<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>校正者</td>
<td>植村正義 醫科入新生大時第書析室長 醫科入新生大時第書析室長 醫科入新生大時第書析室長</td>
</tr>
<tr>
<td>氏名</td>
<td>FUJIMURA, MASAKI</td>
</tr>
<tr>
<td>言及</td>
<td>日本外科宝函 醫科入新生大時第書析室長 醫科入新生大時第書析室長</td>
</tr>
<tr>
<td>申請日</td>
<td>1989-09-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/203901</td>
</tr>
<tr>
<td>右利型</td>
<td>127</td>
</tr>
<tr>
<td>種類</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>書誌</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
Kyoto University Research Information Repository

京都大学
KYOTO UNIVERSITY
Studies on Neurotensin.
I. Effects on Gallbladder Motility

MASAKI FUJIMURA
Second Department of Surgery, Shiga University of Medical Science
Received for Publication, June 6, 1989

Summary

Effects of neurotensin (NT) on gallbladder contraction were examined both in vivo and in vitro. Cholecystokinin-octapeptide (CCK-8) was used to evaluate the methods used in this study and to compare the action of NT on the gallbladder. In In vivo studies, gallbladder contraction was monitored by strain-gauge force transducers implanted on the surface of the dog gallbladder. Bolus intravenous (IV) injection of NT at doses of 20 and 40 ng/kg caused gallbladder contraction of similar magnitudes in terms of contractile force, while CCK-8 caused contraction dose-dependently. Continuous IV infusion of NT at doses of 250 and 500 ng/kg/hr, which resulted in an elevation of blood levels of NT comparable with those achieved by endogenous release, induced a transient gallbladder contraction. Both maximum contractile force and onset time of contraction were similar to both doses of NT. In contrast, CCK-8 induced gallbladder contraction was sustained during infusion of CCK-8 and was dose-dependent for both maximum contractile force and onset time of contraction. NT-induced gallbladder contraction was completely abolished by atropine treatment. In In vitro studies of longitudinal rabbit gallbladder muscle strips, NT was ineffective, while CCK-8 caused a dose-dependent contraction. The present study shows that NT can stimulate gallbladder contraction in the dog via cholinergic pathways.

Introduction

Neurotensin (NT) was discovered by Carraway and Leeman in 1973 as a by-product during purification of substance P from bovine hypothalamus. It was found to produce vasodilation and hypotension when injected into rats. The sequence of NT (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu-OH; MW=1673), its synthesis and a specific radioimmunoassay were reported shortly thereafter.

Although initially found in the brain, over 90 percent of NT in the body occurs outside the central nervous system, largely in the small intestine. There are detectable levels in the esophagus, stomach, duodenum, and colon. However, the vast majority of NT is found in the...
small intestine, with the greatest amount in the ileum of rats, dogs14,15,21,26,42 and humans17,27).

In the small intestine of man and animals, NT exists not in the nervous system but in mucosal cells (called N cells), which are typical gut endocrine cell-type with basal granules and microvilli reaching into the gut lumen. From these morphological characteristics of the N cells, it is thought that NT is released into the blood stream by suitable luminal stimulants (such as fatty nutrients31).

Gastrointestinal effects of NT include mesenteric vasodilation30, inhibition of gastric acid secretion3,8,25, alteration of gastrointestinal motility29,32 and pancreatic exocrine secretion22,35,36. The effect of NT on gallbladder function has been reported to increase intragallbladder pressure in chronic fistula dogs33, but effects on gallbladder motility are not elucidated. The purpose of this study was to examine the effect of NT on gallbladder contraction both in vivo and in vitro.

Materials and Methods

In vivo study

Five mongrel dogs of both sexes (18–22 kg) were prepared with strain-gauge force transducers18,19 (provided by Dr. Zen Itoh, Maebashi, Japan). Under secobarbital anesthesia (30 mg/kg body weight, IV), force transducers were sutured on the midportion of the serosal surface of the gallbladder with a 4–0 atraumatic needle in a direction to detect the contractions of the circular muscle. The lead wires from this transducer were directed to the hepatic hilus along the cystic duct and lightly sutured on the gallbladder surface at approximately 2 cm distal from the sensor. In addition, a bipolar electrode was implanted onto the surface of the duodenum. The lead wires were exteriorized at the right subcostal margin, passed through a subcutaneous tunnel, pulled out through a stab wound made between the scapulae, and sutured to the skin. After the operation, small connectors were attached to the lead wires and the dog was fitted with a canvas jacket to protect the wire terminals.

Studies were started three weeks after the above operations. The dogs were fasted overnight for 18 hours with free access to water before each experiment. During each experiment, the dogs were placed in Pavlov stands and the canvas jackets were removed. The contractile activity of the gallbladder and myoelectric activity of the duodenum were recorded with a Beckman R-611 Dynograph (Beckman Instruments Inc., Palo Alto, CA). The duodenal electrode was used to monitor electrical activity in the duodenum. While the gallbladder and duodenum were in the quiescent phase, a bolus injection of NT (10, 20 or 40 ng/kg), cholecystokinin-8 (CCK-8) (0.5, 1, 2, 3, 4 or 5 ng/kg), a continuous infusion of NT (125, 250, 500 or 1,000 ng/kg/hr) or CCK-8 (25, 50 or 100 ng/kg/hr) was given intravenously.

The continuous infusion of NT and CCK-8 was repeated during IV atropine (Invenex®, The Dexter Corp., Chagrin Falls, Ohio) treatment (25 ng/kg bolus, followed by 20 ng/kg/hr infusion).
In vitro study

Gallbladder contraction was measured by a modification of the bioassay described earlier by Berry and Flower. Longitudinal gallbladder strips (3–4 cm long, 0.3 cm wide) were obtained from five 24-hour fasted New Zealand white rabbits (2–3 kg). The gallbladder strip was placed in an organ bath containing 20 mg of Krebs solution. Tension changes were monitored by an isometric force-displacement transducer (UC2, Gould Statham Instruments Inc., Oxnard, CA) and recorded with a Beckman R-611 Dynograph. Measurements were started after a 2–3 hour period of stabilization. The transducers were set to zero. Gallbladder strip tension in response to CCK-8 (1 ng/ml) as a control and NT (5, 10, 20 or 40 ng/ml) were tested.

Solutions

NT (Bachem, Torrance, CA) and CCK-8 (Bachem, Torrance, CA) were dissolved in a concentration of 1 mg/ml in distilled water containing 0.1% bovine serum albumin (BSA) (Sigma Chemical Co., St. Louis, MO); they were divided into aliquots and stored at -20°C until used.

Measurement and Analysis of Data

The contractile force of the gallbladder in vivo was measured in grams. In vitro tension changes of the gallbladder strip were measured in milligrams. Values are expressed as mean ± SEM. A P value < 0.05 was considered statistically significant.

Results

In vivo study

IV bolus administration of CCK-8 (0.5, 1, 2, 3, 4, 5 ng/kg) caused a dose-related contraction of the gallbladder (Fig. 1, upper panel). IV bolus administration of NT (10, 20, 40 ng/kg) induced gallbladder contraction (Fig. 1, lower panel). The minimum dose of NT to cause gallbladder contraction was 20 ng/kg. Contractile force obtained by 20 ng/kg (12 pmol/kg) and 40 ng/kg (24 pmol/kg) of NT were almost the same, comparable to that obtained by CCK-8 at a dose of 2 ng/kg (1.8 pmol/kg). Continuous infusion of NT (250, 500, 1,000 ng/kg/hr) caused gallbladder contraction. The response of the gallbladder was not dose-related and transient (Fig. 2). Atropine (25 ng/kg bolus, 20 ng/kg/hr infusion) completely abolished the effect of NT on gallbladder contraction (Fig. 2, lower right panel). Continuous infusion of CCK-8 (25, 50, 100 ng/kg/hr) caused gallbladder contraction in a dose-dependent manner (Fig. 3). The gallbladder contraction induced by CCK-8 was sustained during the infusion and returned quickly to baseline after cessation of the infusion of CCK-8. Atropine diminished gallbladder contractile force (Fig. 3, lower right panel).

Summarized data calculated as contractile force at maximum contraction and onset time of contraction during NT (250, 500 ng/kg/hr) or CCK-8 infusion (25, 50 ng/kg/hr) are shown in Table 1. NT stimulated gallbladder contraction, but the contractile force or the onset time of gallbladder contraction was not significantly changed by increasing the dose of NT from 250 ng/
Fig. 1. Effects of a bolus intravenous injection of CCK-8 (upper panel) and NT (lower panel) recorded from two different dogs.

Fig. 2. Effects of continuous intravenous infusion of NT at doses of 250, 500 and 1000ng/kg/hr (upper panels and lower left panel), and at a dose of 1000ng/kg/hr under the treatment of atropine (25 ng/kg bolus followed by 20 ng/kg/hr infusion) (lower right panel).
kg/hr to 500 ng/kg/hr. Increasing the dose of CCK-8 from 25 ng/kg/hr to 50 ng/kg/hr significantly increased the contractile force of the gallbladder and significantly decreased the onset time of gallbladder contraction. Contractile force at maximum concentration obtained by CCK-8 at doses of 25 and 50 ng/kg/hr was significantly larger and onset time of contraction was significantly shorter than those obtained by NT at 250 or 500 ng/kg/hr.

In vitro study

Tension in gallbladder strips increased uniformly in response to CCK-8 but NT had no effects in this system (data not shown).

Table 1. Summarized data of effects of NT and CCK-8 on contractile force at maximum contraction (gram) and onset time of contraction (minutes). * = P < 0.05 versus NT 250 or 500 ng/kg/hr

\[\Delta = P < 0.05 \text{ versus CCK-8 25 ng/kg/hr.} \]

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Dose (ng/kg/hr)</th>
<th>n</th>
<th>Contractile Force at Maximum Contraction (g)</th>
<th>Onset Time of Contraction (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>250</td>
<td>5</td>
<td>6.6 ± 1.2</td>
<td>6.2 ± 0.6</td>
</tr>
<tr>
<td>NT</td>
<td>500</td>
<td>5</td>
<td>7.6 ± 0.4</td>
<td>5.8 ± 1.1</td>
</tr>
<tr>
<td>CCK-8</td>
<td>25</td>
<td>5</td>
<td>9.3 ± 0.8*</td>
<td>2.4 ± 0.4*</td>
</tr>
<tr>
<td>CCK-8</td>
<td>50</td>
<td>5</td>
<td>12.5 ± 0.7*(\Delta)</td>
<td>1.5 ± 0.3*(\Delta)</td>
</tr>
</tbody>
</table>
Discussion

The present study shows that NT, a gut peptide, stimulates gallbladder contraction in the dog in vivo. Contractile effects of NT were transient and were not sustained during the continuous infusion of NT. The magnitude of contractile force was not dose-dependent. Furthermore, atropine completely abolished the stimulatory effect of NT on gallbladder contraction. These data, together with the in vitro study, in which NT had no effect on rabbit gallbladder strips, indicate that the action of NT on the gallbladder is apparently mediated by cholinergic pathways.

CCK, a well established gut peptide, causes gallbladder contraction\(^2,40\) by a direct action at the gallbladder muscle\(^37,43\). CCK-8 was used as a control not only to compare with NT but also to insure the accuracy of the methods engaged in this study. Thus, as it was reported\(^39\), gallbladder contractions induced by CCK-8 in this study were found to cause dose-dependent contractions which were tonic and remained at a constant level as long as CCK-8 was infused intravenously. Atropine diminished gallbladder contractions induced by CCK-8. Myoelectric activity of the duodenum was monitored by a bipolar electrode in the duodenal muscle to avoid periodic contractions of the gallbladder which occur in close association with the interdigestive migrating contraction\(^20\).

In the present study, bolus injection of different doses of NT did not change the magnitude of contractile force. Sakamoto et al.\(^33\) reported that IV bolus injection of NT caused an elevation of gallbladder pressure and atropine decreased gallbladder pressure induced by NT in chronic dogs with gallbladder fistulas. They also reported that NT increased gallbladder pressure in a dose-dependent manner and NT was approximately 1:50 as potent as CCK-8, on a molar basis. In direct measurements of muscle contraction, NT-induced gallbladder contractions were not altered by different doses of NT. This might be due to the different experimental methods or to gallbladder pressure which is affected by many factors, such as sphincter of Oddi, cystic duct and so on.

Furthermore, previous studies so made use of pharmacologic doses of NT, since they used large amounts of NT (doses of 0.25, 0.5, 1.0 and 2.0 \(\mu\)g/kg as a bolus injection were tested). The doses of NT used in this study (as a bolus injection) were much less, but these doses are still considered pharmacological since we did not determine whether blood levels of circulating NT obtained by bolus injection of NT exceeded physiological blood levels of NT. On the other hand, continuous IV infusions of NT, at doses of 250 and 500 ng/kg/hr, were considered to be physiologic, since blood levels of NT obtained by these doses were comparable to those achieved by endogenously released NT in response to intraduodenal perfusion of Lipomul at a dose of 2 g/kg/hr\(^34\).

NT-induced gallbladder contractions in vitro were not observed, indicating that the action of NT on the gallbladder is not directly at the gallbladder muscle. However, it might exert its actions at sites remote from the gallbladder. The same observation was reported for motilin which caused a dose-dependent contraction of the gallbladder in conscious pigs\(^1\). However,
motilin had no effect on the gallbladder muscle in vitro\(^3\). Pancreatic polypeptide which caused gallbladder relaxation\(^1\) in vivo did not have any effects in vitro\(^3\).

Surprisingly, infusion of NT in normal human volunteers caused gallbladder relaxation assessed by ultrasonography\(^4\). The mechanism of this effect is not known. It seems difficult to attribute this to species differences. NT can release PP\(^6,7,24\), which can relax the gallbladder, or NT can affect norepinephrine which inhibits both vagal and field-stimulated responses by actions on \(\alpha_2\)-adrenergic receptors on pre- and post-ganglionic cholinergic neurons\(^1\). Thus, further studies are needed to understand better the effects of NT on gallbladder motility.

Acknowledgments

This work was supported by grants from the National Institutes of Health (R01 DK 15421, and P01 DK 35608). The author wishes to express his sincere gratitude to Associate Professor GEORGE H GREELEY Jr., Professor JAMES C. THOMPSON, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, U.S.A. and Professor TAKAYOSHI TOBE, Department of Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan for their great support, and Drs. TSUGUO SAKAMOTO, Department of Surgery, Osaka University School of Medicine, Osaka, Japan and FELIX LLUIS, Department of Surgery, Universidad Autonoma de Barcelona, Barcelona, Spain for their exceptional help.

References

EFFECTS ON GALLBLADDER MOTILITY

413

和文抄録

Neurotensinに関する研究

I．胆囊運動について

滋賀医科大学外科学第2講座
藤村昌樹

消化管ホルモンである neurotensin (NT) の胆囊運動に及ぼす作用を in vivo および in vitro で検討した。実験には、胆囊平滑筋に直接収縮作用をもつ消化管ホルモンである cholecystokinin-8 (CCK-8) をコントロールとして用いた。in vivo での実験では、5頭の維種成犬の胆囊に force transducer を縫着し胆囊運動を生理的条件下で記録した。NT (20 および 40 ng/kg) の急速静注により胆囊収縮がみとめられたが収縮の強さは投与量により変化しなかった。CCK-8 の急速静注では、用量依存性に胆囊収縮が発現した。また、NT (250 および 500 ng/kg/hr) の持続投与で胆囊収縮は惹起される。これらの投与量での NT の血中濃度は、脂肪による NT の内因性放出時の血中濃度に匹敵するものであり、生理的範囲内の投与量であった。従って、この胆囊収縮は NT の生理的作用とみなすことができる。しかしながら NT の血中への持続投与による胆囊収縮は一時的で、投与中でも収縮は持続しなかった。また投与量の違いによっても最大収縮の強さ、および収縮運動発現までの時間に差はみられなかった。アドレナリンの投与下では NT による胆囊収縮はまったくみられなかった。それに対して CCK-8 の胆囊収縮作用は静脈内投与中はほ一定して持続し、この作用には用量依存性の強さに变化が生じてから作用発現時間の短縮がみられた。一方、ウサギ胆囊筋条片を用いた in vitro での実験では、NT の作用はみられなかったが、CCK-8 は用量依存性に胆囊収縮条件を収縮させた。

以上の結果から、NT にはその生理作用の一つとしてイヌ胆囊の収縮に働くこと、そしてこの作用は迷走神経を介していることが明らかとなった。