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RIMS Kôkyûroku Bessatsu
B43 (2013), 61–80

Gradient estimate for Markov kernels, Wasserstein

control and Hopf-Lax formula

By

Kazumasa Kuwada∗

Abstract

We extend the duality between gradient estimates of the Markov kernel and Wasserstein

controls of that studied by the author (2010). Especially, the gauge norm-Orlicz norm type

duality holds on Polish geodesic space without any assumption on the Markov kernel. For the

proof of the duality, we proceed analysis of Hopf-Lax semigroups. Some sorts of stability of

these estimates are also studied. As an application of a stability result, we show a gradient

estimate for a semigroup of Markov kernels yields the corresponding estimate for subordinated

semigroups.

§ 1. Introduction

As an effective way of measuring the rate of convergence to equilibrium of (pos-

sibly nonlinear) diffusions, Wasserstein distances have been used in the literature (see

e.g. [10, 27, 28] and references therein). Among them, an exponential control in time

of Wasserstein distances between heat distributions ((6.4) below) has been investigated

extensively since it is deeply interacted with other research fields such as differential

geometry, partial differential equations, functional inequalities and probability theory.

As a part of such connections, a control of the L2-Wasserstein distance links the pres-

ence of a lower Ricci curvature bound in the sense of Sturm and Lott-Villani [21, 25]

with Bakry-Émery’s gradient estimate [5, 11, 16]. Moreover, those two conditions are

equivalent to the Wasserstein control [2, 5, 29]. Such an equivalence as well as Bakry-

Émery’s gradient estimate was known mostly on essentially smooth spaces and hence

the Wasserstein distance played a prominent role to extend the theory to more singular
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spaces than Riemannian manifolds. As those results explain, a control of the Wasser-

stein distance now possesses other significant meanings even apart from the convergence

rate. As one of such researches, the article [17] formulates and establishes a duality be-

tween a control of the Wasserstein distance for Markov kernels and a gradient estimate

of the Bakry-Émery type in a fairly general framework. As pointed out there, those

duality holds not only for heat semigroups and it does not rely on any curvature bounds.

Thus it might provide us new tools to proceed geometric analysis even in the absence

of uniform lower curvature bounds.

The main purpose of this article is to extend the duality result in [17]. The primal

emphasis is put on removing technical assumptions. As a consequence, the same result

always holds on geodesic metric spaces without any further assumptions on the Markov

kernel or on the underlying space. Among others, we do not require the local Poincaré

inequality, the volume doubling condition and moreover any reference measure on the

underlying space. These conditions are rather weak in the sense that those spaces which

satisfy them are sufficiently ample even in the class of singular spaces. However, even

on a smooth space as Riemannian manifolds without boundary, those conditions are not

always satisfied. We also extend the result in other three respects. First, we weaken the

assumption on the distance function. Our new condition fits well with analysis on (a

class of) infinite dimensional spaces. Second, we replace Lp-Lq type duality with more

general gauge norm-Orlicz norm type duality (See [23] for these norms. See [26] for the

Orlicz-Wasserstein distance). It enables us to deal with more subtle situations where Lp-

spaces are not sufficient. Third, we separate the parameter space of the Markov kernel

from the underlying space. Though it is a rather minor extension from a technical point

of view, it broadens the range of the theory, as we will see in examples. While the

proof goes along the same line as in [17], we must modify some arguments because of

the generality of our framework. For instance, according to these extensions, we also

extend the theory of Hopf-Lax or Hamilton-Jacobi semigroups from that in [3,4,12]. to

the one which fits with our framework. In [3, 4], they only consider the Lp-case, and

in [12], their (topological) condition on the underlying space is more restrictive. Such

an extension would be of independent interest since the Hopf-Lax semigroup has several

applications in analysis on metric spaces (see e.g. [3, 4, 6, 8, 9, 12]). Note that the local

Poincaré inequality and the volume doubling condition are used in [17] to employ the

existing theory of Hopf-Lax semigroups in [9, 20]. However, we does not require them

already in [3, 4, 12].

As another achievement of this article, we provide some remarks on stability results.

Compared with the gradient estimate, the Wasserstein control is more stable under

several operations such as convergence of Markov kernels, tensorization and averaging.

Thus, based on our duality, we can obtain the same stability for the corresponding gradi-
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ent estimates. Though each stability result seems rather elementary from the viewpoint

of analysis of Wasserstein distances, it seems non-trivial for the gradient estimate if we

cannot employ our duality. For instance, we can use a gradient estimate for a semigroup

of Markov kernels to obtain a gradient estimate for subordinated semigroups.

We now mention some of related results which are not discussed yet. Ollivier [22]

initiated geometric analysis based on a control of the (L1-)Wasserstein distance for

Markov kernels by regarding it as a definition of generalized lower Ricci curvature bound.

We also refer to [14, 15] and references therein for further developments and related

results. Our gradient estimate is originally studied by Bakry and Émery for diffusion

semigroups, and it has been a source of several important functional inequalities such as

Poincaré, log-Sobolev and isoperimetric inequalities (see e.g. [7,8]). Note that a similar

but different approach as ours to our duality result is provided in [8].

Now we demonstrate the organization of the paper. In the next section, we will

state our framework, notations and the main result (Theorem 2.2). In section 3, we

study the Hopf-Lax semigroup along with the same line as in [3,12]. Here we prove that

the Hopf-Lax semigroup solves the Hamilton-Jacobi equation in an appropriate sense

even in our general framework (Theorem 3.7 and Theorem 3.8). Note that, in the proof

of Theorem 2.2, we only use a partial result (a part of the assertion of Theorem 3.6).

Theorem 2.2 will be proved in section 4. In section 5, we will exhibit stability results.

In section 6, we provide three examples. Two of them explain that the separation of the

parameter space of the Markov kernel from the underlying space is meaningful. The last

example is an application of our stability result to a gradient estimate for subordinated

semigroups.

§ 2. Framework and the main result

Let X be a Polish topological space. Let d : X × X → [0,∞] be an extended

distance in the sense of [3]. That is, d satisfies all properties of distance function

except for finiteness, it is lower semi-continuous and the convergence with respect to

d implies the convergence in X. Let Φ : [0,∞) → [0,∞) be a C1-convex increasing

function satisfying Φ(0) = 0, Φ(x) > 0 for x > 0 and lim
u→∞

Φ(u)/u = ∞. We denote

the Legendre conjugate of Φ by Φ∗. That is, Φ∗(v) := supu≥0[uv − Φ(u)] for v ≥ 0.

Note that Φ∗(v) < ∞ for any v ∈ [0,∞). We set Φp(u) := p−1up for p ∈ [1,∞) and

Φ∞(u) := lim
p→∞

Φp(u). Note that Φ∗
p = Φp∗ holds for p ∈ [1,∞], where p∗ is the Hölder

conjugate of p, i.e. p−1+ p−1
∗ = 1. We can easily verify that Φp satisfies the assumption

on Φ if and only if p ∈ (1,∞). In what follows, p always stands for a real number in

[1,∞] and p∗ is the Hölder conjugate of p otherwise stated explicitly.

We denote the space of probability measures on X by P(X). For µ, ν ∈ P(X),

we denote the set of couplings of µ and ν by Π(µ, ν). For µ, ν ∈ P(X), let us define
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LΦ-Wasserstein distance WΦ(µ, ν) as follows:

(2.1) WΦ(µ, ν) := inf
π∈Π(µ,ν)

∥d∥LΦ(π).

Here ∥ · ∥LΦ(π) means the gauge norm. That is,

∥d∥LΦ(π) = inf

{
λ > 0

∣∣∣∣ ∫
X×X

Φ

(
d

λ

)
dπ ≤ 1

}
.

For simplicity of notations, we denote p1/pWΦp and WΦ∞ by Wp and W∞ respectively.

Note that Wp coincides with the usual Lp-Wasserstein (extended) distance. More pre-

cisely, Wp(µ, ν) = infπ∈Π(µ,ν) ∥d∥Lp(π) holds. For a measurable function f : X → R, let
us denote the local Lipschitz constant of f with respect to d by |∇f | ∈ B(X). That is,

(2.2) |∇f |(x) := lim
r→0

sup
y∈X

d(x,y)∈(0,r)

[
|f(y)− f(x)|

d(y, x)

]
.

Note that |∇f | is universally measurable (see [3, Lemma 2.4]). Let X̃ be another Polish

space and d̃ : X̃ × X̃ → [0,∞] an extended distance on X̃. We also use the notations

W̃Φ(µ̃, ν̃) for µ̃, ν̃ ∈ P(X) or |∇̃f̃ | for f̃ : X̃ → R defined similarly as in (2.1) and (2.2).

We assume the following in some occasions. We state it explicitly when we do so.

Assumption 2.1.

(i) The extended distance d is a geodesic extended distance. It means that, for every

x, y ∈ X with d(x, y) < ∞, there is a curve γ : [0, 1] → X with γ(0) = x and

γ(1) = y such that d(γ(s), γ(t)) = |t− s|d(x, y)

(ii) The extended distance d̃ is a geodesic extended distance.

Remark 1. In Assumption 2.1, we can weaken “geodesic extended distance” to

length extended distance in all our results except Remark 4 (See [3] for length extended

distance). We assumed the stronger “geodesic” assumption just for simplicity of pre-

sentation.

We call the curve γ appeared in the definition of Assumption 2.1 (i) a d-minimal

geodesic. We also use the term “d̃-minimal geodesic” under Assumption 2.1 (ii).

For each x̃ ∈ X̃, let Px̃ ∈ P(X). We suppose that P is a Markov kernel, that is,

for each A ∈ B(X), x̃ 7→ Px̃(A) is measurable. For a measurable function f : X → R
and µ̃ ∈ P(X̃), we denote the action of P to f and the dual action to m̃u by Pf and

P ∗µ̃ respectively. We denote the space of bounded measurable functions on X which

are Lipschitz with respect to d by Lipb(X). Note that Lipb(X) ⊂ C(X) may not hold

if d is not continuous.

We are interested in the relation between the following two properties:
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(i) For every x̃, ỹ ∈ X̃,

(W (Φ)) WΦ(Px̃, Pỹ) ≤ d̃(x̃, ỹ).

(ii) For every x̃ ∈ X̃ and f ∈ Lipb(X),

(G(Φ∗)) |∇̃Pf |(x̃) ≤ ∥|∇f |∥L̃Φ∗ (Px̃)
,

where ∥ · ∥L̃Φ∗ (µ) is the Orlicz norm associated with Φ∗ for µ ∈ P(X). That is,

∥f∥L̃Φ∗ (µ) = sup

{∫
X

fg dµ

∣∣∣∣ g : X → R measurable,

∫
X

Φ(g)dµ ≤ 1

}
.

We sometimes consider a similar condition where WΦ is replaced with Wp. We denote

it by (Wp) instead of (W (Φ)). Similarly, when p > 1, we denote the condition where

∥|∇f |∥L̃Φ∗ (Px̃)
in (G(Φ∗)) is replaced with P (|∇f |p∗)1/p∗ by (Gp). When p = 1, the

condition (G∞) is given in the following:

(G∞) sup
x̃ ̸=ỹ

[
Pf(x̃)− Pf(ỹ)

d̃(x̃, ỹ)

]
≤ sup

x ̸=y

[
f(x)− f(y)

d(x, y)

]
.

Now we are ready to state our main theorem.

Theorem 2.2.

(i) (W (Φ)) implies (G(Φ∗)).

(ii) Suppose Assumption 2.1. Then (G(Φ∗)) implies (W (Φ)).

Note that we can slightly extend the result in Theorem 2.2 in different ways. For

simplicity of presentation, we will state them separately in remarks below. See Re-

mark 2, Remark 3 and Remark 4. A typical and well-studied situation in Theorem 2.2

is the case X̃ = X and d̃ = Cd with a constant C > 0 (cf.(6.4)). We can easily see that

Theorem 2.2 also asserts the duality between (Wp) and (Gp∗) for p ∈ (1,∞).

Remark 2. As for the duality between (Wp) and (Gp∗), the cases p = 1,∞ does

not seem to be dealt in Theorem 2.2. However, we can easily deduce them. When p = 1,

the same proof as in [17] works. Note that, unlike Theorem 2.2 (ii), we do not require

Assumption 2.1 (i) in this case. When p = ∞, it is reduced to the case p ∈ (1,∞) as we

did in [17]. The key ingredient there is [17, Lemma 3.3] and the corresponding result

(Lemma 4.1 (iii) below) also holds in our framework.
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§ 3. Hopf-Lax semigroups

In this section, we fix f : X → R ∪ {∞}. Let us consider the Hopf-Lax semigroup

Qtf associated with Φ. For x, y ∈ X and t > 0, we define F (t, x, y) and Qtf(x) ∈
R ∪ {±∞} by

F (t, x, y) := f(y) + tΦ

(
d(x, y)

t

)
, Qtf(x) := inf

y∈X
F (t, x, y).(3.1)

Conventionally, we use the notation Q0f := f . Note that Qtf(x) is non-increasing in t

since Φ is convex and Φ(0) = 0. Set D(f) := {x ∈ X | F (1, x, y) < ∞ for some y ∈ X}
and t∗(x) := sup{t > 0 | Qtf(x) > −∞}. Then x ∈ D(f) and 0 < t < t∗(x) imply

Qtf(x) ∈ R. For x ∈ D(f) and 0 < t < t∗(x), let us define D
+(x, t) and D−(x, t) by

D+(x, t) := sup
(yn)n

lim sup
n→∞

d(x, yn), D−(x, t) := inf
(yn)n

lim inf
n→∞

d(x, yn).

where (yn)n in the above supremum or infimum runs over all minimizing sequences of

F (t, x, ·). Note that these supremum or infimum is attained. Indeed, it follows from a

diagonal argument. We begin with basic properties of t∗ and D±.

Lemma 3.1.

(i) t∗(x) = t∗(y) holds for x, y ∈ X with d(x, y) <∞.

(ii) D+ is locally bounded in the sense that for x ∈ X, R > 0 and t0 ∈ (0, t∗(x)), there

is M > 0 such that D+(y, s) ≤M for y ∈ X with d(x, y) ≤ R and s ∈ (0, t0].

Proof. By the convexity of Φ, for z ∈ X and s < t,

(3.2) tΦ

(
d(x, z)

t

)
≤ sΦ

(
d(y, z)

s

)
+ (t− s)Φ

(
d(x, y)

t− s

)
.

It easily implies Qtf(x) ≤ Qsf(y)+(t−s)Φ(d(x, y)/(t−s)). Thus t∗(y) ≤ t∗(x) follows

by taking s < t∗(x) arbitrarily and t ∈ (s, t∗(x)). The opposite inequality also follows

in a symmetric way and hence the first assertion holds.

For the second assertion, take y ∈ X with d(x, y) ≤ R, s ∈ (0, t0] and t0 < t1 <

t2 < t∗(x). Then, by using (3.2) with s = t1 and t = t2, for z ∈ X with d(y, z) <∞,

F (s, y, z) ≥ sΦ

(
d(y, z)

s

)
− t1Φ

(
d(y, z)

t1

)
+Qt2f(x)− (t2 − t1)Φ

(
R

t2 − t1

)
.

Take z0 ∈ X so that it satisfies d(x, z0) < ∞ and f(z0) < ∞ (such z0 exists since

x ∈ D(f)). Note that t′Φ(u/t′) − t1Φ(u/t1) is non-decreasing when t′ < t1 since Φ is
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convex (cf. (3.8) below). Thus the last inequality yields

(3.3) sΦ

(
D+(y, s)

s

)
− t1Φ

(
D+(y, s)

t1

)
≤ Qsf(y)−Qt2f(x) + (t2 − t1)Φ

(
R

t2 − t1

)
≤ f(z0) + sΦ

(
R+ d(x, z0)

s

)
−Qt2f(x) + (t2 − t1)Φ

(
R

t2 − t1

)
.

We claim that there is δ > 0 being independent of y and s such that D+(y, s) ≤
R+ d(x, z0) + 1 holds when 0 < s < δ. Indeed, if it is not the case, there is a sequence

(sn)n∈N in R with s1 < t0, sn ↓ 0 and D+(y, sn) > R + d(x, z0) + 1 for each n ∈ N.
Since snΦ(u/sn)− t1Φ(u/t1) and u

−1Φ(u) are non-decreasing in u, (3.3) yields

(R+ d(x, z0) + 1)
sn

R+ d(x, z0)
Φ

(
R+ d(x, z0)

sn

)
≤ snΦ

(
R+ d(x, z0)

sn

)
+ C1,

where C1 > 0 is a constant independent of n ∈ N. Since Φ is superlinear at infinity,

the last inequality implies the contradiction by tending n→ ∞. Hence the claim holds.

Thus it suffices to show the assertion only when s ≥ δ. In this case, we can replace s in

the right hand side of (3.3) with δ and s in the left hand side of (3.3) with t0. Therefore,

the proof will be completed once we show t0Φ(u/t0)− t1Φ(u/t1) → ∞ as u→ ∞. Since

Φ is convex and superlinear at infinity, Φ′(u) → ∞ as u → ∞. Thus we can apply

Lemma 3.2 below with α = t−1
1 , β = t−1

0 and g = Φ′ to conclude the assertion.

Lemma 3.2. Let g : [0,∞) → [0,∞) be a non-decreasing with lim
u→∞

g(u) = ∞.

Then, for β > α > 0, ∫ ∞

1

(g(βu)− g(αu)) du = ∞.

Proof. Note that the integrand is non-negative by assumption. Set η := β/α and

ηk := βk/αk−1. Then, by the Abel method on summation by parts,∫ ηn

1

(g(βu)− g(αu))du =

n∑
k=1

∫ ηk

ηk−1

(g(βu)− g(αu))du

=
n∑
k=1

ηk−1

∫ η

1

(g (ηku)− g (ηk−1u)) du

= ηn−1

∫ η

1

g (ηnu) du−
∫ η

1

g (αu) du− (η − 1)
n∑
k=2

ηk−2

∫ η

1

g (ηk−1u) du

=

∫ η

1

g (ηnu) du−
∫ η

1

g (αu) du+ (η − 1)

n∑
k=2

ηk−2

∫ η

1

(g (ηnu)− g (ηk−1u)) du

≥
∫ η

1

g (ηn−1u) du−
∫ η

1

g (αu) du.

Therefore the conclusion follows by tending n→ ∞.
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Lemma 3.3. Let x ∈ D(f) and t ∈ (0, t∗(x)). For xn ∈ X and tn ∈ (0, t∗(x))

with d(x, xn) → 0 and tn → t as n→ ∞, we have

D−(x, t) ≤ lim inf
n→∞

D−(xn, tn), D+(x, t) ≥ lim sup
n→∞

D+(xn, tn).

Proof. For each n ∈ N, let (yn,k)k∈N be a minimizing sequence of F (tn, xn, ·) such
that limk→∞ d(xn, yn,k) = D+(xn, tn). Then, for each n ∈ N, we can take kn ∈ N such

that kn+1 > kn and

F (tn, xn, yn,kn) ≤ Qtnf(xn) +
1

n
, |d(xn, yn,kn)−D+(xn, tn)| ≤

1

n
.(3.4)

By virtue of Lemma 3.1 (ii), (3.4) yields

lim
n→∞

∣∣∣∣tnΦ(
d(xn, yn,kn)

tn

)
− tΦ

(
d(x, yn,kn)

t

)∣∣∣∣ = 0.

This fact together with the upper semi-continuity lim supn→∞Qtnf(xn) ≤ Qtf(x) and

(3.4) yields that (yn,kn)n∈N is a minimizing sequence of F (t, x, ·). Then we have

D+(x, t) ≥ lim sup
n→∞

d(x, yn,kn) = lim sup
n→∞

d(xn, yn,kn) ≥ lim sup
n→∞

D+(xn, tn),

where the last inequality comes from (3.4). Hence the assertion for D+ is proved. We

can show the assertion for D− in a similar way.

From now on, we will turn to discuss the Hamilton-Jacobi equation associated with

Qtf . Our first goal is to show the sub-solution property of Qtf (Theorem 3.6).

Proposition 3.4. For x ∈ D(f) and t ∈ (0, t∗(x)), we have

d+

dt
Qtf(x) = −Φ∗

(
Φ′

(
D+(x, t)

t

))
,

d−

dt
Qtf(x) = −Φ∗

(
Φ′

(
D−(x, t)

t

))
.

In particular, Qtf(x) is differentiable at t if and only if D+(x, t) = D−(x, t).

Proof. Take s ∈ (0, t∗(x)). Let (yn)n be a minimizing sequence of F (t, x, ·). Then

Qsf(x)−Qtf(x) ≤ lim inf
n→∞

[F (s, x, yn)− F (t, x, yn)]

= lim inf
n→∞

[
(s− t)Φ

(
d(x, yn)

t

)
+ s

(
Φ

(
d(x, yn)

s

)
− Φ

(
d(x, yn)

t

))]
.

It yields

Qsf(x)−Qtf(x) ≤ (s− t)Φ

(
D+(x, t)

t

)
+ s

(
Φ

(
D+(x, t)

s

)
− Φ

(
D+(x, t)

t

))
.
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Note that the Legendre duality implies Φ∗(Φ′(w)) = Φ′(w)w − Φ(w) for w ≥ 0. Hence

we obtain the upper bound of the right derivative in t of Qtf(x) from the last inequality.

For the corresponding lower bound, for s > t, let us take a minimizing sequence (y′n)n∈N

of F (s, x, ·) satisfying d(x, y′n) → D+(x, s) as n → ∞. By a similar argument as above

but using (y′n)n instead,

Qsf(x)−Qtf(x) ≥ sΦ

(
D+(x, s)

s

)
− tΦ

(
D+(x, s)

t

)
.(3.5)

Take ε > 0. Since D+(x, ·) is upper semi-continuous by Lemma 3.3, D+(x, s) ≤
D+(x, t) + ε holds if s − t > 0 is sufficiently small. In addition, the convexity of Φ

yields that sΦ(u/s) − tΦ(u/t) is non-increasing in u if s > t (cf. (3.8) below). Thus,

we can replace D+(x, s) in (3.5) with D+(x, t) + ε if s − t > 0 is sufficiently small.

It yields the lower bound of the right derivative by obtaining a bound from the last

inequality and tending ε ↓ 0 after that. The result for the left derivative can be shown

similarly.

Proposition 3.5. For x ∈ D(f) and t ∈ (0, t∗(x)),

|∇Qtf |(x) ≤ Φ′
(
D+(x, t)

t

)
, |∇+Qtf |(x) ≤ Φ′

(
D−(x, t)

t

)
,

where |∇+f | is defined by replacing |f(y)− f(x)| in the definition of |∇f | in (2.2) with

[f(y)− f(x)]+.

Proof. Let x′ ∈ X and (yn)n∈N a minimizing sequence of F (t, x, ·). Then the

convexity of Φ yields

Qtf(x
′)−Qtf(x) ≤ lim inf

n→∞
[F (t, x′, yn)− F (t, x, yn)]

= lim inf
n→∞

[
tΦ

(
d(x′, yn)

t

)
− tΦ

(
d(x, yn)

t

)]
≤ lim inf

n→∞
(d(x′, yn)− d(x, yn))Φ

′
(
d(x′, yn)

t

)
≤ d(x′, x) lim inf

n→∞
Φ′

(
d(x, y′n)

t

)
.

Thus we obtain

Qtf(x
′)−Qtf(x) ≤ d(x′, x)Φ′

(
D−(x, t)

t

)
.

This estimate easily implies the latter assertion. For the former one, by the same

argument with the exchange of the role of x′ and x,

|Qtf(x)−Qtf(x
′)| ≤ d(x, x′)Φ′

(
max{D+(x, t), D+(x′, t)}

t

)
.
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Since D+(·, t) is upper semi-continuous by Lemma 3.3, the conclusion follows.

Now the following immediately follows from Proposition 3.4 and Proposition 3.5.

Theorem 3.6. For x ∈ D(f) and t ∈ (0, t∗(x)),

d+

dt
Qtf(x) + Φ∗(|∇Qtf |(x)) ≤ 0,

d−

dt
Qtf(x) + Φ∗ (|∇+Qtf |(x)

)
≤ 0.(3.6)

The rest of this section is devoted to the differentiability in t of Qtf and the equality

in (3.6).

Theorem 3.7. Suppose that Φ is strictly convex. Then D+(x, t) ≤ D−(x, s)

holds for x ∈ D(f) and 0 < t < s < t∗(x). In particular, D+(x, t) = D−(x, t) holds

and hence Qtf(x) is differentiable in t with at most countably many exceptions for each

fixed x ∈ X.

Proof. Let us take minimizing sequences (yn)n and (y′n)n of F (s, x, ·) and F (t, x, ·)
respectively satisfying d(x, yn) → D−(x, s) and d(x, y′n) → D+(x, t) as n → ∞. We

may assume f(yn) < ∞ and f(y′n) < ∞ for all n ∈ N. Take ε > 0 arbitrary. Then, for

sufficiently large n ∈ N,

F (s, x, yn) ≤ Qsf(x) + ε ≤ F (s, x, y′n) + ε,

F (t, x, y′n) ≤ Qtf(x) + ε ≤ F (t, x, yn) + ε.

By summing them up, letting n→ ∞ and ε ↓ 0, we obtain

(3.7) t

(
Φ

(
D+(x, t)

t

)
− Φ

(
D−(x, s)

t

))
≤ s

(
Φ

(
D+(x, t)

s

)
− Φ

(
D−(x, s)

s

))
.

Here we implicitly used Lemma 3.1 (ii) to ensure the finiteness of D±. Now we prove

the assertion by contradiction. Suppose that D−(x, s) < D+(x, t) holds. Since Φ is

convex, D−(x, s)/t > D−(x, s)/s and D+(x, t)/t > D+(x, t)/s yield

(3.8)

(
D+(x, t)−D−(x, s)

s

)−1 (
Φ

(
D+(x, t)

s

)
− Φ

(
D−(x, s)

s

))
≤

(
D+(x, t)−D−(x, s)

t

)−1 (
Φ

(
D+(x, t)

t

)
− Φ

(
D−(x, s)

t

))
.

Thus the equality must hold in (3.7), but it is absurd since Φ is strictly convex. Hence

D+(x, s) ≤ D−(x, t). The assertion for the coincidence of D+ and D− is easy because

D−(x, t) ≤ D+(x, t) < ∞. Then the assertion for the differentiability of Qtf(x) in t is

immediate from Proposition 3.4.
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Theorem 3.8. Suppose Assumption 2.1 (i). Then

|∇−Qtf |(x) = |∇Qtf |(x) = Φ′
(
D+(x, t)

t

)
,

where |∇−f | is defined by replacing |f(y)− f(x)| in the definition of |∇f | in (2.2) with

[f(y) − f(x)]−. As a result, the equality holds in the first inequality of (3.6) for every

t ∈ (0, t∗(x)).

Proof. It suffices to consider the case D+(x, t) > 0 since the conclusion immedi-

ately follows from Proposition 3.5 if D+(x, t) = 0. Take a minimizing sequence (yn)n∈N

of F (t, x, ·) satisfying d(x, yn) → D+(x, t) as n → ∞. We may assume d(x, yn) > 0 for

all n ∈ N. Take a d-minimal geodesic γn : [0, 1] → X with γn(0) = x, γn(1) = yn for

each n ∈ N. Then d(x, γn(1/n)) → 0 as n→ ∞. Thus the mean value theorem yields

|∇−Qtf |(x) ≥ lim sup
n→∞

Qtf(x)−Qtf(γn(1/n))

d(x, γn(1/n))

≥ lim sup
n→∞

F (t, x, yn)− F (t, γn(1/n), yn)

d(x, γn(1/n))

= lim sup
n→∞

nt

d(x, yn)

(
Φ

(
d(x, yn)

t

)
− Φ

(
(1− n−1)d(x, yn)

t

))
= Φ′

(
D+(x, t)

t

)
.

Therefore the conclusion follows from this estimate and Proposition 3.5.

§ 4. Proof of Theorem 2.2

To begin with, we gather extensions of well known properties for Lp-Wasserstein

distance to WΦ associated with the extended distance d. We refer to [28, Chapter 4]

for basic properties of optimal transportation costs which is used in the proof of the

following auxiliary lemma.

Lemma 4.1.

(i) WΦ is sequentially lower semi-continuous with respect to the weak convergence of

probability measures. That is, for sequences (µn)n∈N and (νn)n∈N in P(X) which

weakly converge to µ ∈ P(X) and ν ∈ P(X) respectively,

WΦ(µ, ν) ≤ lim inf
n→∞

WΦ(µn, νn).

(ii) For each µ, ν ∈ P(X), a minimizer ofWΦ(µ, ν) exists. That is, there is π ∈ Π(µ, ν)

such that WΦ(µ, ν) = ∥d∥LΦ(π) holds.
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(iii) For each µ, ν ∈ P(X), lim
p→∞

Wp(µ, ν) =W∞(µ, ν).

Proof. (i) For λ′ > 0 and µ′, ν′ ∈ P(X), let us define A(µ′, ν′, λ′) by

A(µ′, ν′, λ′) := inf
π∈Π(µ′,ν′)

∫
X×X

Φ

(
d

λ′

)
dπ.

Since Φ(d/λ′) is non-negative and lower semi-continuous, a minimizer of A(µ′, ν′, λ′)

always exists. Note that A(µ′, ν′, λ′) ≤ 1 is equivalent to WΦ(µ
′, ν′) ≤ λ′, which follows

from the corresponding fact for the gauge norm (see [23]).

Let us take λ > 0 so that A(µ, ν, λ) > 1. By the lower semi-continuity of optimal

transportation cost for the cost function Φ(d/λ),

(4.1) A(µ, ν, λ) ≤ lim inf
n→∞

A(µn, νn, λ).

Thus we have A(µn, νn, λ) > 1 for sufficiently large n ∈ N. As a result, we obtain

λ ≤ lim infn→∞WΦ(µn, νn) and hence the conclusion follows by letting λ ↑WΦ(µ, ν).

(ii) It directly follows from (i) and the fact that Π(µ, ν) is compact with respect to

the topology of weak convergence inherited from P(X ×X).

(iii) We can show it in the same way as [17, Lemma 3.2] by using the lower semi-

continuity of the optimal transportation cost (cf. (4.1)).

In the sequel, we will enter the proof of Theorem 2.2. We refer to [23] for basic

facts on the gauge norm and the Orlicz norm which are used in the proof.

Proof. of Theorem 2.2 (i). Let ỹ ∈ X̃ with 0 < d̃(x̃, ỹ) < ∞ and π ∈ Π(Px̃, Pỹ) a

minimizer of WΦ(Px̃, Pỹ). For r > 0, we define Grf : X → R by

Grf(z) := sup

{
|f(z)− f(w)|

d(z, w)

∣∣∣∣ w ∈ X, d(z, w) ∈ (0, r)

}
.

Then we have

|Pf(x̃)− Pf(ỹ)|
d̃(x̃, ỹ)

=
1

d̃(x̃, ỹ)

∣∣∣∣∫
X×X

(f(z)− f(w))π(dzdw)

∣∣∣∣
≤

∫
X×X

Grf(z)d(z, w)

d̃(x̃, ỹ)
π(dzdw) +

2∥f∥∞π(d ≥ r)

d̃(x̃, ỹ)
.(4.2)

For the second term of the right hand side of (4.2), The Chebyshev inequality together

with the choice of π and (W (Φ)) implies

(4.3) π(d ≥ r) ≤ Φ

(
r

∥d∥LΦ(π)

)−1 ∫
X×X

Φ

(
d

∥d∥LΦ(π)

)
dπ

≤ Φ

(
r

∥d∥LΦ(π)

)−1

= Φ

(
r

WΦ(Px̃, Pỹ)

)−1

≤ Φ

(
r

d̃(x̃, ỹ)

)−1

.
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For the first term in the right hand side of (4.2), the Hölder inequality for the gauge

norm and the Orlicz norm together with (W (Φ)) yields

(4.4)

∫
X×X

Grf(z)d(z, w)

d̃(x̃, ỹ)
π(dzdw) ≤

(
∥|∇f |∥L̃Φ∗ (Px̃)

+ ∥Grf − |∇f |∥L̃Φ∗ (Px̃)

)
.

Note that we have

lim sup
r↓0

∥Grf − |∇f |∥L̃Φ∗ (Px̃)
≤ 2 lim sup

r↓0
∥Grf − |∇f |∥LΦ∗ (Px̃) = 0.

Here the first inequality comes from the general relation between the Orlicz norm and

the gauge norm, and the second follows from the usual monotone convergence theorem

for a decreasing sequence of functions. Take ε > 0 and set r = d̃(x̃, ỹ)Φ−1(ε−1d̃(x̃, ỹ)−1).

Note that r tends to 0 as d̃(x̃, ỹ) → 0 since Φ is superlinear at infinity. Thus, with this

choice of r, by plugging (4.3) and (4.4) into (4.2) and by letting ỹ → x̃ with respect to

d̃, we obtain the conclusion since ε > 0 is arbitrary.

For proving the opposite implication, we prepare some additional properties of the

Hopf-Lax semigroup Qtf .

Lemma 4.2. Under Assumption 2.1 (i), for f ∈ Lipb(X), x, y ∈ X and t, s > 0,

|Qtf(x)−Qtf(y)| ≤ Lip(f)d(x, y), |Qtf(x)−Qsf(x)| ≤ Φ∗(Lip(f))|t− s|,

where Lip(f) is the (global) Lipschitz constant of f with respect to d.

We can prove this assertion in the same way as in the proof of [9, Theorem 2.1

(iv)]. Thus we omit the proof.

Lemma 4.3. Suppose Assumption 2.1 (i) and (G(Φ∗)). Let f ∈ Lipb(X) and

γ̃ : [0, 1] → X̃ a d̃-minimal geodesic. Then PQtf(γ̃(t)) is Lipschitz in t ∈ [0, 1].

Proof. Note that |∇f | is a d-upper gradient if f : X → R is Lipschitz with respect

to d (see [3, Section 2.3], for instance). Thus, under Assumption 2.1 (i), (G(Φ∗)) and

Lemma 4.2 yield that PQtf is Lipschitz with respect to d̃ if f ∈ Lipb(X). Moreover,

|∇PQtf | is bounded uniformly in t. Thus we can easily show PQtf(γ̃(t)) is Lipschitz

in t ∈ (0, 1] (cf. the proof of [17, Proposition 3.7]). Thus only the continuity at t = 0

is left. Since the pointwise convergence of Qtf to f follows in the same way as [12,

Proposition A.3 (3)], we can show PQtf(γ̃(0)) → Pf(γ̃(0)) as t→ 0 and it implies the

conclusion.

Now we are ready to finish the proof of Theorem 2.2 (ii).



74 Kazumasa Kuwada

Proof.of Theorem 2.2 (ii). Set λ := d̃(x̃, ỹ). By the Kantorovich duality,

inf
π∈Π(Px̃,Pỹ)

∫
X×X

Φ

(
d

λ

)
dπ = sup

f∈Cb(X)

[PQ1f(ỹ)− Pf(x̃)]

= sup
f∈Lipb(X)

[PQ1f(ỹ)− Pf(x̃)] ,(4.5)

where Qtf is the Hopf-Lax semigroup associated with Φ(·/λ) instead of Φ in (3.1).

For the second equality, see [13] or the proof of [28, Theorem 5.11], for instance. Let

f ∈ Lipb(X). By Assumption 2.1 (ii), there exists a d̃-geodesic γ̃ : [0, 1] → X̃ with

γ̃(0) = x̃ and γ̃(1) = ỹ. By Lemma 4.3, PQtf̃(γ̃(t)) is differentiable in t a.e. with

respect to the Lebesgue measure and the derivative is bounded. Thus we have

PQ1f(ỹ)− Pf(x̃) = PQ1f(γ̃(1))− PQ0f(γ̃(0)) =

∫ 1

0

∂

∂t
PQtf(γ̃(t))dt.(4.6)

By virtue of Lemma 4.2, we can apply [6, Lemma 4.3.4] to obtain

(4.7)
∂

∂t
PQtf(γ̃(t)) ≤ lim sup

h↓0

PQt+hf(γ̃(t))− PQtf(γ̃(t))

h

+ lim sup
h↓0

PQtf(γ̃(t))− PQtf(γ̃(t− h))

h

for a.e. t ∈ (0, 1). Our assumption (G(Φ∗)) yields

lim sup
h↓0

PQtf(γ̃(t))− PQtf(γ̃(t− h))

h
≤ λ|∇̃PQtf |(γ̃(t))

≤ ∥λ|∇Qtf |∥L̃Φ∗ (Pγ̃(t))
.

(4.8)

For the first term in the right hand side of (4.7), Theorem 3.6 yields

(4.9) lim sup
h↓0

PQt+hf(γ̃(t))− PQtf(γ̃(t))

h
≤ −P (Φ∗(λ|∇Qtf |))(γ̃(t))

by the Dominated convergence theorem and Lemma 4.2. By plugging (4.8) and (4.9)

into (4.7),

(4.10)
∂

∂t
PQtf(γ̃(t)) ≤ ∥λ|∇Qtf |∥L̃Φ∗ (Pγ̃(t))

− P (Φ∗(λ|∇Qtf |))(γ̃(t)).

By virtue of the definition of the Orlicz norm, the Hausdorff-Young inequality yields

∥λ|∇Qtf |∥L̃Φ∗ (Pγ̃(t))
≤ P (Φ∗(λ|∇Qtf |))(γ̃(t)) + 1

By combining this estimate with (4.10), (4.6) and (4.5), we obtain

inf
π∈Π(Px̃,Pỹ)

∫
X×X

Φ

(
d

λ

)
dπ ≤ 1.

It means WΦ(Px̃, Pỹ) ≤ λ and hence the conclusion holds.
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Remark 3. We can easily show that (Wp) implies

(4.11) Wp(P
∗µ̃, P ∗ν̃) ≤ W̃p(µ̃, ν̃)

for any µ̃, ν̃ ∈ P(X̃) by applying [28, Lemma 4.8] (see [17, Lemma 3.3] also). In partic-

ular, if X̃ = X and d̃ = Cd for some constant C > 0, we can obtain the corresponding

estimate for the iteration Pn of the Markov kernel P . It is not clear whether the same

argument works for WΦ or not.

Remark 4. When we can obtain (Wp∗) in a functional analytic way, it sometimes

occurs that it holds only m̃-a.e. for some base measure m̃ with supp(m̃) = X̃. Even in

such a case, we can obtain (4.11) if the following additional assumption holds: There

exists a probability measure π̃∗ on the space of d̃-minimal geodesics in X̃ such that

(e0 × e1)♯π̃
∗ ∈ Π(µ̃, ν̃) is optimal and (et)♯π̃

∗ ≪ m̃ for each t > 0, where et(γ̃) := γ̃(t) is

the evaluation map. Indeed, the Fubini theorem implies that, for π̃∗-a.e. γ̃, (Wp∗) holds

at γ̃(t) for a.e. t. Thus we can apply the same argument as in the proof of Theorem 2.2

(ii) for π̃∗-a.e. γ̃ instead of just one d̃-minimal geodesic. For example, if d̃ is a genuine

distance being compatible with the topology of X̃ and the Ricci curvature is bounded

from below on X̃ in a generalized sense, then this additional assumption holds whenever

µ̃, ν̃ ≪ m̃ (see [21,25]).

Remark 5. As we can observe in the proof of Theorem 2.2, the duality between

(W (Φ)) and (G(Φ∗)) is local. More precisely, in order to obtain (G(Φ∗)) at x̃, we

requires (W (Φ)) for ỹ ∈ X̃ where d̃(x̃, ỹ) is small. Similarly, the proof of (W (Φ))

requires (G(Φ∗)) only on a d̃-minimal geodesic joining x̃ and ỹ.

§ 5. Stabilities

We begin with the stability of (W (Φ)) or (G(Φ∗)) for weak convergence of Markov

kernels. It immediately follows from Theorem 2.2 and Lemma 4.1 (i).

Corollary 5.1. Let P
(n)
x̃ be a sequence of Markov kernels on X parametrized

by x̃ ∈ X̃. Suppose that, for each x̃ ∈ X̃, P
(n)
x̃ converges to a Markov kernel Px̃ as

n → ∞ with respect to the topology of the weak convergence of probability measures. If

(W (Φ)) holds for P (n) for each n ∈ N, then the same holds for Px̃. In particular, under

Assumption 2.1, if (G(Φ∗)) holds for P (n) for each n ∈ N, then the same holds for Px̃.

Remark 6. It could be possible to extend Corollary 5.1 to the case the underlying

space is varying. Let (Xn, dn) be a sequence of compact metric spaces which converges

to a metric space (X, d) in the Gromov-Hausdorff sense. If a sequence of Markov

kernels P
(n)
x̃ ∈ P(Xn) converges to a Markov kernel Px̃ ∈ P(X) associated with the

convergence of spaces, then the same stability should hold (cf. [2] or [19, Section 7]).
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For Theorem 5.3 below which deals with the tensorization property, we state the

following lemma. It asserts the stability for a push-forward by a 1-Lipschitz map.

Lemma 5.2. Let X̂ be a Polish space equipped with an extended distance d̂ and

φ : X → X̂ a 1-Lipschitz map with respect to d̂ and d. We define a new Markov kernel

P̂x̃ on X̂ by the push-forward: P̂x̃ := φ♯Px̃. Suppose that (W (Φ)) or (G(Φ∗)) holds.

Then P̂ also enjoys the corresponding property.

We omit the proof of Lemma 5.2 since we can show it by a simple straightforward

argument. Note that we do not require Theorem 2.2 for the proof.

Theorem 5.3. Let Λ be an at most countable set. For each i ∈ Λ, let Xi and

X̃i be Polish spaces equipped with extended distances di and d̃i. Let P
(i)
x̃i

be a Markov

kernel on Xi parametrized by x̃i ∈ X̃i. Set X :=
∏
i∈ΛXi and X̃ :=

∏
i∈Λ X̃i. Let

d(p) and d̃(p) be lp-product extended distances on X and X̃ respectively. That is, for

x = (xi)i∈Λ and y = (yi)i∈N,

d(p)(x,y) := ∥(di(xi, yi))i∈Λ∥lp .

Let Px̃ := ⊗i∈ΛP
(i)
x̃i

be the product Markov kernel on X parametrized by x̃ = (x̃i)i∈Λ ∈
X̃. Then the following are equivalent:

(i) P (i) enjoys (Wp) for each i ∈ Λ.

(ii) P enjoys (Wp) with respect to d(p) and d̃(p). That is,

Wp (Px̃,Pỹ) ≤ d̃(p)(x̃, ỹ)

for any x̃, ỹ ∈ X̃, where Wp is defined on X with respect to d(p).

In particular, the corresponding equivalence holds for the gradient estimate (Wp∗) under

Assumption 2.1 for Xi and X̃i (i ∈ Λ).

We remark that d(p) can become an extended distance even if all of (di)i∈Λ are

genuine distances when Λ is not finite.

Proof. By virtue of Remark 2, it suffices to consider the case p ∈ [1,∞). The

implication from (ii) to (i) immediately follows from Lemma 5.2 since the canonical

projection ηi : X → Xi (i ∈ Λ) is 1-Lipschitz with respect to d(p) and di.

Let us consider the implication from (i) to (ii). Let x̃ = (x̃i)i∈Λ, ỹ = (ỹi)i∈Λ ∈ X̃

and take an optimal πi ∈ Π(Px̃i , Pỹi) for each i ∈ Λ and set π := ⊗i∈Λπi. Note that π

can be interpreted as an element of Π(Px̃,Pỹ). Under this interpretation,

Wp(Px̃,Pỹ)
p ≤

∫
X×X

dp(p)dπ =
∑
i∈Λ

∫
Xi×Xi

dpi dπi =
∑
i∈Λ

Wp(Px̃i , Pỹi)
p ≤ d(p)(x̃, ỹ)

p
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by using the condition (i). Hence the assertion holds.

The last result in this section is the stability for averaging. It follows similarly as

in Remark 3 when p <∞. The case p = ∞ will be dealt according to Remark 2.

Corollary 5.4. Let (S,S , ξ) be a probability space and (P (α))α∈S a family of

Markov kernels parametrized on X̃. Let (d̃α)α∈S be a family of extended distances

on X̃. Assume that, for each A ∈ B(X), (x̃, α) 7→ P
(α)
x̃ (A) is a measurable map from

(X̃×S,B(X̃)⊗S ) to ([0, 1],B([0, 1])). We define the Markov kernel P and the extended

distance d̃ on X̃ by

Px̃(A) :=

∫
S

P
(α)
x̃ (A)ξ(dα), d̃(x̃, ỹ) := ∥d̃·(x̃, ỹ)∥Lp(ξ).

(i) Suppose (Wp) for P
α and d̃α for a.e. α ∈ S. Then (Wp) holds for P and d̃.

(ii) Suppose Assumption 2.1 (i) and Assumption 2.1 (ii) for d̃α for a.e. α ∈ S. Suppose

(Wp∗) for P
(α) and d̃α for a.e. α ∈ S. Then (Wp∗) holds for P and d̃.

We remark that Assumption 2.1 (ii) for d̃ is not required in Corollary 5.4 (ii).

§ 6. Examples

We first demonstrate that the Hölder continuity estimate for solutions to the Dirich-

let problem falls into our framework.

Example 6.1. Let D be a regular bounded domain in Rm, m ≥ 2. We denote

the Euclidean distance by ρ. Let us denote the harmonic measure over D by (Hx̃)x̃∈D.

That is, Hx̃ is a Markov kernel on ∂D parametrized by x̃ ∈ D such that, given f : ∂D →
R bounded and measurable, Hf gives a solution to the Dirichlet problem ∆u = 0 on D

and u|∂D = f . Let α ∈ (0, 1). In [1], the following property is studied in detail: there

exists a constant C > 0 such that, for any bounded measurable function f : ∂D → R,

(6.1) ∥Hf∥∞ + ∥Hf∥C0,α ≤ C (∥f∥∞ + ∥f∥C0,α) ,

where ∥ · ∥C0,α is the Hölder constant of the exponent α. We show that (6.1) can be

interpreted as a variant of (G∞) under an appropriate choice of X, X̃, d, d̃ and P . Let ⋆

and ⋆̃ be points separated from Rm and set X = ∂D∪{⋆} and X̃ = D∪{⋆̃}. We define

a distance function d on X respectively by d|∂D×∂D := ρα and d(x, ⋆) := diam(∂D)α

for x ∈ ∂D. We also define a distance function d̃′ on X̃ in the same manner. Let C ′ > 0

be a constant and set d̃ := C ′d̃′. A Markov kernel (Px̃)x̃∈X̃ on X is defined by Px̃ = Hx̃

when x̃ ∈ D and P⋆̃ = δ⋆. Now we claim that (6.1) is equivalent to (G∞) up to a choice
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of constants. For f : ∂D → R, we extend it to f̂ : X → R by f̂ |∂D = f |∂D and f̂(⋆) = 0.

Then (G∞) for f̂ means

(6.2) max

{
1

diam(D)
∥Hf∥∞, ∥Hf∥C0,α

}
≤ C ′ max

{
1

diam(∂D)
∥f∥∞, ∥f∥C0,α

}
.

Obviously, (6.2) is equivalent to (6.1) up to a choice of C and C ′. Note that (G∞) is

invariant under adding a constant to f . Thus if (G∞) holds for those f : X → R with

f(⋆) = 0, then (G∞) holds for all f : X → R. These observations easily imply the

claim. Though both d and d̃ do not satisfy Assumption 2.1 in this case, we can employ

the duality since p = 1; See Remark 2.

Example 6.2. Let X̃ be a complete Riemannian manifold of dim X̃ ≥ 2 without

boundary. We denote the Riemannian distance on X̃ by d̃. Suppose that the Ricci

curvature on X̃ is bounded from below by a constant K ∈ R. It is well-known that for

each x̃1, x̃2 ∈ X̃ there is a coupling of Brownian motions (B(1)(t), B(2)(t))t≥0 starting

from (x̃1, x̃2) such that

(6.3) d̃(B(1)(t), B(2)(t)) ≤ e−Ktd̃(x̃, ỹ)

almost surely for each t ≥ 0 (see e.g. [18, 30]). Let X := C([0,∞) → X̃) with the

topology of compact uniform convergence. We define an (extended) distance d on X

by d(w,w′) := supt≥0 e
Ktd̃(w(t), w′(t)). Let us define a Markov kernel (Px̃)x̃∈X̃ as a

Wiener measure. That is, Px̃ ∈ P(X) is the law of the Brownian motion on X̃ starting

from x̃. Then we can easily verify that (6.3) yields (Wp) with p = ∞.

Example 6.3. The following estimate for a diffusion semigroup P (t) of Markov

kernels on X is studied well in the literature (e.g. [5,18,29]): There is a constant K ∈ R
and p ∈ (1,∞) such that, for x, y ∈ X and t > 0,

(6.4) Wp(P
(t)
x , P (t)

y ) ≤ e−Ktd(x, y).

It is regarded as a characterization of the presence of a lower Ricci curvature bound by

K (Actually, (6.3) easily implies (6.4)). A subordination of (P (t))t≥0 by a subordinator

ζt ∈ P([0,∞)), t ≥ 0 (see e.g. [24]) is an example of the averaging of (6.4) in the sense

of Corollary 5.4. Actually, this estimate falls into the framework of Corollary 5.4 by

choosing X̃ = X and d̃t := e−Ktd. Thus we immediately obtain the following result.

Corollary 6.4. Let X, d and P
(t)
x be as in Example 6.3 and suppose (6.4). Let

ζt ∈ P([0,∞)), t ≥ 0 be a subordinator with the Laplace exponent ψ. That is, for z ≥ 0,

(6.5)

∫ ∞

0

e−zsζt(ds) = exp (−tψ(z)) .
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Let P
ζ,(t)
x be the subordination of (P

(t)
x )t≥0 by (ζt)t≥0. That is, for t ≥ 0,

P ζ,(t)x :=

∫ ∞

0

P (s)
x ζt(ds).

When K < 0, we assume that the left hand side of (6.5) is finite even when z = pK and

we denote the right hand side of it by using the same symbol ψ(pK). Then we have

Wp(P
ζ,(t)
x , P ζ,(t)y ) ≤ e−tψ(pK)/pd(x, y).

In particular, for β-resolvent kernel R(β)
x :=

∫ ∞

0

e−βsP (s)
x ds with β > −pK,

Wp(βR
(β)
x , βR(β)

y ) ≤
(

β

β + pK

)1/p

d(x, y).

Note that the corresponding stability of the gradient estimate (Wp∗) under subor-

dination does not seem obvious when K ̸= 0 in (6.4).
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ed., Birkhäuser Verlag, Basel, 2008.

[7] D. Bakry, Functional inequalities for Markov semigroups, Probability measures on groups:

recent directions and trends (Mumbai), Tata Inst. Fund. Res., 2006, pp. 91–147.

[8] D. Bakry, I. Gentil, and M. Ledoux, On Harnack inequalities and optimal transport,

Preprint. Available at: arXiv:1210.4650.

[9] Z.M. Balogh, A. Engoulatov, L. Hunziker, and O.E. Maasalo, Functional inequalities and

Hamilton-Jacobi equations in geodesic spaces, Potential Anal. 36 (2012), no. 2, 317–337.

[10] François Bolley, Ivan Gentil, and Arnaud Guillin, Convergence to equilibrium in Wasser-

stein distance for Fokker–Planck equations, J. Funct. Anal. 263 (2012), no. 8, 2430–2457.

[11] N. Gigli, K. Kuwada, and S. Ohta, Heat flow on Alexandrov spaces, Comm. Pure

Appl. Math. 66 (2013), no. 3, 307–331.

[12] N. Gozlan, C. Roberto, and P.-M. Samson, Hamilton-jacobi equations on metric spaces

and transport entropy inequalities, To appear in Rev. Mat. Iberoam. Available at:

arXiv:1203.2783.



80 Kazumasa Kuwada

[13] F. Hirsch, Measurable metrics, intrinsic metrics, and Lipschitz functions, Current trends

in potential theory (Theta, Bucharest), Theta Ser. Adv. Math. 4, 2005, pp. 47–61.

[14] Y. Kitabeppu, Lower bound of coarse Ricci curvature on metric measure spaces and eigen-

values of Laplacian, Preprint. Available at: arXiv:1112.5820.

[15] E. Kokubo and K. Kuwae, On nonlinear spectral gap for symmetric Markov chains with

coarse Ricci curvatures, Preprint.

[16] P. Koskela and Y. Zhou, Geometry and analysis of Dirichlet forms, Adv. Math. 231

(2012), no. 5, 2755–2801.

[17] K. Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal. 258

(2010), no. 11, 3758–3774.

[18] , Convergence of time-inhomogeneous geodesic random walks and its application to

coupling methods, Ann. Probab. 40 (2012), no. 5, 1945–1979.

[19] K. Kuwada and K.-T. Sturm, Monotonicity of time-dependent transportation costs and

coupling by reflection, To appear in Potential Anal.

[20] J. Lott and C. Villani, Hamilton-Jacobi semigroup on length spaces and applications, J.

Math. Pures Appl. (9) 88 (2007), no. 3, 219–229.

[21] , Ricci curvature for metric-measure spaces via optimal transport, Ann. Math. 169

(2009), no. 3, 903–991.

[22] Y. Ollivier, Ricci curvature of Markov chains on metric spaces, J. Funct. Anal. 256 (2009),

no. 3, 810–864.

[23] M. M. Rao and Z. D. Ren, Theory of orlicz spaces, CRC press, 1991.
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