<table>
<thead>
<tr>
<th>Title</th>
<th>Clinical Studies of Selective Cine Coronary Arteriography and Surgical Revascularization of Ischemic Myocardium Part 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>SHIRAI, OSAMU</td>
</tr>
<tr>
<td>Citation</td>
<td>日本外科宝函 (1971), 40(1): 28-43</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1971-01-01</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/2433/207924">http://hdl.handle.net/2433/207924</a></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Clinical Studies of Selective Cine Coronary Arteriography and Surgical Revascularization of Ischemic Myocardium

BY

OSAMU SHIRAI

The 2nd Surgical Division, Kyoto University Medical School
(Director: Prof. Dr. CHUJI KIMURA)

Received for Publication Apr. 15, 1971

Part 2
Surgical Revascularization of Ischemic Myocardium

I. Introduction

Although many operative procedures have recently been proposed for the treatment of ischemic heart disease, only few of these procedures deserved extensive clinical application and there are still disagreements as to the effect of surgical intervention.

Among many operative procedures thus proposed, the implantation of internal mammary artery into myocardium originally initiated by VINEBERG is now being accepted by increasing number of chest surgeons as one of effective treatments for ischemic heart disease.

This study was undertaken to evaluate the clinical application of the implantation of internal mammary artery into myocardium.

II. Review on the development of surgical treatment of ischemic heart disease

Many investigators have suggested different surgical procedures for the relief of ischemic heart disease.

In 1920, for the purpose of blocking of the pain conducting pathway, cervico-thoracic ganglionectomy was proposed by JENNESECO. By this procedure, LINDGREN found definite relief of pain on the operative side in 64% of the patients.

In 1933, the idea of total thyroidectomy was introduced to reduce the metabolic demands of the body for the treatment of angina pectoris. BLUMGART reported that 47% of 95 patients received excellent relief of symptoms from thyroidectomy.

These procedures, however, were soon abandoned by the reason why they did not seem to effect coronary blood flow significantly, even though many patients had symptomatic improvement.
Since then, attempts have been made to increase the net arterial flow to myocardium, either by the technique of coronary endarterectomy or by trying to supply the heart with arterial blood from systemic arteries. Beck\textsuperscript{5} produced pericardial adhesions by abrasion of heart with scraping or by adding irritants such as asbestos or talc inside the pericardium. This procedure was used to open the anastomosis between the pericardial systemic arteries and the coronary endarteries. Ligature of the internal mammary arteries was performed by Fieschi\textsuperscript{6} in 1942 in order to produce proximal hypertension and increase collateral flow through the pericardiophrenic artery to the pericardium and secondarily to the heart.

In spite of surgical procedures above described, either implantation of internal mammary artery into ischemic myocardium or direct coronary revascularization with bypass graft of saphenous vein is currently receiving more attention of cardiac surgeons.

In 1946, Vineberg\textsuperscript{11} devised a technique whereby a bleeding systemic artery was implanted into the myocardium for the purpose of increasing blood flow to the heart. In 1952, he\textsuperscript{7} firstly performed implantation of internal mammary artery into the left ventricular myocardium of the patients.

This ingenious idea that a bleeding artery could be implanted within myocardium without causing a hematoma and without producing intravascular clotting was generally disagreed by the contemporary cardiac surgeons. In 1958, Sones selectively opacified the patency of internal mammary artery that had been implanted several years previously by Vineberg himself. That arteriography clearly showed that implanted artery had formed capillary anastomosis with proximally obstructed anterior descending artery. Objective evidence of Vineberg's operation apparently stimulated enthusiasm of cardiac surgeon for potency of the surgical treatment of ischemic heart disease.

Since then, surgeon searched another neighboring artery which might be available for revascularizing the heart and could reach to the heart. The splenic artery\textsuperscript{9} and intercostal artery\textsuperscript{9} were thought to be available, and gastroepiploic artery\textsuperscript{10} was more accessible to the posterior aspect of the heart.

Even after the trial of above mentioned variations, the internal mammary artery has been proved to be most potent source of blood supply for indirect coronary revascularization.

This procedure, however, did not seem to immediately supply the ischemic myocardium with extrinsic arterial blood and four to six months were necessary for collateral anastomotic vessels to develop. Early clinical experience of peripheral vascular surgery has stimulated direct coronary revascularization including endarterectomy\textsuperscript{11}, patch graft endarterectomy\textsuperscript{12}, segmental interposition of saphenous vein\textsuperscript{14}, internal mammary–coronary artery bypass\textsuperscript{15}, and aortocoronary bypass by saphenous vein\textsuperscript{15}.

In 1968, the saphenous vein for bypass grafting in the coronary circulation was extensively used by Favaloro\textsuperscript{12} at the Cleveland Clinic. Since then bypass graft by saphenous vein has a tendency to be employed as effective treatment for ischemic heart disease by many investigators.
III. Operative technique of internal mammary artery implantation

All patients were digitalized and were given coronary vasodilators as Nitrol preoperatively.

Blood pressure and electrocardiogram were carefully monitored to predict undesirable hypotension or refractory arrhythmia resulting from the manipulation on heart throughout operation. Mixture of Halothane, nitrous oxide, and oxygen were used for anaesthesia.

The patient was placed on the table in the right lateral position. The skin incision extended from the midline anteriorly to the posterior axillary line. The left pleural space is entered in the fifth intercostal space.

Both the lung and pericardial fat pad are retracted posteriorly to expose the left internal mammary bundle and the internal mammary artery is made visible down to the third or fourth intercostal space. Mobilization of the internal mammary artery may be a tedious procedure and initial mobilization of the artery begins at the third or fourth intercostal space. The internal mammary artery is freed from overlying pleura, fascia, muscle to the first intercostal space. The intercostal branches isolated are ligated with fine silk and are devided.

Dissection of the artery at the fifth and sixth intercostal space is most carefully undertaken. All branches at that level are considered as a potential source of the revascularization. At sixth intercostal space, the internal mammary artery usually joins the superior epigastric artery.

The mobilized internal mammary artery is left in continuity and the vessel is protected by gauze previously soaked in the solution of Papaverin. Papaverin affords effective relief of vasospasmus resulting from the extensive dissection.

Pericardial fat pad is dissected away from the underlying pericardium. After injection of 2% Xylocaina into pericardial sac, the pericardium was widely opened with T or Y shaped incision.

Careful examination is made by palpation of the right, anterior descending, and left circumflex artery. The surfaces of both ventricles are inspected for the presence of myocardial infarction.

When the freeing of the internal mammary artery from chest wall is completed, the superior epigastric artery is ligated as distally as possible. The internal mammary artery was pumped from distal end with physiological saline solution containing Heparin. The preserved side branches are cut as close to the parent vessel as possible and one or two additional incisions in arterial wall are added to create the side holes. Typical implant has three or four actively bleeding branches.

The location of the tunnel is determined by the finding of coronary arteriography. The length of the myocardial tunnel ranges from 4 to 5cm. The axis and length of tunnel are fixed by two stab wounds on the ventricular myocardium. The tip of specially designed clamp is inserted into a distal stab wound and clamp is guided to the proximal stab wound in the depth of two thirds of whole myocardium. The artery is pulled through so that all of bleeding branches are enclosed within the
whole length of the tunnel and it is fixed in position by the later suture which was placed in the myocardium. Twisting of the artery should be avoided by careful inspection (Figures 1 and 2).

![Specially designed tunnel clamp.](image)

**Fig. 1** Specially designed tunnel clamp.

**Implantation of internal mammary artery**

![Diagram of internal mammary artery implantation](image)

The internal mammary artery has been implanted into a myocardial tunnel.

**Fig. 2**

Any bleeding from the proximal wound of the tunnel is controlled by light pressure over a gauze sponge.

The lung is expanded to make certain that the lingula does not encroach upon the internal mammary artery. The pericardium itself is not closed to prevent the constriction of implanted artery.
A thoracotomy tube is inserted and then the chest is closed in routine fashion. Maintenance of the adequate blood pressure is the most important feature in the postoperative care. Nitrol is continuously administrated as long as 6 months postoperatively and digitalis is discontinued as it is not indicated. Pyridoxal phosphate was also administrated routinely to improve cholesterol metabolism.

IV. Indication and contraindication

Surgical indication is determined by the following criteria.

1) Anginal pain persisting longer than one year in spite of adequate medical therapy.
2) The history of previous myocardial infarction.
3) Electrocardiographic evidence of myocardial ischemia.
4) Coronary arteriography showing evidence of occlusive coronary disease.

Surgical procedure should be effective only when coronary arteriography shows sufficient coronary obstruction to rise the demand for collateral. Sewell observed that an obstruction to less than one quarter normal diameter seemed necessary to provide adequate demand for collateral development.

In the presence of recent myocardial infarction, Vineberg insists that any surgical procedure must be delayed for a period of six months. There seems to be two reasons for postponing several months: 1) to enable the heart to scar solidly the area of infarction and 2) to see how the patient does clinically. In this study, surgical procedure has been successfully performed in a patient who had an attack of acute myocardial infarction two months previously.

If the patient is over the age of 65 years old, or has clinical manifestations of refractory congestive heart failure, uncontrolled hypertension, frequent episodes of atrial tachycardia or ventricular tachycardia, manifest valvular disease to indicate surgery, severe emphysema, or associated incurable diseases, he can not be considered as a candidate of operation. Angina decubitus itself is not considered as contraindication.

Sewell insists that the patients who have triple coronary diseases and have an end-diastolic pressure in the left ventricle above 14mmHg should be considered as angiographic contraindication.

V. Results

A total of 20 patients has been performed revascularization of myocardium in the past three years. They are 15 patients with angina pectoris and five patients with previous myocardial infarction ranging in age from 29 to 63 years. Some of their coronary arteriographies are showed in Figures 3, 4, 5 and 6.

Results of coronary arteriography in operative series are summarized in Table 1. Obstructive disease was found in 59 main coronary arteries. The right coronary artery was involved in 11 patients (55%), the left main in 12 (60%), the anterior descending in 19 (95%), and circumflex in 17 (85%). Single or multiple obstructions exceeding 75% narrowing were recognized in 15 operated patients (Table 2).

The implantation of left internal mammary artery was performed in 18 patients.
### Table 1
Cases of Myocardial Revascularization

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age</th>
<th>Sex</th>
<th>Diseases</th>
<th>Operations</th>
<th>Coronary arteriography</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41</td>
<td>M</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 0</td>
<td>LMCA 1</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>M</td>
<td>MI</td>
<td>implantation of left IMA</td>
<td>RCA 3</td>
<td>LMCA 2</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>M</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 1</td>
<td>LMCA 1</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>F</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 1</td>
<td>LMCA 2</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>M</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 1</td>
<td>LMCA 1</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>M</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 1</td>
<td>LMCA 1</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td>M</td>
<td>MI</td>
<td>implantation of left IMA</td>
<td>RCA 0</td>
<td>LMCA 0</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>M</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 0</td>
<td>LMCA 1</td>
</tr>
<tr>
<td>9</td>
<td>44</td>
<td>F</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 0</td>
<td>LMCA 1</td>
</tr>
<tr>
<td>10</td>
<td>38</td>
<td>M</td>
<td>MI</td>
<td>implantation of left IMA</td>
<td>RCA 3</td>
<td>LMCA 1</td>
</tr>
<tr>
<td>11</td>
<td>35</td>
<td>M</td>
<td>MI</td>
<td>implantation of left IMA</td>
<td>RCA 3</td>
<td>LMCA 1</td>
</tr>
<tr>
<td>12</td>
<td>46</td>
<td>M</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 0</td>
<td>LMCA 0</td>
</tr>
<tr>
<td>13</td>
<td>38</td>
<td>M</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 2</td>
<td>LMCA 0</td>
</tr>
<tr>
<td>14</td>
<td>54</td>
<td>M</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 0</td>
<td>LMCA 0</td>
</tr>
<tr>
<td>15</td>
<td>49</td>
<td>M</td>
<td>MI</td>
<td>interposition of saphenous vein</td>
<td>RCA 3</td>
<td>LMCA 1</td>
</tr>
<tr>
<td>16</td>
<td>63</td>
<td>M</td>
<td>AP</td>
<td>bypass graft of saphenous vein</td>
<td>RCA 3</td>
<td>LMCA 0</td>
</tr>
<tr>
<td>17</td>
<td>29</td>
<td>F</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 0</td>
<td>LMCA 0</td>
</tr>
<tr>
<td>18</td>
<td>30</td>
<td>M</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 0</td>
<td>LMCA 0</td>
</tr>
<tr>
<td>19</td>
<td>51</td>
<td>F</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 0</td>
<td>LMCA 0</td>
</tr>
<tr>
<td>20</td>
<td>57</td>
<td>M</td>
<td>AP</td>
<td>implantation of left IMA</td>
<td>RCA 0</td>
<td>LMCA 0</td>
</tr>
</tbody>
</table>

excellent = working full time without any anginal pain  
good = working full time with infrequent anginal pain  
* = postoperative follow up is not long enough to evaluate effect of the operation

### Table 2
Obstructive Regions of Coronary Branches in 20 Operated Patients

<table>
<thead>
<tr>
<th>Coronary</th>
<th>Branches</th>
<th>Involved No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>more than 25%</td>
</tr>
<tr>
<td>ADA</td>
<td>19 (95%)</td>
<td>17 (85%)</td>
</tr>
<tr>
<td>LCA</td>
<td>17 (85%)</td>
<td>9 (45%)</td>
</tr>
<tr>
<td>LMCA</td>
<td>12 (60%)</td>
<td>1 (5%)</td>
</tr>
<tr>
<td>RCA</td>
<td>11 (55%)</td>
<td>6 (30%)</td>
</tr>
</tbody>
</table>

There have not been apparent postoperative complication in this procedure except two patients with hemothorax. Atelectasis due to hemothorax was restored by several thoracentese.

In postoperative courses of 14 patients with Vineber’s operation, 5 patients had not attack of anginal pain postoperatively and were classified as satisfactory. Five patients began to suffer from slight anginal pain on seventh to tenth postoperative...
Fig. 3 Single frame from the coronary arteriography of a patient with previous myocardial infarction. The arrows mark complete obstruction in right coronary and severe obstruction in anterior descending and left circumflex.

Fig. 4 Single frame from the coronary arteriography of a patient with previous myocardial infarction. The arrow marks complete obstruction in distal part of left circumflex.
day and become asymptomatic within one to six months. Residual 3 patients still continue to suffer from slight anginal pain over the period of 6 months after the operation (Table 3).

However, all of them returned to former occupation with almost full activity at the present time.
Table 3

Disappearance of anginal attack after Vineberg's operation

<table>
<thead>
<tr>
<th>Anginal attack</th>
<th>Myocardial infarction</th>
<th>Angina pectoris</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>no attack</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>disappeared within 1 month</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>disappeared within 2 to 6 months</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>continue more than 6 months</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>total</td>
<td>4</td>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>

Their postoperative electrocardiograms were improved in only four patients, and unaltered in 10 patients.

Figure 7 shows significant improvement of postoperative electrocardiogram.

The definite correlation between postoperative electrocardiogram and clinical improvement was not concluded.

Internal mammary arteriography to opacify the patency of vessels and collateral development has been performed in 5 patients. Internal mammary artery were opacified in all 5 patients. Two vessels were proved to have significant collateral communications with coronary artery and coronary veins were also opacified. Other 3 vessels had less significant collateral communications. Figure 8 shows patency of implanted internal mammary artery and significant collateral communications with own coronary artery.

Direct saphenous vein grafting of coronary artery were performed in 2 patients in this study. A patient was performed interposition of right coronary artery with
saphenous vein and implantation of left internal mammary artery into left ventricular myocardium. Another underwent aortocoronary bypass graft of right coronary artery with saphenous vein. Unfortunately the former died from refractory ventricular fibrillation four hours postoperatively and the latter died from an attack of acute myocardial infarction 31 days after operation.

### Table 4
Operative Mortality Following Internal Mammary Implantation in Different Clinical Studies

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Operative Method</th>
<th>Cases of Operation</th>
<th>Mortality</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vineberg</td>
<td>Standard Operation</td>
<td>140</td>
<td>7</td>
<td>5.0%</td>
</tr>
<tr>
<td>Vineberg</td>
<td>Combined Operation</td>
<td>62</td>
<td>6</td>
<td>9.7%</td>
</tr>
<tr>
<td>Favaloro</td>
<td>Single Implantation</td>
<td>614</td>
<td>33</td>
<td>5.4%</td>
</tr>
<tr>
<td>Favaloro</td>
<td>Double Implantation</td>
<td>150</td>
<td>14</td>
<td>9.3%</td>
</tr>
<tr>
<td>Sewell</td>
<td>Pedicle Operation</td>
<td>240</td>
<td>15</td>
<td>6.3%</td>
</tr>
</tbody>
</table>

VI. Discussion

Anatomical structure of the ventricular myocardium have the extensive vascular network provided by intramyocardial sinusoids. Because of characteristic structure of the myocardium, an implanted internal mammary artery fails to form hematoma and remains patent for an indefinite period of time.

VINEBERG\(^{20,21}\) believes that blood shifts from internal mammary artery to myocardial sinusoids after implantation, and sinusoids can provide runoff from internal mammary artery until collateral channels to coronary arteries develop. However,
arteriographic finding and observation by corrosion cast at postmorten, suggested
that the sinusoids usually did not function in this way for at least several hours
after implantation.

SEWELL\(^{19}\) believes that thrombosis of the blind distal end of internal mammary
artery is usually prevented by reflux of blood moving back and forth with heart
beat. Nevertheless, exact mechanism of providing patency of internal mammary
artery at immediate postoperative period is still unknown.

TRAPP\(^{22}\) demonstrated that early anastomosis occurred in process of three phases;
namely 1) hematoma produced by bleeding branches of the implanted artery, 2)
capillary or capillary-like channels arising from the hematoma and anastomose with
the naturally existing vascular system of heart, and 3) naturally occurring vessels
incidentally residing in the area of the hematoma eventually connect directly with
hematoma. Trapp insisted that these three phases were apparent as early as six
postoperative day.

VINEBERG\(^{20}\) observed that the artery could be seen to branch at the end of twelve
days, and these branches grow into wellformed arterioles which joined up with
arterioles lying in the left ventricular myocardium at the end of three to four
weeks.

His statement may correspond with the fact that 5 patients in this study
began to suffer from slight anginal pain on seventh to tenth postoperative day and
became asymptomatic within one to six months.

It is well known that the greater the differential pressure between implanted
internal mammary artery and coronary artery, the sooner is the progress of the
artery branching. VINEBERG\(^{20}\) reported that the anastomotic rate averaged 71% in
ischemic hearts in comparison with 46% in non-ischemic hearts.

GRIOLLOS\(^{23}\) observed that an average flow of 70 ml/min equivalent to 25% of
normal coronary blood flow was directed into the ischemic canine heart from bilateral
mammary arteries, however an average flow shifted into non-ischemic canine heart
was only 18 ml/min.

PROVAN\(^{24}\) measured blood flow of internal mammary artery by means of an
electromagnetic flow meter after implantation in dogs. In the presence of demand
for increasing coronary flow, initial increase of flow in the implant took place 6
weeks after implantation and that flow continued to increase for up to 6 months.
In his experiments, the pattern of phasic flow of internal mammary artery resembled
that of coronary artery, not that of systemic artery.

In original VINEBERG's procedure, the left internal mammary artery was detached
from the chest wall from the fourth to sixth intercostal space, and was buried into
tunnel in the left ventricular wall. One to two intercostal vessels are left open to
bleed into the myocardial tunnel.

One of modifications was made by EFFLER\(^{27}\) who used a longer myocardial
tunnel. EFFLER's myocardial tunnel was 4 to 5 cm long, whereas the tunnel of origi-}

nal VINEBERG's procedure was 2.5 to 4 cm long.

Another modification made by SEWELL\(^{17)(26)(27)(28}\), was named pedicle operation; the
inclusion of internal mammary vein and surrounding soft tissues along with internal
mammary artery to diminish injury of artery and to avoid undesired torsion of the enclosed vessel.

Sewell\textsuperscript{27,28} used a knife to make his myocardial tunnel, whereas Vineberg made the tunnel by spearing a clamp.

Site of coronary artery disease, however, is often multiple and myocardial ischemia may be diffuse. For these reasons, efforts were made to develop techniques which would achieve more wide revascularization of the lateral and posterior part of the myocardium. Vineberg\textsuperscript{18,29,30,31} performed the combined procedure consisting of internal mammary artery implantation, epicardectomy and free omental graft. Favaloro\textsuperscript{32,33} performed double internal mammary implantation by midline incision extending from the tip of the sternum to umbilicus. Pearse\textsuperscript{34} proposed triple operation; namely, implantation of bilateral internal mammary arteries and gastroepiploic artery.

In Favaloro's\textsuperscript{33} clinical reports, atrial arrhythmia and acute myocardial infarction were the most common complications. These atrial fibrillations usually occurred in the first 48 hours and responded readily to rapid digitalization. Myocardial infarction were recuperated with usual medical treatment and with bed rest for approximately 3 weeks.

Operative mortality by different investigators are listed in Table. 4, ranging from 5 to 10%.

In this study, there has not been apparent postoperative complication except two cases with hemothorax.

Criteria for postoperative evaluation of Vineberg's procedure are based on subjective and objective evidences. These include 1) the disappearance or diminution of anginal pain, 2) reduction or cessation of coronary vasodilator drugs, 3) disappearance of heart failure, 4) increase in exercise tolerance, 5) return to work at former occupation, and 6) improvement of electrocardiographic change.

Favaloro\textsuperscript{35} reported that 167 (79.1\%) of 211 patients had improved in his follow up study.

Of 14 patients followed up in this study, 11 were excellent and working full time without any anginal pain. Residual 3 patients were good and working full time with infrequent anginal pain.

Internal mammary arteriography is the only method available so far that gives a direct demonstration of the number, size, and location of collateral communications. In arteriographic study of 131 patients with Sewell's\textsuperscript{19} pedicle operation, 91 patients of them had patent vessels and 85 patients had collateral vessels. In 127 implants of double internal mammary implantation, Fergusson\textsuperscript{36} demonstrated 117 patent vessels and 69 collateral vessels. Kay\textsuperscript{37} designed the indirect method to determine flow computed by cine angiographic technique. In his method, the computed flows ranged 48 to 104cc/min. from both internal mammary artery. Björk\textsuperscript{38}, however, showed patent vessels in only 22 of 48 patients and insisted that results of Vineberg's procedure did not significantly differ from Beck's procedure.

In this study, internal mammary artery were opacified in all 5 patients who were examined. Two vessels were proved to have remarkable collateral commu-
communications with coronary artery and other 3 vessels were proved less significant collateral communications.

The excellent results of direct coronary revascularizations such as interposition of saphenous vein\(^{14}\), bypass graft of saphenous vein\(^{23}\), and internal mammary-coronary artery anastomosis\(^{15}\) were reported by many investigators. Furthermore, combined procedure of direct revascularization and implantation of internal mammary artery\(^{16}\) is being adopted by increasing number of investigators.

The greatest advantage of direct revascularization is that this procedure immediately supplies the ischemic myocardium with sufficient amount of arterial blood. But real benefit of direct revascularization will not be rationally appreciated until follow up study for longer period is permitted.

VII. Summary

A total of 18 patients was performed implantation of left internal mammary artery into left ventricular myocardium during past 3 years.

There was not severe complication in VINEBERG’s procedure.

In follow up study of 14 operated patients, 11 patients are classified as excellent and are working full time without anginal pain. Other 3 patients are good and are working full time with infrequent anginal pain.

Reflecting on postoperative courses of operated patients, it was presumable that collateral branches communicating with coronary artery system might take one to six months to develop.

Postoperative internal mammary arteriography in 5 patients proved various degree of collateral communications with coronary artery.

It is conclusive that VINEBERG’s procedure can surely afford one of effective treatments for ischemic heart disease.

Acknowledgement

The author wishes to thank Prof. Dr. Chuji kimura for his kind guidance and Assoc. Prof. Dr. Yorinori Hikasa for many valuable suggestions and criticism throughout this investigation.

He also express his sense of indebtedness to his co-workers, Drs K. Abe, Y. Kanzaki, and M. Yokota for their encouragements and assistances.

The abstract of this article was reported at the 11th Annual Meeting of the Japanese College of Angiology, Tokyo, Nov. 13, 1970.

References.

4) Blumgart: Congestive heart failure and angina pectoris. The therapeutic effect of thy-
Surgical Revascularization of Ischemic Myocardium


和文抄録

選択的冠動脈造影法及び冠動脈血行再建術の臨床的研究

京都大学医学部外科教室第2講座（指導：木村忠司教授）

白 井 治

1. 選択的冠動脈造影法
　近年虚血性心疾患の外科的治療法の発達と共に、心筋虚血部位及び冠動脈病変の程度を判定する為に冠動脈に直接カテーテルを挿入し選択的に造影する方法が考案され注目されつつある。著者は3年前本邦に於いて未発達である選択的冠動脈造影法の臨床的研究に着手し現在迄58症例34症例の症例を含む52症例に施行した。当初検出された心室壁動脈は冠動脈損傷の如く重篤な合併症に遭遇する事もなく、進む得たことはこの検査法が比較的安全なものであることを証明している。

装置はSiemens 透視装置及びArriflex 35mmシネカメラを用いた。局所麻酔下に右上腕動脈よりSones のカテーテルを挿入した後患者を2 斜位にし、透視下にて冠動脈口に達せる、操作に熟達すれば容易である。造影剤は80％アンギオコンレインまたは80％コンラキシンHを使用し手押しだで1 回量7～10cc を注入した。左右冠動脈への造影剤注入時に心電図に独特のQRS及びT波の変化を認め、即ち右冠動脈注入時には右軸偏位及びT波の逆転を、左冠動脈注入時には左軸偏位及びT波の上昇を認めた。

虚血性心疾患35症例よりその如き冠動脈造影所見を認めた。

1) 冠動脈病変は多くの場合多発性で1ヶ所のみに限局することは稀である。

2) 冠動脈病変部位は左前下行枝に最も多く左回旋枝、左冠動脈主幹の順序で右冠動脈は最少である。

3) 心電図により推定された硬塞部位及び冠動脈造影所見は必ずしも一致しない。著者は本研究に於いて、選択的冠動脈造影法の安全性を確認すると共に、虚血性心疾患の部位及び程度を判定する為に非常に有効な方法である事を証明した。

2. 冠動脈血行再建術
　Vinebergにより創設された内胸動脈心筋内移植術は術後内胸動脈冠動脈閉塞のX線による検査の確認により、その有効性が証明され虚血性心疾患の外科的治療法として注目されつつある。

著者は過去3年間選択的冠動脈造影所見より冠動脈損傷及び閉塞を認めた症例に左内胸動脈心筋内移植術を施行した。

手術的は第5肋間にて開胸後左内胸動脈を第1肋間より第6肋間迄丁寧に遊離し特殊鋼子を用いて内胸動脈末梢端5cmを左室歯内に埋没する。埋没すべき末梢端には動脈枝及び細管孔を含めて平均4個の側孔を作製し、その側孔からは絶えず動脈血が吹出しされた。埋没部での血流形成は認められない。

14症例の遠隔成績では11症例に狭心症発作が全く消失し、3症例に今なお軽度の狭心症発作を認めているが全て従来の職業に復帰している。又狭心症発作が消失した11症例中5症例では術後1～6ヶ月間軽度の狭心症発作が持続したが後消失しており、これも耐頭所在の形成される期間であろうと推測している。

術後内胸動脈造影を5症例を行い、全ての症例に内胸動脈の閉塞を認める。2症例では冠動脈との吻合が著明であり、他の3症例は細い吻合枝を認めていた。

以上の所見より、著者は虚血性心疾患の外科的治療法として内胸動脈心筋内移植術の有効性を証明したものと考える。しかし手術的の発現が緩徐である点より、この術式の限界性を認めねばならない。