}^2(\mathbb{P}^2 \times \mathbb{P}^2) \times \mathbb{P}^1$, $\mathbb{P}^4 \times \mathbb{P}^4 \times \mathbb{P}^1$, $\mathbb{P}^4(\mathbb{N})$ with null correlation bundle \mathbb{N}.

General results

In the case where $\kappa(X) = 0$, we can classify in all dimension.

Kodaira dimension $\kappa(X) = 0$. Theorem 1

X: smooth projective variety of $\kappa(X) = 0$.

Then the following conditions are equivalent:

1. Λ^rT_X is nef for $1 \leq r \leq n - 1$;
2. T_X is nef;
3. There is an étale covering $\nu: A \to X$ from Abelian variety.

Proof. Nefness of Λ^rT_X implies that X has the flat tangent bundle. The theorem follows from the result of Yau.

Next, we consider the case where X is Fano and obtained by the blowing up of a smooth variety along a smooth subvariety. This proposition plays an important role in my study.

Blowing up. Proposition 2

X: blowing up of smooth variety Y of dimension n along smooth subvariety Z. If X is Fano and Λ^2T_X is nef

$\Rightarrow X$ is the blowing up of \mathbb{P}^n at a point.

Main theorem

As a first step of classification of the case where $\kappa(X) = -\infty$, we consider Fano fourfolds with $\rho(X) \geq 2$.

Fano fourfolds with $\rho(X) \geq 2$. Theorem 3

X: smooth Fano fourfold with $\rho(X) \geq 2$. If Λ^2T_X is nef and T_X is not nef

$\Rightarrow X$ is the blowing up of \mathbb{P}^4 at a point.

Proof. Using results about extremal contractions on smooth fourfolds.

The proof of above theorem yields the following result.

Corollary

X: smooth Fano fourfold with $\rho(X) \geq 2$. If Λ^2T_X is nef on every extremal rational curve in X

$\Rightarrow \Lambda^2T_X$ is nef.

References

[CP2] F. Campana and T. Peternell, 4-folds with numerically effective tangent bundles and second Betti numbers greater than one, Manuscripta Math. 79 (1993), 225–238.

[Y] K. Yasutake, Fano fourfolds with Picard number greater than two whose the second exterior power of tangent bundles are numerically effective, preprint.