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Abstract 

Liver sinusoidal endothelial cells (LSECs) are involved in the transport of nutrients, 

lipids, and lipoproteins, and LSEC injury occurs in various liver diseases including 

nonalcoholic fatty liver disease (NAFLD). However, the association between LSEC 

injury and NAFLD progression remains elusive. Accordingly, in this study, we aimed to 

elucidate the precise role of LSEC in the pathophysiology of NAFLD using two 

different mouse models, namely the choline-deficient, L-amino acid-defined (CDAA) 

and high fat diet (HFD) models. Administrations of these diets resulted in liver 

metabolic dysregulation mimicking human NAFLD, such as steatosis, ballooning, 

lobular inflammation, and fibrosis, as well as central obesity, insulin resistance, and 

hyperlipidemia. LSEC injury appeared from the simple steatosis phase, and preceded 

the appearance of activated Kupffer cells and hepatic stellate cells. These results 

indicate that LSEC injury may play a “gatekeeper” role in the progression from simple 

steatosis to the early nonalcoholic steatohepatitis (NASH) stage, and LSEC injury may 

be necessary for the activation of Kupffer cells and hepatic stellate cells, which in turn 

results in the development and perpetuation of chronic liver injuries. Taken together, our 

data provide new insights into the role of LSEC injury in NAFLD/NASH pathogenesis. 
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Nonalcoholic fatty liver disease (NAFLD) is one of the manifestations of metabolic 

syndrome, and its worldwide prevalence is continually increasing [1]. NAFLD ranges 

from simple steatosis, which follows a relatively benign course, to nonalcoholic 

steatohepatitis (NASH), which is a more severe form, and which can lead to fibrosis, 

cirrhosis, and, eventually, to hepatocellular carcinoma. Therefore, early diagnosis and 

management of NASH is important for improving the patient prognosis [2], and better 

understanding of NAFLD pathogenesis, particularly in the early stage, is thus essential 

for developing novel strategies for the diagnosis, prevention, and treatment of NAFLD. 

Liver sinusoidal endothelial cells (LSECs) are the most abundant non-parenchymal 

cells in the liver and play important role in the transfer of nutrients, lipids, and 

lipoproteins. Under physiological conditions, LSECs are perforated by fenestrations and 

lack a basement membrane [3]; however, under pathological conditions, LSECs lose 

their fenestrations and form a continuous basement membrane [4]. This phenomenon is 

called “capillarization” as both these features are considered normal structures of the 

capillaries in other organs [5]. It has been demonstrated that sinusoidal capillarization 

precedes liver fibrosis in various liver diseases, including NAFLD [6-7], and our 

previous study using a cholangiopathy model also demonstrated that capillarization 

appeared prior to liver fibrosis [8]. Furthermore, Xie et al. recently reported that 
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capillarization plays a pivotal role in hepatic stellate cell (HSC) activation and 

fibrogenesis during the late stage in a rat liver fibrosis model [9], and LSECs have been 

speculated to play an anti-inflammatory role in cooperation with Kupffer cells, and to 

play a pivotal role for fibrogenesis by promoting HSC activation [10-12]. However, the 

relationship between sinusoidal capillarization and NAFLD progression, and the 

interactions of LSECs with these cells in the different stages of NAFLD remain largely 

unknown. 

In this study, we aimed to clarify the association between LSEC injury and 

NAFLD/NASH progression using the choline-deficient, L-amino acid-defined (CDAA) 

and high fat diet (HFD) models of NAFLD. In addition, we aimed to emphasize the 

importance of the interplay among LSECs, hepatocytes, Kupffer cells, and HSCs in 

order to expand our understanding of the pathogenesis of chronic liver diseases. 

 

MATERIALS AND METHODS 

Animals 

Male C57BL/6 mice (CLEA Japan Inc., Tokyo, Japan) (8 weeks old, weighing 20-25 g) 

were used for all experiments. There is no single animal model of NAFLD completely 

reflecting the complexity of human disease [13]. Accordingly, it is important to use at 
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least two separate animal models when studying this disorder. The CDAA diet is a 

well-established nutritional NAFLD model showing rapid and pronounced liver injury 

[14-15]. However, the metabolic profile of the model does not completely reflect all 

properties of NAFLD in terms of other metabolic dysregulations, because hepatic lipid 

accumulation of the model is mainly due to impaired secretion of very low-density 

lipoprotein (VLDL). Therefore, this model is considered suitable for evaluations of 

intrahepatic lesions in severe NASH. On the other hand, the HFD model more closely 

resembles the pathophysiology of human NAFLD with diabetes and central obesity. 

However, this model is requires more time and the hepatic lesions are less marked [13]. 

Thus, the HFD model is well suited for evaluations of capillarization in the early stages 

of NAFLD associated with diabetes and central obesity. In the CDAA mice, to induce 

steatohepatitis, the mice were fed a CDAA diet (Dyets Inc., Bethlehem, PA, USA) for 1, 

4, 8, or 22 weeks. For the regression experiment, another group of animals was fed a 

CDAA diet for 8 weeks and allowed to recover on a standard diet for an additional 4 

weeks. The HFD mice were fed an HFD (Dyets Inc.) for 8 and 22 weeks. The control 

mice were fed a standard diet.  

The experimental animals were sacrificed at each indicated time point. Blood was 

collected by cardiac puncture after fasting for four hours. For light and electron 
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microscopic analyses, the mice were perfused for 1 min with saline and fixed by 

transcardial perfusion (approximately 100 mmHg) with 10% buffered formaldehyde or 

2% glutaraldehyde. At least three mice were treated and analyzed for each time period 

and treatment. All mice were housed in individual cages under specific pathogen-free 

conditions with food and water ad libitum. There was no difference in food intake 

between the groups (data not shown).  

All experimental protocols were approved by the local Animal Care and Use 

Committee, and were performed according to the criteria outlined in the Guide for the 

Care and Use of Laboratory Animals prepared by the National Academy of Sciences, as 

published by the National Institutes of Health [16]. 

 

Serum biochemical analysis 

The serum samples were stored at −80C until the analyses could be performed. The 

alanine aminotransferase (ALT), alkaline phosphatase (ALP), total-cholesterol, 

triglyceride, free fatty acids, total-bilirubin, and glucose levels were analyzed using a 

Hitachi 7180 analyzer (Hitachi, Tokyo, Japan). 

 

Histopathology 
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Formalin-fixed paraffin-embedded sections were cut 4-μm thick and stained with 

hematoxylin and eosin or Azan. Frozen sections were cut to 10 μm and stained with Oil 

Red O for lipid analysis. A modified histological NAFLD/NASH score, as per the 

recommendations of the Nonalcoholic Steatohepatitis Clinical Research Network, was 

used [17]. Briefly, four histological features were semiquantitatively assessed: steatosis 

(0-3), lobular inflammation (0-3), hepatocellular ballooning (0-2), and fibrosis (0-4). 

The histological features of the specimens were independently assessed by an 

experienced pathologist (MM) and an attending pathologist (HK) in a blinded fashion, 

and a consensus diagnosis was obtained for each sample. To determine the interobserver 

reproducibility of each feature, unweighted kappa coefficients were calculated. The 

results showed good-to-excellent interobserver agreement, as demonstrated by a kappa 

coefficient of 0.72 (good) for steatosis, 0.82 (excellent) for lobular inflammation, 0.72 

(good) for hepatocyte ballooning, and 0.77 (good) for fibrosis. 

 

Immunohistochemical studies 

Immunohistochemical staining of the specimens was performed according to the 

manufacturer’s instructions. Briefly, antigen retrieval was carried out in a pressure 

cooker by boiling in 10 mM citrate buffer (pH 6.0), followed by washing with 
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phosphate-buffered saline. Subsequently, endogenous peroxidase was quenched with 

3% H2O2 for 10 min at room temperature. After rinsing, the slides were treated 

overnight at 4°C with a negative control reagent or the following optimally diluted 

primary antibodies: cluster of differentiation (CD) 31 (rabbit polyclonal; 1:50; Abcam, 

Cambridge, MA, USA), CD34 (rat monoclonal; 1:200; Abcam), F4/80 (rat monoclonal; 

1:200; Abcam), and α-smooth muscle actin (αSMA; rabbit polyclonal; 1:400; Abcam). 

Next, the slides were incubated with anti-mouse and anti-rabbit horseradish 

peroxidase-conjugated secondary antibody (goat polyclonal; prediluted; MBL, Nagoya, 

Japan). Binding to the antibody was detected using the labeled polymer method. 

Diaminobenzidine was used as the chromogen, followed by counterstaining with 

hematoxylin. For quantitative assessment of protein expression, the staining of each 

immunohistochemical specimen was captured in 10 randomly selected fields at 200× 

magnification and calculated using ImageJ software (US National Institutes of Health, 

Bethesda, MD, USA). 

 

Quantitative reverse transcription polymerase chain reaction 

Total RNA was extracted from liver tissue using TRIzol (Invitrogen, Carlsbad, CA, 

USA). cDNA was synthesized from total RNA using SuperScript III reverse 
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transcriptase (Invitrogen). Real-time PCR was performed using FastStart SYBR Green 

Master (Roche Diagnostics, Basel, Switzerland) and Rotor-Gene Q (Qiagen, Venlo, 

Netherland). The primer pairs are shown in Supplementary Table 1. The relative target 

gene expressions were normalized to GAPDH mRNA expression. 

 

Transmission and scanning electron microscopic analyses 

Perfusion-fixed livers were cut into 1-mm sections for transmission electron microscopy 

(TEM) and into 2-mm sections for scanning electron microscopy (SEM). These sections 

were immersion fixed in 2% glutaraldehyde at 4°C for 2 hours. The specimens for TEM 

were extensively washed with phosphate-buffered saline, postfixed in 1% osmium 

tetroxide, dehydrated in a graded series of ethanol, and embedded in Epon. Ultra-thin 

sections (80 nm) were cut on an Ultra microtome EM UC6 (Leica, Vienna, Austria), 

stained with 1% uranyl acetate, counterstained using the Reynolds method, and 

examined on an H-7650 electron microscope (Hitachi). The specimens for SEM were 

postfixed in 1% osmium tetroxide, dehydrated in a graded series of ethanol, and dried. 

Subsequently, the sections were coated with a thin layer of platinum/palladium and 

visualized under an S-4700 electron microscope (Hitachi). For evaluations of 

capillarization severity, the percent of open space area in the LSECs (porosity) was 
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measured in 15 randomly selected fields at 10 000× magnification on at least three 

animals per group, using ImageJ software. 

 

Statistical analysis 

Data are reported as the arithmetic means ± SEM. All data were analyzed using SPSS 

version 20.0 software (SPSS, Tokyo, Japan). Statistical significance was determined 

using Student’s t test or the Mann-Whitney U test with Bonferroni correction for 

multiple comparisons. For all analyses, a P-value <0.05 was considered statistically 

significant. 

 

RESULTS 

CDAA feeding induces macroscopical steatosis and hepatomegaly during the early 

phase of NAFLD/NASH pathogenesis 

To determine the morphological changes occurring during the early phase of 

CDAA-induced NAFLD/NASH pathogenesis, we obtained tissue samples from the 

mice after up to 8 weeks of CDAA feeding. The CDAA-fed mice showed liver 

enlargement and pale yellow discoloring, indicating hepatic steatosis (Figure 1a). 

Although the body weight of the CDAA-fed mice was similar to that of the controls up 
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to 8 weeks feeding, the liver weight/body weight ratio of the CDAA-fed mice was 

significantly increased from 4 weeks of feeding and onwards, indicating hepatic injury 

and hepatomegaly (Figure 1b). Moreover, the spleen weight/body weight ratio, an 

indicator of portal hypertension, was significantly increased after 8 weeks of the CDAA 

diet. Similarly, the visceral fat weight/body weight ratio was significantly increased in a 

time-dependent manner from 4 weeks of feeding, indicating that the CDAA-fed mice 

were progressing to central obesity. Next, we investigated the functional changes in 

CDAA-diet-induced NAFLD/NASH by serum biochemical analyses. To exclude the 

effects of aging, we compared the control 0-week (8-week-old) with control 8-week 

(16-week-old) mice, and confirmed that there was no significant difference between the 

two control groups in all serum parameters (data not shown). Compared to the control 

mice, the CDAA-fed mice showed significant elevations of serum ALT and glucose 

from 1 week, and bilirubin and ALP levels from 4 weeks (Figure 1c). Interestingly, all 

CDAA-fed mice showed a significant reduction of the serum triglyceride levels, 

whereas no significant differences were observed in the serum cholesterol and free fatty 

acid levels; these findings may be explained by compensatory hepatic uptake of serum 

lipids or by impairment in VLDL secretion from the liver [18-19].  
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CDAA feeding induces microscopical steatosis, intralobular inflammation, and 

pericellular fibrosis during the early to intermediate phase 

To further evaluate the morphological changes in the early phase of the CDAA diet 

model, we performed histopathological examinations of the CDAA-fed mouse livers 

after up to 8 weeks of feeding. Both hematoxylin and eosin and Oil red O staining of the 

liver sections from the CDAA-fed mice revealed steatosis already after 1 week of 

CDAA feeding (Figure 2a and b). At 1 week of CDAA feeding, no significant 

inflammatory infiltration or no significant fibrosis was found; thus, the mice at 1 week 

of CDAA feeding reflect simple steatosis, which represents a very early stage of 

NAFLD/NASH pathogenesis. After hepatic steatosis occurred, intralobular 

inflammation and pericellular fibrosis emerged from 4 weeks of CDAA feeding and 

were aggravated in the period leading up to 8 weeks of feeding, indicating that 4 weeks 

or more of CDAA feeding reflects the intermediate NASH stage (Figure 2a and b). 

Intriguingly, reticulin staining showed a different staining pattern between 4 and 8 

weeks of CDAA feeding: the 4-week CDAA-fed mice showed a thick black staining 

pattern whereas the 8-week CDAA-fed mice showed a combination staining pattern of 

thick and pale black areas (Figure 2a). These different staining patterns may be 

explained by increased maturity of the collagen fibers at 8 weeks, because reticulin 
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tends to stain immature collagen fibers (type III collagen) in thick black, whereas 

mature collagen fibers (type I collagen) stain pale black. 

 

Sinusoidal capillarization appears in the early phase of NAFLD/NASH 

pathogenesis 

To determine when capillarization appears in the NAFLD/NASH pathogenesis, we next 

investigated the LSEC in the CDAA-fed mice up to 8 weeks by SEM, TEM, and 

immunohistochemical analyses. In the control mice, the LSECs exhibited typical 

fenestrae grouped in sieve plates (Figure 3a). In contrast, all LSECs in the CDAA-fed 

mice were overtly defenestrated after up to 8 weeks of feeding, indicating 

capillarization (Figure 3a and Supplementary Figure 1). Quantitative assessment of the 

fenestrated area revealed that the CDAA diet caused approximately 20%, 8-fold, and 

28-fold reductions in porosity after 1, 4, and 8 weeks of feeding, respectively (Figure 

3b). In line with these findings, the expressions of the capillarization markers (CD31 

and CD34) were significantly increased after 4 and 8 weeks CDAA feeding upon 

immunohistochemical analyses (Figure 3c and d).  

 

Activated Kupffer cells and hepatic stellate cells appear after sinusoidal 
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capillarization 

Next, we analyzed the timing of activation of the Kupffer cells and HSCs in the early 

phase of NAFLD/NASH. To achieve this, we assessed the morphological and functional 

changes of these cells by histological and immunohistochemical analyses. Because 

lipids are lost in formalin-fixed paraffin-embedded sections during tissue processing and 

because frozen tissue sample analysis has extremely low-resolution power, we first 

investigated toluidine blue staining semithin sections of resin-embedded specimens. The 

semithin sections revealed that lipogranulomas formed crown-like structures, unique 

histological features of Kupffer cells in NASH but not simple steatosis [20], in the 

intralobular regions after 4 weeks of CDAA feeding (Figure 4a), which were 

exacerbated over time (data not shown). In the TEM analysis, quiescent Kupffer cells 

were seen in the control mice, while large and phagocytic macrophages with extending 

pseudopods were seen in the CDAA-fed mice after 4 weeks (Figure 4b and 

Supplementary Figure 2). In line with these findings, the immunohistochemical analysis 

of F4/80, an activation maker of Kupffer cells, also showed increased intensity of the 

stained area after 4 weeks of CDAA feeding (Figure 4c). After 8 weeks of CDAA 

feeding, macrovesicular lipids encircled by F4/80-positive cells, indicating typical 

crown-like structures, were diffusely found throughout the liver (Figure 4c). Quiescent 
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HSCs, ”fat-storing cells,” were seen in the control mice, whereas spindle-shaped 

collagen-producing cells, myofibroblasts, which may be derived from HSCs, were 

found in the space of Disse from 4 weeks of CDAA feeding (Figure 4b and 

Supplementary Figure 2). Furthermore, immunohistochemical analysis of αSMA, an 

activation marker of HSCs, also displayed increased intensity of the stained area after 4 

weeks of CDAA feeding (Figure 4c). 

To further understand the mechanism of progression from simple steatosis to NASH, 

we next examined the gene expression changes in the early phase of NAFLD by 

quantitative RT-PCR analysis. The mRNA levels of inflammatory cytokines and 

chemokine such as tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and monocyte 

chemotactic protein-1 (MCP-1) were significantly increased after 1 week of CDAA 

feeding, indicating that inflammatory responses and activating Kupffer cells had already 

emerged at the transcriptional level in the simple steatosis phase (Figure 4d). Moreover, 

the mRNA levels of vascular endothelial growth factor receptor 2 (VEGFR2) were 

significantly increased at 4 weeks, while the levels after 1 week of feeding tended to be 

increased, without statistical significance, indicating that LSEC regenerative changes 

appear from the simple steatosis phase to the early NASH phase. In addition, the mRNA 

levels of genes involved in HSC activation and fibrogenesis such as αSMA, tissue 
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inhibitor of metalloproteinase 1 (TIMP1), interleukin-1β (IL-1β), collagen type I α 1 

(Col1α1), and collagen type IV α 1 (Col4α1) were increased after 1 week of feeding, 

indicating that HSC activation and fibrotic responses emerge at the transcriptional level 

already in the simple steatosis phase (Figure 4d). 

Taken together, our results suggest that capillarization is necessary for the appearance 

of activated Kupffer cells and HSCs, although activation of these cells at the 

transcriptional level is initiated already in the simple steatosis stage. 

 

Sinusoidal capillarization is aggravated in the cirrhotic phase and shows partial 

recovery by discontinuation of the experimental diet 

To determine the association between capillarization and disease progression in the late 

phase of the CDAA model, we performed macroscopical, microscopical, and serum 

analyses after 22 weeks of CDAA feeding. In both the macroscopic and histological 

analyses, the livers of the mice exhibited distinctly cirrhotic features, with or without 

hepatocellular adenoma (Figure 5a and Supplementary Figure 3). In line with these 

morphological findings, the serum ALT levels were not obviously increased, whereas 

the levels of ALP and bilirubin remained high, indicating that 22-week CDAA mice 

well reflect the symptoms and signs of the late NASH stage in humans (Table 1). 
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To clarify whether capillarization worsens in the late phase of NAFLD/NASH, we 

next assessed LSEC injury in the 22-week CDAA mice. Significant decreases in 

porosity of approximately 57-fold and 34-fold compared to the control mice at 0 and 22 

weeks, respectively, were observed (Figure 5b and c). It should be noted that the LSEC 

fenestrae decrease can be, however, induced not only by pathologic stresses but also by 

aging, with this decrease in LSEC fenestrae with aging being referred to as 

pseudocapillarization [21]. As expected, although no significant difference in porosity 

was observed between the control 0-week and control 8-week mice (data not shown), 

the control 22-week (30-week-old) mice showed a significant decrease in porosity, 

indicating age-related pseudocapillarization (Figure 5b and c). However, this decrease 

in porosity of the control 22-week mice was negligible compared to that of the CDAA 

22-week mice. 

To determine whether capillarization and other pathogenic features could recover 

after withdrawal of CDAA feeding, mice fed for 8 weeks with the CDAA diet were 

returned to a standard diet for an additional 4 weeks and subsequently analyzed. The 

serum ALT, ALP, and bilirubin levels (Table 1) and all histological grading scores were 

almost completely normalized in these mice, whereas the staging of fibrosis partially 

remained, especially around the lipogranulomas (Figure 6a and b). Additionally, 
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capillarization was also significantly recovered after 4 weeks of cessation of CDAA 

feeding; however, the degree of recovery was lower compared to that of the other 

pathological features (steatosis, inflammation, and hepatocyte ballooning) (Figure 6c 

and d), suggesting that the presence of capillarization upon SEM analysis has extremely 

high sensitivity and specificity in the NAFLD/NASH pathogenesis. 

Prior studies have delineated that differentiated LSECs (fenestrated LSECs) promote 

HSC quiescence and vice versa [9, 22]. Consequently, in the current study, to clarify the 

relationship between LSECs and HSCs, we next analyzed whether HSC quiescence 

occurred after 4 weeks cessation of CDAA feeding, when the LSECs have partially 

returned to a differentiated state. We found that the αSMA-positive cells (activated 

HSCs) had completely disappeared at that time point, and, instead, fat-storing quiescent 

HSCs appeared in the toluidine-stained semithin sections (Supplementary Figure 4). 

These findings indicate that the state of differentiation of LSECs, which represent the 

severity of capillarization, correlates well with NAFLD/NASH disease progression and 

regression. 

 

High fat feeding also shows steatosis with sinusoidal capillarization but without 

severe inflammation and fibrosis 
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In order to exclude that the results of capillarization are confounded by model-specific 

effects and to clarify the association between capillarization and hepatic steatosis, we 

conducted additional experiments using an HFD-fed mouse model, which shows severe 

steatosis but does not induce severe inflammatory and fibrotic changes until in the late 

phase. Macroscopically, both 8-week and 22-week HFD-fed mice showed 

hepatomegaly with pale yellow discoloring (Figure 7a and Table 1) and severe body 

weight and visceral fat weight gains (Table 1). Serum biochemical analyses showed 

significant increases in the cholesterol and glucose levels in both 8-week and 22-week 

HFD-fed mice, well reflecting human metabolic syndrome. Although the serum 

triglyceride level was decreased, this may again be explained by compensatory hepatic 

uptake of serum lipids or by impairment in the VLDL secretion from the liver [18-19]. 

The serum ALT level was increased only in the 22-week HFD-fed mice, whereas the 

serum ALP and bilirubin levels were not greatly increased. Histologically, the HFD 

8-week mice showed hepatic steatosis but no inflammatory and fibrotic changes 

compared to the controls. The HFD 22-week mice showed severe hepatic steatosis and 

significant, but not severe, inflammatory and fibrotic changes (Figure 7b-d). These 

results suggest that the HFD 8-week feeding mouse model mimics the human simple 

steatosis stage whereas the HFD 22-week feeding mice mimic the early NASH stage.  
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We next evaluated whether capillarization occurs in HFD-fed mice using SEM and 

TEM analyses. Capillarization was not detected in HFD 8-week mice but was severe in 

the HFD 22-week mice, as compared to each control (Figure 7e, f and Supplementary 

Figure 5). The severity of capillarization in the HFD 22-week mice was less prominent 

than that of the CDAA 22-week mice. 

Taken together, these results indicate that capillarization may play a “gatekeeper” 

role in the progression from simple steatosis to the early NASH stage, and may 

represent a generalized change in NAFLD/NASH pathogenesis. 

Finally, to determine when intracellular organelle injuries of hepatocyte appear in the 

NAFLD pathogenesis, we analyzed the endoplasmic reticula (ERs), mitochondria, 

autophagosomes and lysosomes, nuclei, and bile canaliculi in both models by TEM. In 

the CDAA mice, enlarged ERs first appeared from 4 weeks of feeding (Supplementary 

Figure 6). Deformed mitochondria and an increase of autophagosomes and lysosomes 

appeared from 8 weeks of feeding, while pseudoinclusion bodies in the nuclei and loss 

of microvilli of bile canaliculi were identified at 22 weeks of feeding. In HFD mice, 

deformed mitochondria first appeared from 8 weeks of feeding. Enlarged ERs, an 

increase of autophagosomes and lysosomes, and pseudoinclusion bodies in the nuclei 

were detected at 22 weeks of feeding (Supplementary Figure 7). No pathological 
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changes were detected in the bile canaliculi of HFD-fed mice. 

 

DISCUSSION 

Capillarization has been known to occur in many different kinds of liver injuries (e.g., 

cirrhosis, hepatitis, alcoholic liver injury, and arsenic poisoning), to influence liver 

regeneration processes, and to naturally increase in severity with age 

(pseudocapillarization); however, the relationship between capillarization and NAFLD 

remains elusive [6, 23-24]. To our knowledge, our comprehensive macroscopical, 

microscopical, ultrastructural, biochemical, and quantitative RT-PCR analyses of two 

distinct NAFLD models are the first to reveal that capillarization arises during the 

progression from simple steatosis to the early NASH stage, and that it worsens in a 

time-dependent manner up until the late stage (Figures 3 and 7). Furthermore, we here 

revealed that the relationship of capillarization with disease progression is not 

model-specific, suggesting that capillarization is a generalized change of 

NAFLD/NASH pathogenesis. These new kinetic understandings of capillarization in the 

NAFLD progression may provide more information for future research efforts on 

NAFLD. Especially, focusing on capillarization may help improve the understanding of 

the initiating mechanisms of NASH in the early stages, and may eventually lead to the 
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discovery of novel strategies for the prevention of disease progression and for 

promotion of disease regression in the late stages. 

Kupffer cells and HSCs have been known to play critical roles in triggering fibrosis 

via monocyte recruitment and excessive collagen production [25]. However, the 

interactions of LSECs with Kupffer cells and HSCs in NAFLD pathogenesis remain 

largely unknown [26]. The current study examined the morphological and functional 

changes of these cells, and showed that both types of cells appeared activated after 

capillarization. In the CDAA model, immunohistochemical analysis of the macrophage 

activation maker F4/80 revealed that the activated Kupffer cells appeared from the early 

NASH phase, and were identified as typical crown-like structures from the intermediate 

NASH phase (Figure 4c). HSCs, differentiated lipid-storing cells found in the space of 

Disse, were identified in the control and simple steatosis phase (CDAA 1-week and 

HFD 8-week mice), but were not observed after the early NASH phase (CDAA 4-week 

and HFD 22-week mice). Meanwhile, from the early NASH phase, instead of 

differentiated HSCs, many dedifferentiated HSCs, spindle-shaped αSMA-positive cells, 

appeared around the necrotic hepatocytes and were found to release excessive collagen 

fibers (Figure 4b, c, and Supplementary Figure 4). In accordance with the observed 

HSC dedifferentiation, pericellular fibrosis appeared from the early phase, and 
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progressed to cirrhosis in the late phase (Figure 5 and Supplementary Figure 3). 

Moreover, the quantitative RT-PCR analysis showed that the mRNA levels involved in 

inflammation and Kupffer cell activation, vascular regeneration, and fibrogenesis and 

HSC activation increased already after 1 week of CDAA feeding, indicating that these 

changes were initiated at the transcriptional level already in the simple steatosis phase 

(Figure 4d). Collectively, these results suggest that capillarization is the earliest 

morphological change in NASH pathogenesis, and that it plays critical roles in hepatic 

inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma development through 

activation of Kupffer cells and HSCs. 

In the current study, we found that various common intracellular organelle injuries 

of hepatocytes appeared after capillarization in both models. First, enlarged ERs, 

deformed mitochondria, and an increase of autophagosomes and lysosomes appeared, 

after which pseudoinclusion bodies in the nuclei and loss of microvilli in the bile 

canaliculi were recognized (Supplementary Figure 6 and 7). These results suggest that 

capillarization due to excessive hepatic lipid accumulation and elevated circulating 

lipids may lead to endoplasmic reticulum stress, mitochondrial dysfunction, 

cytoskeleton alterations, and DNA damages in the hepatocytes. Further studies are 

needed to determine whether sinusoidal capillarization is responsible for these 
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hepatocyte organelle injuries in the NAFLD progression. 

One obvious advantage of diet-induced NAFLD models is the possibility of 

performing regression experiments. In this study, we evaluated the restoration levels of 

individual features of NAFLD following cessation of CDAA administration. 

Macroscopically, CDAA cessation resulted in almost complete recovery in terms of 

body weight and visceral fat; however, the spleen weight (an indicator of portal 

hypertension) remained high (Table 1). Moreover, similar to the results of the 

macroscopical analyses, the microscopical findings of NASH, such as hepatic steatosis, 

intralobular inflammation, and hepatocyte ballooning, were also recovered (Figure 6a 

and b). On the other hand, slight pericellular fibrosis remained around the dead 

hepatocytes, with crystallized lipid droplets, and the restoration of capillarization 

showed only a 40% recovery in porosity (Figure 6c and d). As capillarization and 

pericellular fibrosis are known to be closely related to portal hypertension, our results 

suggest that sinusoidal capillarization is a delaying factor for the healing processes of 

fibrosis, and is a preserving factor of portal hypertension in NAFLD [27-28]. 

In this study, we provided the first evidence showing that capillarization may play a 

“gatekeeper” role in the progression from simple steatosis to the early NASH stage. 

Capillarization may occur prior to overt inflammation in the early stage, and plays a role 
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in fibrogenesis in the late stage as well as delays the healing processes of portal 

hypertension in the recovering stage. Based on our findings herein, we propose the 

following mechanisms of NAFLD/NASH progression: 1) hepatic steatosis with 

proinflammatory and profibrogenic cytokine release occurs due to excessive fat intake 

or as a result of metabolic dysregulation or genetic susceptibility; consequently, 2) 

capillarization appears, followed by 3) definite inflammatory cell infiltrations, 4) 

pericellular fibrosis, and, eventually, 5) cirrhosis and hepatocellular carcinoma. 

There are several clinical implications of the findings reported here. First, assessing 

the severity of LSEC injuries could help distinguish between simple steatosis and the 

early NASH stage, potentially leading to earlier detection of NASH. Second, 

development of drugs that can maintain a differentiated state for LSECs may prevent 

progression and promote recovery of NAFLD/NASH. Third, drugs that influence the 

differentiation state of LSECs may also be applied to the prevention and treatment of 

systemic vascular diseases, especially for atherosclerosis [29], as LSEC injury and 

dyslipidemia secondary to impaired lipid transport by LSEC injury might indirectly 

pertain to the capillary vessels of other organs such as the heart, lungs, and kidneys [3, 

30]. 

A limitation of the present study is that, although we clarified that sinusoidal 
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capillarization correlates well with NAFLD/NASH progression, we did not determine to 

what degree capillarization contributes to NAFLD/NASH progression. Further studies, 

for example focusing on the effects of administrating drugs that influence the restoration 

and capillarization of the LSEC phenotype, could resolve this question. 

In conclusion, the results obtained herein provide new insights into NAFLD/NASH 

pathogenesis. LSEC injuries in the early stage of NAFLD appear to be necessary for the 

activation of Kupffer cells and HSCs, which in turn results in the development and 

perpetuation of chronic liver injuries. This insight may help to elucidate the crosstalk 

among hepatocytes, Kupffer cells, HSCs, and LSECs in NAFLD/NASH progression, 

and to help establish novel strategies for early diagnosis, prevention, and treatment in 

chronic liver diseases.
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Figure legends 

Figure 1: (a) Macroscopic photographs of livers from control and choline-deficient, 

L-amino acid-defined (CDAA) 8-week mice. (b) Body weight, liver/body weight ratio, 

spleen/body weight ratio, and visceral (epididymal) fat/body weight ratio in control 

(white circles) and CDAA-fed mice (black boxes) during the experimental feeding 

period of 8 weeks. Data are presented as means ± SEM. *P <0.05 compared with each 

corresponding time point of the control mice. **P <0.01 compared with the control mice. 

(c) Serum levels of alanine aminotransferase (ALT), fasting blood glucose, alkaline 

phosphatase (ALP), total bilirubin, triglyceride (TG), total cholesterol, and free fatty 

acid (FFA) in control mice (0 weeks; white bar) and CDAA-fed mice (black bar) after 1, 

4, and 8 weeks. *P <0.05 compared with the control (0-week) mice; **P <0.01 compared 

with the control (0-week) mice; NS, not significant. n ≥ 6 for all groups. 

 

Figure 2: (a) Histopathological images of livers from control and choline-deficient, 

L-amino acid-defined (CDAA)-fed mice after 1, 4, and 8 weeks. Hematoxylin and eosin 

(H&E) staining (top row; bars = 100 μm), Oil red O staining (second row; bars = 25 

μm), Azan staining (third row; bars = 50 μm), and reticulin staining (bottom row; bars = 

25 μm) are shown. Arrows indicate inflammatory cell infiltration (steatohepatitis). 

Arrowheads indicate reticulin-positive areas (type III collagen) in the intralobular 
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lesions. pv, portal vein; cv, central vein. (b) Nonalcoholic fatty liver disease activity 

scores (steatosis, inflammation, and ballooning) and fibrosis stage in control and 

CDAA-fed mice after 1, 4, and 8 weeks. Data are presented as means ± SEM. **P <0.01 

compared with the control mice. n ≥ 5 for all groups. N.D, not detected. 

 

Figure 3: (a) Scanning electron microscopic images (top row, low-magnification 

images, bars = 5 μm; bottom row, high-magnification images of boxed areas, bars = 1 

μm) of liver sinusoidal endothelial cells in control and choline-deficient, L-amino 

acid-defined (CDAA)-fed mice after 1, 4, and 8 weeks. Arrows indicate fenestrae 

grouped into sieve plates. Arrowheads indicate gaps. (b) Porosity in control (white bar) 

and CDAA-fed mice (black bar) after 1, 4, and 8 weeks. *P <0.05 compared with the 

control (0-week) mice; **P <0.01 compared with the control. n ≥ 3 for all groups. 

Fifteen random fields (×10 000 magnification) were analyzed for each group. (c) 

Immunohistochemical staining for cluster of differentiation (CD)31 (top row) and CD34 

(bottom row) in control and CDAA-fed mice after 1, 4, and 8 weeks. Asterisks indicate 

the internal positive control-stained areas (Glisson’s capsules). Arrowheads indicate the 

positive areas for each antibody. Bars = 50 μm. (d) Quantitative analyses for each 

antibody-positive area in the control (white bar) and CDAA-fed mice (black bar) after 1, 
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4, and 8 weeks. Data are presented as means ± SEM. *P <0.05 compared with the 

control (0-week) mice; **P <0.01 compared with the controls. Ten random fields were 

analyzed for each group (×200 magnification). 

 

Figure 4: (a) Toluidine blue staining of resin-embedded liver sections for control and 

choline-deficient, L-amino acid-defined (CDAA)-fed mice after 4 weeks. Grey staining 

indicates lipid droplets. Arrowheads indicate hepatic stellate cells (lipid storing cells; Ito 

cells). The arrow indicates lipogranuloma. Bar = 25 μm. (b) Transmission electron 

microscopic images of livers from control and CDAA-fed mice after 4 weeks. Black 

arrowheads (top right panel) indicate elongated pseudopods of Kupffer cell with lipid 

phagocytosis. White arrowheads (bottom right panel) highlight collagen release. Bars = 

5 μm. H, hepatocyte; HSC, hepatic stellate cell; K, Kupffer cell; LSEC, liver sinusoidal 

endothelial cell. (c) Immunohistochemical staining for F4/80 (top row) and α-smooth 

muscle actin (αSMA; bottom row) in control and CDAA-fed mice after 1, 4, and 8 

weeks. Arrowheads indicate positive staining of each antibody. Asterisks indicate the 

internal positive control-stained areas (smooth muscle of arteries). The right panel 

shows the quantitative analyses of each antibody-positive stained area in control (white 

bar) and CDAA-fed mice (black bar) after 1, 4, and 8 weeks. Data are presented as 
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means ± SEM. **P <0.01 compared with the control (0-week) mice; ***P <0.001 

compared with the controls. Ten random fields were analyzed for each group (×200 

magnification). (d) Quantitative RT-PCR analysis in control and CDAA-fed mice after 1 

and 4 weeks. Values are normalized to GAPDH expression and are presented as means 

± SEM. *P <0.05 compared with the control (0-week) mice; **P <0.01 compared with 

the control; ***P <0.001 compared with the control. 

 

Figure 5: (a) Macroscopic photographs of livers from control 22-week and 

choline-deficient, L-amino acid-defined (CDAA) 22-week mice. The CDAA-fed mice 

showed atrophic livers with rough surfaces and pale yellow discoloring, indicating 

cirrhosis. (b) Scanning electron microscopic images of liver sinusoidal endothelial cells 

in control 0-week, control 22-week, and CDAA 22-week mice. Arrowheads indicate 

fenestrae grouped into sieve plates. Asterisks indicate collagen deposits in the space of 

Disse. Bars = 1 μm. (c) Porosity in control 0-week, control 22-week, and CDAA 

22-week mice. Data are presented as means ± SEM. *P <0.05 compared with the control 

0-week mice; ##P <0.01 compared with the control 22-week mice. n ≥ 3 for all groups. 

Fifteen random fields were analyzed for each group (×10 000 magnification). 
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Figure 6: (a) Histopathological images of livers from control 8-week, choline-deficient, 

L-amino acid-defined (CDAA) 8-week, and recovery 4-week mice (8 weeks of CDAA 

feeding followed by an additional 4 weeks of standard diet). Hematoxylin and eosin 

(H&E) staining (top row; bars = 100 μm), Azan staining (middle row; bars = 50 μm), 

and reticulin staining (bottom row; bars = 25 μm) are shown. Arrows indicate 

inflammatory cell infiltration (steatohepatitis). Arrowheads indicate reticulin-positive 

areas (type III collagen) in the intralobular lesions. Asterisks indicate dead hepatocytes 

with crystallized lipid droplets. pv, portal vein; cv, central vein. (b) Nonalcoholic fatty 

liver disease activity scores (steatosis, inflammation, and ballooning) and fibrosis stage 

in control 8-week, CDAA 8-week, and recovery 4-week mice. Data are presented as 

means ± SEM. **P <0.01 compared with the control mice; #P <0.05 compared with the 

CDAA 8-week mice; ##P <0.01 compared with the CDAA 8-week mice; n ≥ 5 for all 

groups. N.D, not detected. (c) Scanning electron microscopic images of liver sinusoidal 

endothelial cells in control 8-week, CDAA 8-week, and recovery 4-week mice. 

Arrowheads indicate fenestrae grouped into sieve plates. Bars = 1 μm. (d) Porosity in 

control 8-week, CDAA 8-week, and recovery 4-week mice. Data are presented as means 

± SEM. *P <0.05 compared with the control mice; #P <0.05 compared with the CDAA 

8-week mice. n ≥ 3 for all groups. Fifteen random fields were analyzed for each group 
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(×10 000 magnification). 

 

Figure 7: (a) Macroscopic photographs of livers from control 8-week, high fat diet 

(HFD) 8-week, and HFD 22-week mice. (b) Histopathological images of livers from 

control, HFD 8-week, and HFD 22-week mice. Hematoxylin and eosin (H&E) staining 

(top row; bars = 100 μm), Azan staining (middle row; bars = 50 μm), and reticulin 

staining (bottom row; bars = 25 μm) are shown. The arrow indicates inflammatory cell 

infiltration (steatohepatitis). Arrowheads indicate reticulin-positive areas (type III 

collagen) in the intralobular regions. pv, portal vein; cv, central vein. (c) Nonalcoholic 

fatty liver disease activity scores (steatosis, inflammation, and ballooning) and fibrosis 

stage in control 8-week, choline-deficient, L-amino acid-defined (CDAA) 8-week, and 

HFD 8-week mice. Data are presented as means ± SEM. **P <0.01 compared with the 

control mice. n ≥ 5 for all groups. N.D, not detected. (d) Nonalcoholic fatty liver disease 

activity score and fibrosis stage in control 22-week, CDAA 22-week, and HFD 22-week 

mice. Data are presented as means ± SEM. *P <0.05 compared with the control mice. 

**P <0.01 compared with the control mice. n ≥ 5 for all groups. N.D, not detected. (e) 

Scanning electron microscopic images of liver sinusoidal endothelial cells in HFD 

8-week, HFD 22-week, CDAA 8-week, and CDAA 22-week mice. Arrowheads indicate 
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fenestrae grouped into sieve plates. Asterisks indicate collagen deposits in the space of 

Disse. Bars = 1 μm. (f) Porosity in control, HFD, and CDAA mice after 8 and 22 weeks. 

Data are presented as means ± SEM. *P <0.05 compared with the control 22-week mice; 

#P <0.05 compared with the HFD 22-week mice; ##P <0.01 compared with the HFD 

8-week mice. n ≥ 3 for all groups. Fifteen random fields were analyzed for each group 

(×10 000 magnification). 



Table 1. Phenotypic and biochemical findings

Control 8 weeks HFD 8 weeks CDAA 8 weeks Recovery 4 weeks

Body weight (g)             27.5 ± 0.7           40.4 ± 1.3*             26.9 ± 0.5              30.3 ± 1.4
#

Liver/body weight (%)             4.87 ± 0.32           4.34 ± 0.20             6.04 ± 0.84*              4.89 ± 0.26
#

Spleen/body weight (%)             0.30 ± 0.01           0.20 ± 0.01*             0.41 ± 0.03*              0.49 ± 0.08
#

Epididymal/body fat (%)             1.32 ± 0.28           5.75 ± 0.26*             1.99 ± 0.30*              2.11 ± 0.33

ALT (IU/L)             64.7 ± 21.5           46.3 ± 12.3           162.0 ± 19.4*              26.5 ± 5.4
#

ALP (IU/L)           234.2 ± 13.6         142.7 ± 11.7*           364.3 ± 14.0*            213.7 ± 14.6
#

Cholesterol (mg/dl)             57.6 ± 4.6         125.1 ± 8.4*             74.8 ± 4.8*              69.7 ± 8.2

Triglycerides (mg/dl)             68.2 ± 7.3           44.1 ± 7.7*             37.2 ± 1.2*              36.0 ± 5.5

Free fatty acids (mg/dl)           142.2 ± 28.5         328.7 ± 30.9*            137.2± 12.1            278.0 ± 64.1
#

Bilirubin (mg/dl)             0.02 ± 0.01           0.05 ± 0.004*             0.11 ± 0.01*              0.04 ± 0.02
#

Glucose (mg/dl)           165.4 ± 7.1         251.3 ± 29.1*           203.0 ± 6.1*            162.0 ± 14.1
#

Control 22 weeks HFD 22 weeks CDAA 22 weeks

Body weight (g)             35.1 ± 2.1           53.5 ± 1.7*             28.6 ± 1.4*

Liver/body weight (%)             4.04 ± 0.15           5.96 ± 0.24*             7.24 ± 0.39*

Spleen/body weight (%)             0.29 ± 0.02           0.24 ± 0.01*             0.48 ± 0.03*

Epididymal/body fat (%)             3.87 ± 0.46           5.10 ± 0.38*             1.92 ± 0.41*

ALT (IU/L)             33.8 ± 8.3         148.7 ± 26.1*             45.2 ± 15.2

ALP (IU/L)           160.5 ± 8.1         183.0 ± 24.0           300.4 ± 176.3

Cholesterol (mg/dl)             84.3 ± 6.7         210.0 ± 22.2*             56.8 ± 14.9

Triglycerides (mg/dl)             58.3 ± 11.7           28.3 ± 3.9*             22.7 ± 4.2*

Free fatty acids (mg/dl)           380.0 ± 102.3         280.3 ± 51.3           363.5 ± 91.0

Bilirubin (mg/dl)             0.03 ± 0.01           0.01 ± 0.003*             0.14 ± 0.09*

Glucose (mg/dl)           187.0 ± 31.3         241.3 ± 36.7*           170.0 ± 15.8

Results are presented as means ± SEM (n ≥ 4 for each group). 

HFD: high fat diet; CDAA; choline-deficient L-amino acid-defined diet; 

ALT: alanine aminotransferase; ALP: alkaline phosphatase.

*P  < 0.05 vs. each control, 
#P  < 0.05 vs. CDAA 8-week mice.
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Supplementary Table 1

Supplementary Table 1. RT-PCR primers for analysis

Gene Direction Sequence

TNF-α Forward CCCTCACACTCAGATCATCTTCT

TNF-α Reverse GCTACGACGTGGGCTACAG

IL-6 Forward TAGTCCTTCCTACCCCAATTTCC

IL-6 Reverse TTGGTCCTTAGCCACTCCTTC

MCP-1 Forward CTTCTGGGCCTGCTGTTCA

MCP-1 Reverse CCAGCCTACTCATTGGGATCA

Vegfr2 Forward CCTGGTAGAAGATTCAGGCATTG

Vegfr2 Reverse CCTCACCCTGCGGATAGTCA

Tek Forward AAGCATGCCCATCTGGTTAC

Tek Reverse GCCTGCCTTCTTTCTCACAC

αSMA Forward CCAGAGCAAGAGAGGGATCCT

αSMA Reverse TGTCGTCCCAGTTGGTGATG

TIMP1 Forward GCCCTTCGCATGGACATTTA

TIMP1 Reverse CCCCGATCTGCGATGATG

IL-1β Forward CCAGCTTCAAATCTCACAGCAG

IL-1β Reverse CTTCTTTGGGTATTGCTTGGGATC

Col1α1 Forward CACGGCTGTGTGCGATGA

Col1α1 Reverse TCGCCCTCCCGTCTTTG

Col4α1 Forward CCAGGATGCAACGGTACAAA

Col4α1 Reverse AACGTGGCCGAGAATTTCAC

GAPDH Forward AGGTCGGTGTGAACGGATTTG

GAPDH Reverse TGTAGACCATGTAGTTGAGGTCA



Supplementary Figure 1
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Supplementary Figure 1: Transmission electron microscopic images of liver 

sinusoidal endothelial cells (LSECs) in control and choline-deficient, L-amino acid-

defined (CDAA) 4-week mice. Arrowheads indicate fenestrae. The arrow indicates 

thickened and defenestrated LSECs. The asterisk indicates collagen deposits in 

the space of Disse. Bar = 1 μm. S, sinusoid lumen; SD, space of Disse.
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Supplementary Figure 2

Supplementary Figure 2: Scanning electron microscopic images of Kupffer 

cells (top row), hepatic stellate cells (HSCs) (bottom left panel), and collagen 

deposits in the space of Disse (bottom right panel) in control and choline-

deficient, L-amino acid-defined (CDAA) 4-week mice. Arrowheads indicate an 

extended pseudopod of Kupffer cell. The uneven surface of the HSC indicates 

intracellular storing of lipid droplets such as vitamin A. The asterisk indicates 

collagen deposits in the space of Disse. Bar = 5 μm. HSC, hepatic stellate 

cell; K, Kupffer cell; LD, lipid droplet; S, sinusoid lumen.
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Supplementary Figure 3

Supplementary Figure 3: Macroscopic photograph (top panel), hematoxylin 

and eosin staining (bottom left panel), and Azan staining (bottom right panel) of 

livers from choline-deficient, L-amino acid-defined (CDAA) 22-week mice. 

Asterisks indicate hepatocellular adenomas. The dashed lines depict the 

borders between the hepatocellular adenoma and non-neoplastic parenchyma. 

Bar = 200 μm.
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Supplementary Figure 4

Supplementary Figure 4: Toluidine blue staining of resin-embedded liver sections for 

control 8-week, choline-deficient, L-amino acid-defined (CDAA) 8-week, and recovery 

4-week (8 weeks of CDAA feeding followed by an additional 4 weeks of standard diet 

feeding) mice. Arrowheads indicate quiescent hepatic stellate cells (lipid storing cells) 

in the space of Disse. Arrows indicate activated hepatic stellate cells (myofibroblasts, 

spindle-shaped collagen producing cells). Bar = 10 μm. LD, lipid droplet.
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Supplementary Figure 5

Supplementary Figure 5: Transmission electron microscopic images of livers of 

high fat diet (HFD) 8-week and HFD 22-week mice. Arrowheads indicate fenestrae. 

Arrows indicate small lipid particles. The asterisk indicates collagen deposits in 

the space of Disse. Bar = 500 nm. S, sinusoid lumen; SD, space of Disse.
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Supplementary Figure 6

Supplementary Figure 6: Transmission electron microscopic images of livers in 

choline-deficient, L-amino acid-defined (CDAA) 4-week (bar = 500 nm), CDAA 8-

week (bar = 2 μm), CDAA 22-week (top right panel: bar = 5 μm, bottom panel: bar 

= 1 μm), and recovery 4-week (8 weeks of CDAA feeding followed by an additional 

4 weeks of standard diet feeding: bar = 1 μm) mice. Black arrows indicate enlarged 

endoplasmic reticulum. Black arrowheads indicate autophagosomes and 

lysosomes (high-density organelles). White arrowheads indicate loss of microvilli in 

the bile canaliculus. White arrows indicate deformed mitochondria. The asterisk 

indicates a pseudoinclusion body. N, nucleus of hepatocyte; LD, lipid droplet; BC, 

bile canaliculus.
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Supplementary Figure 7

Supplementary Figure 7: Transmission electron microscopic images of livers in high 

fat diet (HFD) 8-week (bar = 1 μm) and HFD 22-week (top right panel: bar = 500 nm, 

bottom left panel: bar = 5 μm, bottom right panel: bar = 500 nm) mice. A white arrow 

indicates a deformed mitochondrion. Black arrows indicate enlarged endoplasmic 

reticula. Black arrowheads indicate autophagosomes and lysosomes (high-density 

organelles). Hepatocyte nuclei and a bile canaliculus show normal appearance. N, 

nucleus of hepatocyte; LD, lipid droplet; BC, bile canaliculus.
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