<table>
<thead>
<tr>
<th>Title</th>
<th>On Classification of Q-Fano 3-Folds of Gorenstein Index 2 and Fano Index 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takagi, Hiromichi</td>
</tr>
<tr>
<td>Citation</td>
<td>代数幾何学シンポジウム記録 代数幾何学シンポジウム記録</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/214710</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
ON CLASSIFICATION OF Q-FANO 3-FOLDS OF GORENSTEIN INDEX 2 AND FANO INDEX $\frac{1}{2}$

HIROMICHI TAKAGI

Notation and Conventions.

\sim linear equivalence
\equiv numerical equivalence

ODP ordinary double point, i.e., singularity analytically isomorphic to \{xy + $z^2 + u^2 = 0 \subset \mathbb{C}^4$\}

QODP singularity analytically isomorphic to \{xy+$z^2 + u^2 = 0 \subset \mathbb{C}^4/\mathbb{Z}_2(1,1,1,0)$\}

\mathbb{F}_n Hirzebruch surface of degree n

$\mathbb{F}_{n,0}$ surface which is obtained by the contraction of the negative section of \mathbb{F}_n

\mathbb{Q}_3 smooth 3-dimensional quadric.

B_i (1 $\leq i \leq 5$) Q-factorial Gorenstein terminal Fano 3-fold of Fano index 2, and with Picard number 1 and $(-K)^3 = 8i$, where K is the canonical divisor

A_{2i} (1 $\leq i \leq 11$ and $i \neq 10$) Q-factorial Gorenstein terminal Fano 3-fold of Fano index 1, and with Picard number 1 and $(-K)^3 = 2i$

contraction of (m,n)-type extremal contraction whose exceptional locus has dimension m and the image of the exceptional locus has dimension n

0. INTRODUCTION

In this article, we will work over \mathbb{C}, the complex number field.

Definition 0.0 (Q-Fano variety). Let X be a normal projective variety. We say that X is a Q-Fano variety (resp. weak Q-Fano variety) if X has only terminal singularities and $-K_X$ is ample (resp. nef and big).

Let $I(X) := \min\{I|IK_X$ is a Cartier divisor$\}$ and we call $I(X)$ the Gorenstein index of X.

Write $I(X)(-K_X) \equiv \tau(X)H(X)$, where $H(X)$ is a primitive Cartier divisor and $\tau(X) \in \mathbb{N}$. (Note that $H(X)$ is unique since PicX is torsion free.) Then we call $\frac{\tau(X)}{I(X)}$ the Fano index of X and denote it by $F(X)$.

Remark 0.1.

(1) We can allow that a Q-Fano variety or a weak Q-Fano variety has worse singularities than terminal. When we have to treat such a variety in this paper, we indicate singularities which we allow, e.g., 'a Q-Fano 3-fold with only canonical singularities';

(2) if X is Gorenstein in Definition 0.0, we say that X is a Fano variety (resp. a weak Fano variety).

Key words and phrases. Q-Fano 3-fold, Extremal contraction.
HIROMICHI TAKAGI

For the classification theory of varieties, a Q-factorial Q-Fano variety with Picard number 1 is important because it is an output of the minimal model program. Here we mention the known result about the classification of Q-Fano 3-folds:

1. G. Fane started the classification of smooth Fano 3-folds and it was completed by V. A. Iskovskih [I1] ~ [I4], V. V. Shokurov [Sh1], [Sh2], T. Fujita [Fu1] ~ [Fu3], S. Mori and S. Mukai [MM1] ~ [MM3];
2. S. Mukai [Mu] classified indecomposable Gorenstein Fano 3-folds with canonical singularities by using vector bundles;
3. T. Sano [San1] and independently F. Campana and H. Flenner [CF] classified non Gorenstein Fano 3-folds of Fano indices > 1;
4. T. Sano [San2] classified non Gorenstein Fano 3-folds of Fano indices 1 and with only cyclic quotient terminal singularities. Recently T. Minagawa [Mi1] proved that non Gorenstein Q-Fano 3-folds with Fano indices 1 can be deformed to one with only cyclic quotient terminal singularities;
5. A. R. Fletcher [Fl] gave the classification of Q-Fano 3-folds which are weighted complete intersections of codimension 1 or 2. Recently S. Altinok [Al] (see also [RM2]) obtained a list of Q-Fano 3-folds which are subvarieties in a weighted projective space of codimension 3 or 4.

On the other hand K. Takeuchi [T1] simplified and amplified V. A. Iskovskih's method of classification by using the theory of the extremal ray. In particular he reproved the Shokurov's theorem [Sh2], the existence of lines on a smooth Fano 3-fold of Fano index 1 and with Picard number 1 by simple numerical calculations.

We formulate a slight generalization of Takeuchi's construction for a Q-factorial Q-Fano 3-fold X with $\rho(X) = 1$ and give a classification of a Q-factorial Q-Fano 3-fold with the following properties:

Main Assumption 0.2.

1. $\rho(X) = 1$;
2. $I(X) = 2$;
3. $F(X) = \frac{1}{2}$;
4. $h^0(-K_X) \geq 4$;
5. there exists an index 2 point P such that

\[(X, P) \simeq (xy + z^2 + u^a = 0)/\mathbb{Z}_2(1, 1, 1, 0), 0)\]

for some $a \in \mathbb{N}$.

Takeuchi's construction 0.3. Here we explain a slight generalization of Takeuchi's construction. Let X be a Q-factorial Q-Fano 3-fold with $\rho(X) = 1.$ Suppose that we are given a birational morphism $f : Y \to X$ with the following properties:

1. Y is a weak Q-Fano 3-fold;
2. f is an extremal divisorial contraction such that f-exceptional locus E is a prime Q-Cartier divisor.

Then we obtain the following diagram:

\[Y_0 := Y \xrightarrow{g_0} Y_1 \xrightarrow{g_1} \ldots \xrightarrow{g_{k-1}} Y_k \]

\[X \xrightarrow{f} Y \xrightarrow{f'} X' \]

9
where

1. $Y_0 \to Y_1$ is a flop or a flip and $Y_i \to Y_{i+1}$ is a flip for $i \geq 1$;
2. f' is a crepant divisorial contraction (in this case, $i = 0$) or an extremal contraction which is not isomorphic in codimension 1.

We use the following notation:

$Y' := Y_k$;

$E_i :=$ the strict transform of E on Y_i;

$E :=$ the strict transform of E on Y';

$e := E^3 - E_1^3$ if $Y_0 \to Y_1$ is a flop or $:= 0$ otherwise;

$d_i := (-K_{Y_i})^3 - (-K_{Y_{i+1}})^3$ (resp. $a_i := \frac{E \cdot l_i}{(-K_{Y_i})^3}$) if $Y_i \to Y_{i+1}$ is a flip, where l_i is a flipping curve, or $:= 0$ (resp. $:= 0$) otherwise;

z and u is defined as follows:

If f' is birational, then let E' be the exceptional divisor of f' and set $E' \equiv z(-K_{Y'}) - uE$ or if f' is not birational, then let L be the pull back of an ample generator of $Pic X'$ and set $L \equiv z(-K_{Y'}) - uE$.

We note the following:

1.

\[(-K_{Y'})^2 E = (-K_Y)^2 E - \sum a_i d_i; \]

\[(-K_{Y'}) E^2 = (-K_Y) E^2 - \sum a_i^2 d_i; \]

\[E^3 = E^3 - e - \sum a_i^3 d_i; \]

2. On the other hand the value or the relation of the value (expressed with z and u) of $(-K_{Y'})^3$, $(-K_{Y'})^2 E$, $(-K_{Y'}) E^2$ and E^3 are restricted by the properties of f'.

By these (1) and (2), we obtain equations of Diophantine type.

Under Main Assumption 0.2, Construction 0.3 works for a suitable choice of f and we can solve the equations as noted above.

Main Theorem. Let X be as in Main Assumption 0.2. Let $f : Y \to X$ be the weighted blow up at P with weight $\frac{1}{2}(1, 1, 1, 2)$. Then Y is a weak Q-Fano 3-fold.

Consider the diagram as in 0.3. Let $h := h^\ell (-K_X)$, $N := aw(X)$ and $n := \sum aw(Y_i, P_{ij})$ (the summation is taken over the index 2 points on flipping curves), where $aw(X)$ is the number of $\frac{1}{2}(1, 1, 1)$-singularities which we obtain by deforming non Gorenstein points of X locally and $aw(Y_i, P_{ij})$ is defined similarly. Then we can solve the equations above and obtain a geometric classification of X as below (in the table means that we don't know the existence of an example):
HIROMICHI TAKAGI

<table>
<thead>
<tr>
<th>$(-K_X)^3$</th>
<th>N</th>
<th>e</th>
<th>n</th>
<th>z</th>
<th>$(-K_Y\cdot C)$</th>
<th>f', X'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{3}{2}$</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>/</td>
<td>$(2,0)_4$, $(-K_X)^3 = \frac{3}{2}$, $I(X') = 2$</td>
</tr>
<tr>
<td>$\frac{5}{2}$</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>1</td>
<td>/</td>
<td>crep. div., $(-K_X)^3 = 2$, $I(X') = 1$</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>/</td>
<td>$(2,0)_{18}$, A_4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$(2,0)_1$, A_6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>$(2,1)_4$, A_8</td>
</tr>
<tr>
<td>$\frac{9}{2}$</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>/</td>
<td>$(2,0){14}, A{10}$</td>
</tr>
<tr>
<td>$\frac{9}{2}$</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>$(2,1)1$, $A{10}$</td>
</tr>
<tr>
<td>$\frac{9}{2}$</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>/</td>
<td>$(2,0){16}, A{16}$</td>
</tr>
<tr>
<td>?$\frac{9}{2}$</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>/</td>
<td>$(3,1), \deg F = 6$</td>
</tr>
<tr>
<td>?5</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>$(2,1), A_{12}$</td>
</tr>
</tbody>
</table>

$z = u$ if f' is not a crepant divisorial contraction.

$u = 2$ if f' is a crepant divisorial contraction.

$F :=$ a general fiber of f' if f' is (3,1)-type.

See Appendix for $(2,0)_4$.

$g(C) = 0$ in case f' is of type E_1 and every singularity of Y is a $\frac{1}{2}(1,1,1)$—singularity.

<table>
<thead>
<tr>
<th>$(-K_X)^3$</th>
<th>N</th>
<th>e</th>
<th>n</th>
<th>z</th>
<th>deg Δ</th>
<th>deg F</th>
<th>f', X'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{3}{2}$</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>/</td>
<td>3</td>
<td>$(3,1)$</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>/</td>
<td>4</td>
<td>$(3,1)$</td>
</tr>
<tr>
<td>?$\frac{11}{2}$</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>/</td>
<td>5</td>
<td>$(3,1)$</td>
</tr>
<tr>
<td>?$\frac{11}{2}$</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>/</td>
<td>$(3,2)2$, $\mathbb{P}{2,0}$</td>
</tr>
<tr>
<td>?6</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>/</td>
<td>$(3,2)2$, $\mathbb{P}{2,0}$</td>
</tr>
<tr>
<td>?6</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>/</td>
<td>6</td>
<td>$(3,1)$</td>
</tr>
<tr>
<td>?$\frac{13}{2}$</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>/</td>
<td>$(3,2)2$, $\mathbb{P}{2,0}$</td>
</tr>
</tbody>
</table>

$z = u$.

$\Delta :=$ the discriminant divisor of f' if f' is (3,2)-type.

$F :=$ a general fiber of f' if f' is (3,1)-type.

<table>
<thead>
<tr>
<th>$(-K_X)^3$</th>
<th>N</th>
<th>e</th>
<th>n</th>
<th>z</th>
<th>deg Δ</th>
<th>$(-K_Y\cdot C)$</th>
<th>f', X'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{13}{2}$</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>/</td>
<td>$(3,2), \mathbb{P}^2$</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>/</td>
<td>35</td>
<td>$(2,1), [5]$</td>
</tr>
<tr>
<td>?7</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>/</td>
<td>$(3,2), \mathbb{P}^2$</td>
</tr>
<tr>
<td>$\frac{15}{2}$</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>/</td>
<td>9</td>
<td>$(2,1), [2], I(X') = 2$</td>
</tr>
<tr>
<td>$\frac{15}{2}$</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>/</td>
<td>30</td>
<td>$(2,1), [5]$</td>
</tr>
<tr>
<td>?$\frac{15}{2}$</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>/</td>
<td>$(3,2), \mathbb{P}^2$</td>
</tr>
<tr>
<td>?$\frac{15}{2}$</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>/</td>
<td>$(3,2), \mathbb{P}^2$</td>
</tr>
<tr>
<td>?$\frac{15}{2}$</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>/</td>
<td>$(3,2), \mathbb{P}^2$</td>
</tr>
</tbody>
</table>
Q-FANO 3-FOLDS

Type [i] means the Q-Fano 3-fold of type [i] which was classified by T. Sano in [San 2].

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
(-K_X)^3 & \frac{19}{2} & N & e & n & z & (-K_Y . C) & f', X' \\
\hline
& 1 & 6 & 0 & 3 & 36 & (2, 1), P^3 \\
& 2 & 6 & 0 & 2 & 18 & (2, 1), Q_3 \\
& 2 & 5 & 1 & 3 & 32 & (2, 1), P^3 \\
& 2 & 5 & 1 & 2 & 15 & (2, 1), Q_3 \\
\hline
\end{array}
\]

Type [i] means the Q-Fano 3-fold of type [i] which was classified by T. Sano in [San 2].

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
(-K_X)^3 & \frac{1}{2} & N & e & n & z & (-K_Y . C) & f', X' \\
\hline
& 1 & 6 & 0 & 3 & 36 & (2, 1), P^3 \\
& 2 & 6 & 0 & 2 & 18 & (2, 1), Q_3 \\
& 2 & 5 & 1 & 3 & 32 & (2, 1), P^3 \\
& 2 & 5 & 1 & 2 & 15 & (2, 1), Q_3 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
(-K_X)^3 & \frac{1}{2} & N & e & n & z & (-K_Y . C) & f', X' \\
\hline
& 1 & 6 & 0 & 3 & 36 & (2, 1), P^3 \\
& 2 & 6 & 0 & 2 & 18 & (2, 1), Q_3 \\
& 2 & 5 & 1 & 3 & 32 & (2, 1), P^3 \\
& 2 & 5 & 1 & 2 & 15 & (2, 1), Q_3 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
(-K_X)^3 & \frac{1}{2} & N & e & n & z & (-K_Y . C) & f', X' \\
\hline
& 1 & 6 & 0 & 3 & 36 & (2, 1), P^3 \\
& 2 & 6 & 0 & 2 & 18 & (2, 1), Q_3 \\
& 2 & 5 & 1 & 3 & 32 & (2, 1), P^3 \\
& 2 & 5 & 1 & 2 & 15 & (2, 1), Q_3 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
(-K_X)^3 & \frac{1}{2} & N & e & n & z & (-K_Y . C) & f', X' \\
\hline
& 1 & 6 & 0 & 3 & 36 & (2, 1), P^3 \\
& 2 & 6 & 0 & 2 & 18 & (2, 1), Q_3 \\
& 2 & 5 & 1 & 3 & 32 & (2, 1), P^3 \\
& 2 & 5 & 1 & 2 & 15 & (2, 1), Q_3 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
(-K_X)^3 & \frac{1}{2} & N & e & n & z & (-K_Y . C) & f', X' \\
\hline
& 1 & 6 & 0 & 3 & 36 & (2, 1), P^3 \\
& 2 & 6 & 0 & 2 & 18 & (2, 1), Q_3 \\
& 2 & 5 & 1 & 3 & 32 & (2, 1), P^3 \\
& 2 & 5 & 1 & 2 & 15 & (2, 1), Q_3 \\
\hline
\end{array}
\]

In particular we have \((-K_X)^3 \leq 15\) and \(h^0(-K_X) \leq 10\).

Based on this result, we can derive the following properties for \(X\) as in the main theorem:

Theorem A. if any index 2 point satisfies the assumption (5) of 0.2, then \(\mid -K_X \mid \) has a member with only canonical singularities.

So the general elephant conjecture by M. Reid is affirmative for such an \(X\).
Theorem B. Let X be a \mathbb{Q}-factorial \mathbb{Q}-Fano 3-fold with $(1)\sim(4)$ of 0.2. Let $N := \text{aw}(X)$. Then if $N > 1$ (resp. $N = 1$), X can be transformed to a \mathbb{Q}-factorial \mathbb{Q}-Fano 3-fold \tilde{Z}' with $(1)\sim(4)$ of 0.2 and with only QODP's or $\frac{1}{2}(1,1,1)$-singularities as its singularities and $h^0(-K_{\tilde{Z}'}) = h$ and $\text{aw}(\tilde{Z}') = N - 1$ (resp. a smooth Fano 3-fold \tilde{Z}' with $\rho(\tilde{Z}') = 1$, $F(\tilde{Z}') = 1$ and $h^0(-K_{\tilde{Z}'}) = h$) as follows:

\[\begin{array}{c}
\tilde{Y} \\
X \xrightarrow{\text{def}} \tilde{X} \xleftarrow{\tilde{f}} \tilde{Z} \xrightarrow{\text{def}} \tilde{Z}',
\end{array} \]

where $* \xrightarrow{\text{def}} **$ means that ** is a small deformation of *;

\tilde{X} is a \mathbb{Q}-Fano 3-fold as in 0.2 and with only ODP's, QODP's or $\frac{1}{2}(1,1,1)$-singularities as its singularities;

$\tilde{f} : \tilde{Y} \to \tilde{X}$ is chosen as f in the main theorem;

$\tilde{g} : \tilde{Y} \to \tilde{Z}$ be the anti-canonical model.

This is an analogue to the Reid’s fantasy about Calabi-Yau 3-folds [RM1].

Theorem C. If any index 2 point is a $\frac{1}{2}(1,1,1)$-singularity, X can be embedded into a weighted projective space $\mathbb{P}(h,2N)$, where $h := h^0(-K_X)$ and N is the number of $\frac{1}{2}(1,1,1)$-singularities on X.

We hope that this fact can be used for the classification of Mukai’s type (see [Mu]).

1. Examples

We consider the case that $h^0(-K_X) = 4$ and $N = 4$. By the table of the main theorem, there are two possibilities of X in this case. We assume that every singularity of Y is a $\frac{1}{2}(1,1,1)$-singularity. Then one of the following holds:

[1]. f' is an extremal divisorial contraction which contracts a divisor E' to a curve C and $| - K_Y - E'| \neq \phi$. X' is a $(2,2,2)$-complete intersection in \mathbb{P}^6 and satisfies the following properties:

(1) X' is factorial;

(2) C is a smooth conic;

(3) X' has 3 singularities $P_0 \sim P_2$ on C and P_3 is an ODP or the singularity analytically isomorphic to the origin of $\{xy + z^2 + w^3 = 0\} \subset \mathbb{C}^4$. Outside P_i's, X' is smooth.

[2]. f' is blowing up at a smooth point $Q := f'(E')$ and $| - K_Y - E'| \neq \phi$. X' is smooth, isomorphic to A_{10} and there exist exactly three lines through the point Q.

We will construct examples for these cases by the following three steps:

Step 1. We construct X' satisfying the properties as stated as in [1] or [2];

Step 2. We construct f' satisfying the properties as stated as in [1] or [2];

Step 3. We construct $f : Y \to X$ as in the main theorem from Y'.

[1].

Step 1 for [1]. We construct X' with only ODP's.
Claim 1. Let V (resp. X') be a $(2,2)$-complete intersection in \mathbb{P}^6 (resp. a quadric section of V) with the following properties:

1) V (resp. X') contains a smooth conic C;

2) V (resp. X') has three ODP's $P_0 \sim P_2$ on C and outside P_i's, V (resp. X') is smooth.

Then X' is factorial.

Proof. We claim that V contains the plane P spanned by C. Let σ be the pencil which consists of quadrics in \mathbb{P}^6 containing V. Since P_i is an ODP on V, there is a quadric in σ which is singular at P_i. If there is a quadric in σ which is singular at all P_i's, then it is singular on P and hence V is singular along C, a contradiction. So σ is generated by two quadrics which are singular at some P_i. But such quadrics contains P and hence V contains P.

Let $\nu : \tilde{V} \to V$ be the composition of the blowing ups at $P_0 \sim P_2$ and F_i the exceptional divisor over P_i. Let \tilde{X}' be the strict transform of X' on \tilde{V} and H the total transform of a hyperplane section of V. Then $\tilde{X}' \sim 2H - F_0 - F_1 - F_2$. Note that $|H - F_i - F_j|$ is free outside the strict transform l_{ij} of the line through P_i and P_j and $|H - F_k|$ is free (note that l_{ij} is contained in V since $l_{ij} \subset P$). By this, we can easily see that $|\tilde{X}'|$ is free and \tilde{X}' is numerically trivial only for l_{ij}'s $((i,j) = (0,1), (1,2), (2,0))$.

Let ϕ be the morphism defined by $|\tilde{X}'|$. Then ϕ-exceptional curves are l_{ij}'s. We will prove that $\text{Leff}(\tilde{V}, \tilde{X}')$ holds and \tilde{X}' meets every effective divisor on \tilde{V}. By [H, p.165, Proposition 1.1] and the argument of [H, p.172, the proof of Theorem 1.5], it suffices to prove that $\text{cd}(\tilde{V} - \tilde{X}') < 3$, i.e., for any coherent sheaf F on $\tilde{V} - \tilde{X}'$, $H^i(\tilde{V} - \tilde{X}', F) = 0$ for all $i \geq 3$. Let $\bar{V} := \phi(\tilde{V})$ and $\bar{X}' := \phi(\tilde{X}')$. Consider the Leray spectral sequence

$$E^{p,q}_2 = H^p(\tilde{V} - \tilde{X}', R^q\phi_* F) \Rightarrow E^{p+q} = H^{p+q}(\bar{V} - \bar{X}', F),$$

where $\phi' := \phi|_{\tilde{V} - \tilde{X}'}$. Since $\bar{V} - \bar{X}'$ is affine and the dimension of every fiber of ϕ is 1, we have $E^{p,q}_2 = 0$ for $p \geq 1$ or $q \geq 2$ whence $E^{p+q} = 0$ for $p + q \geq 2$. So the assertion follows.

Furthermore since \tilde{X}' is nef and big, $H^i(\tilde{V}, \mathcal{O}(-n\tilde{X}')) = 0$ for $n \geq 1$ and $i = 1, 2$ by KKV vanishing theorem. Hence by the Grothendieck-Lefschetz theorem [G, p.135, 3.18] (or [H, p.178, Theorem 3.1]), we have $\text{Pic}\tilde{X}' \simeq \text{Pic}\tilde{V} \simeq \mathbb{Z}^4$. So $\rho(\tilde{X}'/X') = 3$ which imply that X' is factorial. \qed

We will give a pair (V, X') satisfying the condition of Claim 1. Let C be a smooth conic in \mathbb{P}^6 and $P_0 \sim P_2$ three points on C. We can choose a coordinate of \mathbb{P}^6 such that $C = \{x_0x_1 + x_1x_2 + x_2x_0 = x_3 = x_4 = x_5 = x_6 = 0\}$ and $P_i = \{x_j = 0 \text{ for } j \neq i\}$.

Claim 2. Let X' be a $(2,2,2)$-complete intersection in \mathbb{P}^6 satisfying the following conditions:

1) X' is factorial;

2) X' contains a smooth conic C;

3) X' has three ODP's $P_0 \sim P_2$ on C and outside P_i's, X' is smooth.

Then X' is the intersection of three quadrics $Q_1 \sim Q_3$ of the following forms by permuting P_i's if necessary:
HIROMICHI TAKAGI

\[Q_1 := \{m_0x_0 + m_1x_1 + q_1 = 0\}; \]
\[Q_2 := \{pm_1x_1 + m_2x_2 + q_2 = 0\}; \]
\[Q_3 := \{x_0x_1 + x_1x_2 + x_2x_0 + \sum_{i=3}^{6} l_i x_i = 0\}, \]

where \(p \in \mathbb{C} \), \(m_i \) (resp. \(q_i \)) is a linear form (resp. a quadratic form) of \(x_3 \sim x_6 \) and \(l_i \) is a linear form of \(x_0 \sim x_6 \).

Conversely if \(X' = Q_1 \cap Q_2 \cap Q_3 \), where \(Q_i \) is of the form as above and \(m_i, q_i \)
and \(l_i \) are suitably general, then \(X' \) satisfies (1) \sim (3).

Proof. Let \(\gamma \) be the net which consists of quadrics containing \(X' \). \(\gamma \) contains a member \(Q_1 \) which is singular at \(P_2 \). Then \(Q_1 \) is of the form as above. If \(m_1 = m_2 = 0 \), then \(Q_1 \) is singular on the plane \(P \) spanned by \(C \) and hence \(X' \) is singular along \(C \), a contradiction. Hence \(m_1 \neq 0 \) or \(m_2 \neq 0 \). By permuting \(P_1 \) and \(P_2 \) if necessary, we may assume that \(m_1 \neq 0 \). \(\gamma \) contains a member \(Q_2 \) which is singular at \(P_0 \). \(Q_2 \) is of the form as

\[\{m_1' x_1 + m_2 x_2 + q_2 = 0\}, \]

where \(m_1' \) and \(m_2 \) (resp. \(q_2 \)) are linear forms (resp. a quadratic form) of \(x_3 \sim x_6 \).

\(\gamma \) also contains a member \(Q' \) which is singular at \(P_1 \). If \(Q_1, Q_2 \) and \(Q' \) generate \(\gamma \), then \(X' \) contains the plane \(P \), a contradiction to the factoriality and \(F(X') = 1 \).

Hence \(Q' \) is contained in the pencil generated by \(Q_1 \) and \(Q_2 \). So \(m_1' = pm_1 \) for some \(p \in \mathbb{C} \) and

\[Q = \{-pm_0x_0 + m_2x_2 + (q_2 - pq_1) = 0\}. \]

Since \(X' \) does not contain \(P \) as noted above, \(\gamma \) contains a member \(Q_3 \) of the form as in the statement. \(Q_3 \) is not contained in the pencil generated by \(Q_1 \) and \(Q_2 \) and hence \(Q_i \)'s generate \(\gamma \).

Conversely let \(X' := Q_1 \cap Q_2 \cap Q_3 \), where \(Q_i \) is of the form as above and \(m_i, q_i \)
and \(l_i \) are suitably general. We can easily check that \(X' \) satisfies (2) and (3). Set \(V := Q_1 \cap Q_2 \). We may assume that \(V \) satisfies the condition of Claim 1.

Hence by Claim 1, \(X' \) is factorial. \(\square \)

Step 2 for [1]. Let \(\nu' : \tilde{X}' \to X' \) be the composition of the blowing ups at \(P_0 \sim P_{N-2} \) and \(F_i' \) the exceptional divisor over \(P_i \). Let \(\mu' : \tilde{X}' \to \tilde{X}' \) be the blowing up along the strict transform \(\tilde{C} \) of \(C \) and \(F' \) the \(\mu' \)-exceptional divisor. We will denote the strict transforms of the two fibers of \(F_i \simeq \mathbb{P}^1 \times \mathbb{P}^1 \) through \(F_i \cap \tilde{C} \) by \(l_{ij} \) \((i = 1, 2)\). Note that \(-K_{\tilde{X}}, l_{ij} = 0\). We can easily see that \(| -K_{\tilde{X}} | \) is free by \(P \cap X' = C \), where \(P \) is the plane spanned by \(C \) and \(-K_{\tilde{X}} \) is big. Hence \(l_{ij} \)'s are flopping curves on \(\tilde{X}' \) and we can see that the classes of \(l_{i1} \) and \(l_{i2} \) belong to the same ray. Let \(\tilde{X}' \to \tilde{X}'^+ \) be the flop. Then the strict transforms of \(F_i \)'s on \(\tilde{X}'^+ \)
are \(\mathbb{P}^2 \)'s and we can contract them to \(\frac{1}{2}(1, 1, 1) \)-singularities. Let \(g' : \tilde{X}'^+ \to Y' \) be the contraction morphism, \(f' : Y' \to X' \) the natural morphism and \(E' \) the strict transform of \(F' \).

We will see that \(| -K_{\tilde{X}'}, -E'| \neq \phi \). Let \(F'^+ \) be the strict transform of \(F' \) on \(\tilde{X}'^+ \). Then \(-K_{\tilde{X}'^+} - F'^+ = g'^*(-K_{Y'}, -E') \).
Furthermore \(h^0(-K_{\tilde{X}'^+} - F'^+) = \)
Q-FANO 3-FOLDS

\(h^0(-K_{\mathcal{X}}, -F') \). Hence it suffices to prove that \(h^0(-K_{\mathcal{X}}|_{F'}) \leq 3 \) since \(h^0(-K_{\mathcal{X}}) = 4 \). Since there is a smooth member of \(|-K_{\mathcal{X}}| \), we have \(\mathcal{N}_{\mathcal{C}/\mathcal{X}} \cong \mathcal{O}(-1) \oplus \mathcal{O}(-2) \). Hence \(F' \cong F \) and \(-K_{\mathcal{X}}|_{F'} \cong C_0 + l \), where \(C_0 \) is the minimal section of \(F' \) and \(l \) is a fiber of \(F' \). So we are done.

Step 3 for [1]. Since \(Y' \) has only \(\frac{1}{2}(1,1,1) \)-singularities and \(-K_{Y'} \) is nef and big, we can construct a similar diagram \(Y_0' := Y' \rightarrow Y_1' \rightarrow \cdots \rightarrow Y_i' \rightarrow \cdots \rightarrow Y := Y' \rightarrow X \rightarrow Y_{0'} \). By considering extremal rays, where \(Y_i' \rightarrow Y_{i+1}' \) is a flop or a flip for \(i = 0 \) and a flip for \(i \geq 1 \). Let \(E_i \) (resp. \(E \)) be the strict transform of \(E \) on \(Y_i' \) (resp. \(Y \)). Let \(R_i \) be the extremal ray which is other than the ray associated to \(f' \) for \(i = 0 \) or the \(K_{Y_i} \)-negative extremal ray for \(i \geq 1 \). By similar calculations to 0.3, we have

\[
\begin{align*}
(1) \quad (-K_{Y})^2 E &= 1 + \sum a_i' d_i' ; \\
(2) \quad (-K_{Y})E^2 &= -2 - \sum a_i'^2 d_i' ; \\
(3) \quad E^3 &= -6 + \sum a_i'^3 d_i' + e',
\end{align*}
\]

where \(e', a_i' \) and \(d_i' \) are similarly defined to 0.3 with respect to \(-K_{Y_i} \) and \(E_i \) and furthermore we can see that \(a_i' \) is a non negative integer.

Claim 3. \(E_i.R_i < 0 \).

Proof. We can prove the assertion by induction. For \(i = 0 \), \(E_0.R_0 < 0 \) can be directly checked. Assume that the assertion holds for the numbers less than \(i \). So the other extremal ray than \(R_i \) is positive for \(E_i \). Since \(-K_{Y_i} \) is free outside a finite number of curves, \(-K_{Y_i}|_{E_i} \) is numerically equivalent to an effective 1-cycle. Hence by \(-K_{Y_i'}E_i^2 \leq -K_{Y_i}E_i^2 = -2 \), we have \(E_i,R_i < 0 \). □

By this claim, we know that \(f \) is an divisorial contraction whose exceptional divisor is \(E \). If \(f \) is a crepant divisorial contraction, then \(l = 0 \). But \((-K_{Y_i})^2 E = 1 \), a contradiction. Hence \(f \) is a \(K_{Y_i} \)-negative contraction. Assume that \(f \) is a \((2,1) \)-type which contracts \(E \) to a curve \(C' \). Then \((-K_{X}.C') = (-K_Y + E)(-K_Y)E = -1 - \sum d_i' a_i'(a_i' - 1) < 0 \), a contradiction since \(X \) is a Q-Fano 3-fold.

By the classification of a \((2,0) \)-type contraction from a 3-fold with only index 2 terminal singularities (see Appendix), if \(f \) is such an contraction, then we have \(-K_{Y_i} E^2 \geq -2 \). On the other hand \(-K_{Y_i} E^2 \leq -K_{Y_i'}E_i^2 = -2 \). Hence there is no flop. So \((-K_{Y_i})^2 E = (-K_{Y_i})^2 E = 1 \) and hence again by the classification of a contraction as above, \(f \) is the blow up at a \(\frac{1}{2}(1,1,1) \)-singularity or the weighted blow up at a QODP with weight \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1) \). (we use the coordinate as stated in the definition of QODP). In any case \(X \) is a Q-Fano 3-fold with \(I(X) = 2 \). We can easily check that \((-K_{X})^3 = 4 \) and \(\text{aw}(X) = 4 \). Furthermore by this, \(F(X) \) must be \(\frac{1}{2} \). So \(X \) is what we want.

[2]
Step 1 for [2]. The Grassmannian \(G(2,5) \) (parameterizing 2-dimensional subspaces of 5-dimensional vector space) can be embedded into \(\mathbb{P}^9 \) by the Plücker embedding. Its defining equations are \(x_{ij}x_{kl} - x_{ik}x_{jl} + x_{jk}x_{il} = 0 \) for all \(1 \leq i < j < k < l \leq 5 \), where \(x_{pq} \) (\(1 \leq p < q \leq 5 \)) is a Plücker coordinate.

Let \(Q \) be the point defined by \(x_{pq} = 0 \) for any \((p,q) \neq (1,2) \). Let \(l_1 \) (resp. \(l_2 \)) be the line \(\subset G(2,5) \) defined by \(x_{pq} = 0 \) for any \((p,q) \neq (1,2),(1,3) \) (resp. \((p,q) \neq (1,2),(2,4) \)). Let \(l_3 \) be the line \(\subset G(2,5) \) defined by the equations \(x_{pq} = r_{pq}x_{12} \) for \((p,q) \neq (1,2) \) such that \(r_{34} = r_{35} = r_{45} = 0, r_{13}r_{24} - r_{23}r_{14} = 0, r_{13}r_{25} - r_{23}r_{15} = 0, r_{14}r_{25} - r_{24}r_{15} = 0 \) and \(r_{15}r_{25} \neq 0 \). Let \(H \) be the 3-plane spanned by \(l_1, l_2 \) and \(l_3 \). Then \(G(2,5) \cap H = l_1 \cup l_2 \cup l_3 \). Hence by [MM3, Proposition 6.8], there are two hyperplane \(H_1, H_2 \) and a quadric \(Q \) such that \(X' := G(2,5) \cap H_1 \cap H_2 \cap Q \) is smooth and \(X' \) contains \(l_1, l_2 \) and \(l_3 \). Since the tangent space of \(X' \) at \(Q \) also contains all the lines on \(X' \) through \(Q \), it is equal to \(H \). Hence there are only three lines on \(X' \) through \(Q \).

Step 2 for [2]. Let \(f' : Y' \rightarrow X' \) be the blow up at \(Q \) and \(E' \) the exceptional divisor. Let \(l_1', l_2' \) and \(l_3' \) be the transforms of \(l_1, l_2 \) and \(l_3 \) on \(Y' \). Since \(\text{Bs}(-K_{Y'}) = l_1' \cup l_2' \cup l_3' \), the rank of the natural map \(H^0(-K_{Y'}) \rightarrow H^0(\mathcal{O}(-K_{Y'}|_{E'})) \) is 3. Hence there is a unique member \(\tilde{E} \) of \(-K_{Y'} - E' \) such that \(h^0(-K_{Y'}) = 4 \).

Step 3 for [2]. Since \(-K_{Y'} + E' \) is free and \(-K_{Y'} + E' \) is numerically trivial only for \(l_1', l_2' \) and \(l_3' \) and positive for a curve in \(E' \), they are numerically equivalent and span an extremal ray \(R \) of \(\overline{NE}(Y') \). Since \(\text{Bs}(-K_{Y'}) = l_1' \cup l_2' \cup l_3' \) and \(-K_{Y'}l_4' < 0 \), \(R = l_1' \cup l_2' \cup l_3' \). Furthermore by \(\text{Bs}(-K_{Y'}) = l_1' \cup l_2' \cup l_3' \), there is a smooth anti-canonical divisor \(D \) ([MM3, Proposition 6.8]). Hence the contraction of \(l_1', l_2' \) and \(l_3' \) is a log flopping contraction for the pair \((Y', D)\) and the log flop exists. Let \(Y' \rightarrow Y'_0 \) be the log flop. Since \(D.l_i' = -1 \), the normal bundle of \(l_i' \) is of type \((-1,-2)\). Hence \(Y'_0 \) has three \(\frac{1}{2}(1,1,1) \)-singularities. Since \(-K_{Y'_0} \) is nef and big, we can construct a similar diagram \(Y'_0 \rightarrow Y'_1 \rightarrow \ldots \rightarrow Y'_i \rightarrow \ldots \rightarrow Y'_i+1 \rightarrow \ldots Y := Y'_i \rightarrow X \) to Lemma 3.2 by considering extremal rays, where \(Y'_i \rightarrow Y'_{i+1} \) is a flop or a flip for \(i = 0 \) and a flip if \(i \geq 1 \). Let \(E_i \) be the strict transform of \(E \) on \(Y'_i \).

Similarly to Step 3 for [1], we can see that \(f \) is the blow up at a \(\frac{1}{2}(1,1,1) \)-singularity or the weighted blow up at a QODP with weight \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1)\). In any case \(X \) is a Q-Fano 3-fold with \(I(X) = 2 \). Since \(-K_X)^3 = 4 \) and \(N = 4 \), \(F(X) \) must be \(\frac{1}{2} \). So \(X \) is what we want.

APPENDIX

In this appendix, we give the table of a \((2,0)\)-type contraction from a 3-fold with only index 2 terminal singularities.

Proposition. Let \(X \) be a 3-fold with only index 2 terminal singularities and \(f : X \rightarrow (Y,Q) \) a contraction of \((2,0)\)-type to a germ \((Y,Q)\) which contracts a prime divisor \(E \) to \(Q \). Then the following holds:

1. Assume that \(E \) contains no index 2 point. Then one of the following holds:

 \[(2,0)_1 : (E, -E|_E) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1)) \text{ and } Q \text{ is a smooth point}; \]

 \[(2,0)_2 : (E, -E|_E) \simeq (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1)) \text{ and } (Y, Q) \simeq (\{(xy+zw = 0) \subset \mathbb{C}^4\}, o); \]

2. Assume that \(E \) contains an index 2 point. Then one of the following holds:

 \[(2,0)_3 : (E, -E|_E) \simeq (\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(2)) \text{ and } Q \text{ is a smooth point}; \]

 \[(2,0)_4 : (E, -E|_E) \simeq (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1)) \text{ and } (Y, Q) \simeq (\{(xy+zw = 0) \subset \mathbb{C}^4\}, o); \]

 \[(2,0)_5 : (E, -E|_E) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1)) \text{ and } Q \text{ is a smooth point}; \]
Q-FANO 3-FOLDS

\((2,0)_3 : (E, -E|_E) \simeq (\mathbb{F}_{2,0}, \mathcal{O}_{\mathbb{P}^2}(1)|_{\mathbb{F}_{2,0}}) \) and \((Y, Q) \simeq (((xy + z + w^k = 0) \subset C^4), o)(k \geq 3);\)

\((2,0)_4 : (E, -E|_E) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2)) \) and \(Q\) is a \(\frac{1}{2}(1,1,1)\)-singularity.

Furthermore for all cases, \(f\) is the blow up of \(Q\).

(2) Assume that \(E\) contains an index 2 point. Then one of the following holds:

\((2,0)_5 : (E, -E|_E) \simeq (\mathbb{F}_{2,0}, l) \), where \(l\) is a ruling of \(\mathbb{F}_{2,0} \).

\(Q\) is a smooth point and \(f\) is a weighted blow up with weight \((2,1,1)\).

In particular we have \(K_X = f^*K_Y + 3E;\)

\((2,0)_6 : K_X = f^*K_Y + E\) and \(Q\) is a Gorenstein singular point. \(E^3 = \frac{1}{2};\)

\((2,0)_7 : K_X = f^*K_Y + E\) and \(Q\) is a Gorenstein singular point. \(E^3 = 1;\)

\((2,0)_8 : K_X = f^*K_Y + E\) and \(Q\) is a Gorenstein singular point. \(E^3 = \frac{3}{2};\)

\((2,0)_9 : K_X = f^*K_Y + E\) and \(Q\) is a Gorenstein singular point. \(E^3 = 2;\)

\((2,0)_{10} : (E, -E|_E) \simeq (((xy + w^2 = 0) \subset \mathbb{F}(1,1,2,1)), \mathcal{O}(2)).\)

\((Y, Q) \simeq (((xy + z^k + w^2 = 0) \subset C^4/\mathbb{Z}_2(1,1,0,1)), o).\)

\(f\) is a weighted blow up with a weight \((\frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}).\)

In particular we have \(K_X = f^*K_Y + \frac{1}{2}E;\)

\((2,0)_{11} : (E, -E|_E) \simeq (\mathbb{F}_{2,0}, 3l).\)

\(Q\) is a \(\frac{1}{3}(2,1,1)\)-singularity and \(f\) is a weighted blow up with a weight \(\frac{1}{3}(2,1,1).\)

In particular we have \(K_X = f^*K_Y + \frac{1}{3}E;\)
HIROMICHI TAKAGI

References

[AI] S. Altinok, Graded rings corresponding to polarized $K3$ surfaces and \mathbb{Q}-Fano 3-folds, Univ. of Warwick, Ph.D. thesis.

[MM3] ______, Classification of Fano 3-folds with $B_2 \geq 2$, I, to the memory of Dr. Takehiko MIYATA, Algebraic and Topological Theories, 1985, pp. 496–545.

Q-FANO 3-FOLDS

[T3] ———, a private letter to the author.

RIMS, KYOTO UNIVERSITY, KITASHIRAKAWA, SAKYO-ku, 606-8502 KYOTO, JAPAN
E-mail address: takagi@kurims.kyoto-u.ac.jp