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1 Introduction

AdS/CFT dualities [1–3] are one of the most important subjects in string theory. The study

of them diverges and continues to influence various fields including cosmology, nuclear

physics, condensed matter physics, and recently non-linear dynamics. The most well-

studied example is the duality between type IIB string theory on AdS5×S5 and the N =

4 SU(N) super Yang-Mills (SYM) theory in four dimensions. A recent progress is the

discovery of an integrable structure behind this duality [4]. The integrability has played

an important role in checking the duality in non-BPS regions.

In connection with the integrable structure, type IIB string theory on AdS5×S5 is

classically integrable in the sense that the Lax pair exists [5]. Apart from this integrable

example, there are many non-integrable AdS/CFT dualities in which chaotic string solu-

tions appear. For example, when the internal space is given by a Sasaki-Einstein manifold

like T 1,1 [6] and Y p,q [7], the string world-sheet theory exhibits the chaotic behavior (For

other examples, see [8–16]).

On the other hand, apart from the fundamental strings, chaotic motions of D0-branes

in the BFSS matrix model [17] and the BMN matrix model [18] have been shown in [19]

and [20], respectively.1 Thanks to the mass-deformation, the BMN matrix model was

robustly discussed by computing Poincaré sections, which explicitly exhibit chaos. It would

1For earlier works on chaos in classical (deformed) Yang-Mills theories, see [21–23].
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be nice to consider a gravitational (or string theoretical) interpretation of the chaotic

behavior of D0-branes. It may be related to a non-linear dynamical generation of space-

time, fast scrambling of black hole [24] and the inequality proposed in [25]. In fact, a fast

thermalization in the BMN matrix model is discussed in [26, 27].

In this paper, we are concerned with non-integrable AdS/CFT dualities. As a partic-

ular example, we will concentrate on the AdS5 × T 1,1 case, where the existence of chaos

has been confirmed both numerically [6] and analytically [7]. The chaos appears basically

because the classical string action on R×T 1,1 contains a double pendulum as a subsystem.

It may be interesting to ask whether the chaos persists even in Penrose limits [28, 29] or

not. The leading part in the limits gives rise to a free massive world-sheet theory. Then

the sub-leading correction can be regarded as a small perturbation, but it is not so simple

because quartic-order terms of canonical momenta are contained. Nevertheless, it is still

possible to employ the standard procedure. Our analysis is based on deriving a reduced

system composed of two degrees of freedom by supposing a winding string ansatz. Then, we

provide support for the existence of chaos by computing Poincaré sections. In comparison

to the AdS5 × T 1,1 case, we argue that no chaos lives in a near Penrose limit of AdS5×S5,

as expected from the classical integrability of the parent system.

The organization of this paper is as follows. In section 2, we consider a Penrose limit

of AdS5 × T 1,1 including the sub-leading corrections. In section 3, the bosonic light-cone

Hamiltonian is derived on the near pp-wave background. The sub-leading corrections

induce interaction terms in the system. In section 4, we show that chaotic string solutions

exist in the resulting Hamiltonian system by computing Poincaré sections. In section 5,

we revisit a near Penrose limit of AdS5×S5 and argue that no chaos appears. Section 6 is

devoted to conclusion and discussion.

2 A near Penrose limit of AdS5 × T 1,1

In this section we will consider a Penrose limit of the AdS5×T 1,1 background, including the

sub-leading corrections. First of all, the metric of AdS5× T 1,1 is introduced in section 2.1.

Then we consider a Penrose limit of this background in section 2.2.

2.1 The metric of AdS5 × T 1,1

Let us introduce the metric of the AdS5 × T 1,1 background. The internal compact space

T 1,1 is a five-dimensional Sasaki-Einstein manifold. The T 1,1 geometry is obtained as a base

space of conifold (which is a Calabi-Yau three-fold) [30]. The AdS5 × T 1,1 background is

obtained as the near-horizon limit of a stack of N D3-branes sitting at the tip of the conifold

and the resulting geometry is considered as the gravity dual for an N = 1 superconformal

field theory in four dimensions [31].

The metric of AdS5 × T 1,1 is given by

ds2 = R2(ds2
AdS5

+ ds2
T 1,1) , (2.1)

ds2
AdS5

= − cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3 , (2.2)

ds2
T 1,1 =

1

9
[dψ + cos θ1 dφ1 + cos θ2 dφ2]2 +

1

6

2∑
i=1

[
dθ2
i + sin2 θi dφ

2
i

]
. (2.3)

– 2 –
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Here R is the radius of AdS5. The isometry is SU(2)A × SU(2)B × U(1)R. Note here that

T 1,1 is a homogeneous space and can be represented by the following coset:2

T 1,1 =
SU(2)A × SU(2)B ×U(1)R

U(1)A ×U(1)B
. (2.4)

Although the full Green-Schwarz string action has not been constructed yet, one may

employ the bosonic part. In the following, we will concentrate on the bosonic part and

consider classical string solutions moving on R× T 1,1.

2.2 A Penrose limit of AdS5 × T 1,1

It is known that classical strings moving on R × T 1,1 exhibit random motions i.e., chaos.

Now we would like to consider a question, “Can one observe chaos even in a near Penrose

limit?” The answer is yes, as we will show later. Let us here introduce a near pp-wave

geometry of AdS5×T 1,1 by including the sub-leading corrections in taking a Penrose limit.

The leading part of the pp-wave geometry was originally discussed in [35–37].

To take a Penrose limit, a null-geodesic has to be picked up at first. Among the

geodesics, we focus upon the ψ+φ1 +φ2 direction in T 1,1. Then the light-cone coordinates

x̃± and new angle variables Φi (i = 1, 2) are introduced as3

x̃+ ≡ t , x̃− ≡ −t+
1

3
(ψ + φ1 + φ2) , Φ1 ≡ φ1 − t , Φ2 ≡ φ2 − t . (2.5)

Then let us rescale the above coordinates by R as follows:

x̃+ = x+ , x̃− =
x−

R2
, ρ =

r

R
, θi =

√
6
ri
R
. (2.6)

Finally, the R→∞ limit is taken. This is the Penrose limit we consider.

After all, the resulting metric is given by

ds2 = ds0
2 +

1

R2
ds2

2 +O
(

1

R4

)
,

ds0
2 = 2dx+dx− −

(
r2 + r1

2 + r2
2
) (
dx+

)2
+ dr2 + r2dΩ3

2

+dr1
2 + r1

2dΦ1
2 + dr2

2 + r2
2dΦ2

2 ,

ds2
2 =

(
−1

3
r4 + 2r1

2r2
2

)(
dx+

)2 − 2
(
r1

2 + r2
2
)
dx+dx− +

(
dx−

)2
+

1

3
r4dΩ3

2

+r1
2
(
−r1

2 + 2r2
2
)
dx+dΦ1 + r2

2
(
−r2

2 + 2r1
2
)
dx+dΦ2 − 2r1

2dx−dΦ1

−2r2
2dx−dΦ2 + 2r1

2r2
2dΦ1dΦ2 − r1

4dΦ1
2 − r2

4dΦ2
2 . (2.7)

2In some references, the coset is said to be

SU(2)A × SU(2)B
U(1)

.

However, this coset does not lead to the correct metric, as argued in the original paper [30]. The coset

in (2.4) can reproduce the metric correctly and even three-parameter deformations of T 1,1 [32] as shown

in [33, 34].
3Here the light-cone convention is slightly different from the one in [35–37]. Our convention follows the

work [38, 39] in which the sub-leading corrections are discussed in a near Penrose limit of AdS5×S5. The

present choice in (2.5) is convenient to deal with the sub-leading part.
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The leading part ds2
0 is nothing but the familiar maximally supersymmetric pp-wave back-

ground [40]. As a matter of course, the sub-leading part ds2
2 is different from that of

AdS5×S5. The sub-leading part ds2
2 plays an important role in our later argument and

indeed leads to chaotic string motions.

3 Hamiltonian of a near pp-wave string

In this section, we will derive the light-cone Hamiltonian of a string moving on the near

pp-wave background (2.7). Our derivation follows the procedure developed in [38, 39] for

the AdS5×S5 case, though we employ only the bosonic part.

We first work on a general background and solve the constraint conditions. Then the

metric (2.7) is substituted into the resulting expression and the light-cone Hamiltonian we

consider is derived.

3.1 A light-cone string on a general background

Let us consider a general background with the metric gµν (µ, ν = +,−, 1 . . . , 8) that satisfies

the following conditions

g+I = g−I = 0 (I = 1, . . . , 8) .

In addition, we suppose that the dilaton is constant and the NS-NS two-form is zero.

The bosonic part of the classical string action is given by

SB =

∫
dτdσL =

1

2

∫
dτdσ hab∂ax

µ∂bx
νgµν . (3.1)

The string world-sheet is parametrized by τ and σ and the dynamical variables xµ(τ, σ)

describe the string dynamics. The quantity hab (a, b = τ, σ) is defined as

hab ≡
√
−γ γab , γ ≡ det(γab) ,

where γab is the world-sheet metric.

Then the canonical momenta pµ are introduced as usual:

pµ =
∂L

∂ (∂τxµ)
= hτa∂ax

νgµν . (3.2)

Solving (3.2) in terms of ẋµ leads to the relation:

ẋµ =
1

hττ
gµνpν −

hτσ

hττ
x′
µ
. (3.3)

Here the following notations have been introduced:

ẋµ ≡ ∂τxµ , x′
µ ≡ ∂σxµ .

The equation of motion for hab provides constraint conditions, by which the energy-

momentum tensor T ab is forced to vanish:

T ab = hachbd∂cx
µ∂dx

νgµν −
1

2
habhcd∂cx

µ∂dx
νgµν = 0 . (3.4)
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By making use of (3.3), ẋ can be removed from the expression (3.4). Then the constraints

in (3.4) can be written in terms of pµ and x′µ like

pµpνg
µν + x′

µ
x′
ν
gµν = 0 , (3.5)

pµx
′µ = 0 . (3.6)

Let us here impose the light-cone gauge,

x+ = τ , p− = constant .

Then the light-cone Hamiltonian Hlc is defined as

Hlc ≡ −p+ .

With (3.5) and (3.6), x′− and Hlc can be expressed in terms of xI and pI :

x′
−

= −x
′IpI
p−

, (3.7)

Hlc = −p−g
+−

g++
− 1

g++

√√√√p−2g − g++

(
g−−

(
pIx′

I

p−2

)2

+ pIpJgIJ + x′Ix′JgIJ

)
, (3.8)

where the following quantity has been introduced:

g = (g+−)
2 − g++g−− .

Note that in the above derivation we have assumed that g−− 6= 0. When g−− = 0 like the

usual pp-wave metric (i.e., only the leading part), the light-cone Hamiltonian becomes

Hlc = −p−g
−−

2g+− −
1

2g+−p−

(
pIpJg

IJ + x′
I
x′
J
gIJ

)
. (3.9)

For a given metric, the expressions of Hlc in (3.8) and (3.9) are very useful.

3.2 The Hamiltonian in the near pp-wave limit of AdS5 × T 1,1

For later argument, let us explicitly write down the light-cone Hamiltonian on the near

pp-wave background (2.7).

By substituting the pp-wave metric (2.7) into the formula (3.8), the light-cone Hamil-

tonian Hlc is given by

Hlc = H0 +
1

R2
Hint +O

(
1

R4

)
, (3.10)

H0 =
1

2

(
pr

2 + pr1
2 + pr2

2 +
pΦ1

2

r1
2

+
pΦ2

2

r2
2

+ r2 + r1
2 + r2

2 + r′
2

+ r1
′2 + r2

′2 + r1
2Φ1

′2 + r2
2Φ2

′2
)
, (3.11)
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Hint = −1

8

(
pr

2 + pr1
2 + pr2

2 +
pΦ1

2

r1
2

+
pΦ2

2

r2
2
− r2 + r1

2 + r2
2 + r′

2
+ r1

′2 + r2
′2

+ r1
2Φ1

′2 + r2
2Φ2

′2
)2

+
1

2
(pΦ1 − pΦ2)2 − 1

2

(
r1

2Φ1
′ − r2

2Φ2
′)2

+
1

6
r4 +

1

2

(
r1

4 + r2
4
)

+
1

2

(
prr
′ + pr1r1

′ + pr2r2
′ + pΦ1Φ1

′ + pΦ2Φ2
′)2 . (3.12)

Here we have set p− = 1 and a constant term has been dropped off. In addition, we have

ignored the terms concerned with dΩ2
3 for simplicity. In our later argument, we are not

interested in the angular part of AdS5. In fact, the terms with dΩ2
3 can be dropped off by

supposing that a constant position is taken on the S3. In the following, we will not consider

the higher-order terms with O(1/R4) as well. Note also that pΦ1 and pΦ2 are constants of

motion.

The resulting system (3.10) can be regarded as a sum of simple harmonic oscillators in

H0 and a small perturbation by Hint. Hence it seems likely that the system is simple, but

this is not the case actually. The interaction Hamiltonian Hint contains four-order terms

of canonical momenta and hence the Hamiltonian dynamics is quite intricate. Thus the

behavior of classical trajectories is far from obvious and it is worth to study it.

In the next section, we will consider the Hamiltonian dynamics with (3.10) and show

that chaotic string solutions are contained.

4 Chaos in a near Penrose limit of AdS5 × T 1,1

In this section, we show chaotic string motions in the near pp-wave background (2.7).

There are some standard methods to display chaotic motions (for an introductory book,

see [41]). Here we compute Poincaré sections.4 As evidence of chaos, the resulting sections

show random motions with some islands.

We study classical trajectories of a string moving on the near pp-wave background (2.7).

The light-cone Hamiltonian (3.10) is very intricate and hence it is helpful to impose an

ansatz to make the system much simpler. In addition, the string world-sheet is two-

dimensional. Hence it is convenient to perform a dimensional reduction to one dimension

by supposing a string wrapping on Cartan directions.

Concretely, we consider two cases of a winding string. The one is that all of the

motions are confined into the T 1,1 geometry. The other is that the radial direction of AdS5

is included in the motions. In the following, we will investigate each of them.

4.1 Chaos in the T 1,1 directions

The first ansatz we consider is the following:

r = 0 , pr = 0 , r1 = r1(τ) , pr1 = pr1(τ) , r2 = r2(τ) , pr2 = pr2(τ) ,

Φ1 = α1 σ , pΦ1 = 0 , Φ2 = α2 σ , pΦ2 = 0 . (4.1)

4One may think of that Lyapunov exponents may be computed as well. However, it seems quite difficult

to compute them in the present case as we will explain later.
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Here αi (i = 1, 2) is an integer due to the periodicity of Φi. This ansatz describes a string

moving only in the T 1,1 geometry. Note that the spatial direction of the string world-sheet

is wrapped on Cartan directions.

Then the ansatz (4.1) reduces the free part (3.11) and the interaction part (3.12) into

the following forms:

H0 =
1

2

[
p2
r1 + p2

r2 + (1 + α2
1) r2

1 + (1 + α2
2) r2

2

]
,

Hint = −1

8

[
p2
r1 + p2

r2 + (1 + α2
1) r2

1 + (1 + α2
2) r2

2

]2

−1

2

(
α1 r

2
1 − α2 r

2
2

)2
+

1

2

(
r4

1 + r4
2

)
, (4.2)

respectively. Now the dynamical variables of this system depend only on τ , and it is simple

enough to compute Poincaré sections.

In the following, we will provide numerical results to support the existence of chaos

even in the near Penrose limit.

Poincaré section. Poincaré sections are plotted for E = 1.0, 5.0 and 10 [figures 1a–1c].

The sections are taken at r2 = 0 with pr2 > 0. The AdS radius R and the winding numbers

α1 and α2 are set to R = 5.0, α1 = 2.0 and α2 = 1.0, respectively. The results clearly show

that chaotic motions appear in each energy level, and indicate that the near Penrose limit

of AdS5 × T 1,1 is also non-integrable.

It is worth mentioning the qualitative behavior of the Poincaré sections. The energy

contours in the r1–pr1 phase space at r2 = pr2 = 0 are drawn in figure 1d. A point

is that it has a ring-like structure around the origin. In figure 1a chaotic motions have

already appeared at E = 1.0 together with islands and islets [Kolmogorov-Arnold-Moser

(KAM) tori [42–45]]. The location of islands is understood from the energy contours.

When E = 5.0, three islands collide each other and form a series of tori around the origin

[figure 1b]. This position corresponds to the stable point around the origin in figure 1d.

When E = 10, the centered tori grow up at last [figure 1c].

Note that chaotic motions overlap with the tori in all of the sections. This is a pe-

culiarity coming from the quartic terms of canonical momenta. Actually, we are not sure

whether the Poincaré section we took here is suitable or not, though it should be enough

to see the existence of chaos. There may be a possibility that another appropriate section

can be chosen, for example, by imposing an additional condition to take the slice. For

example, by taking a Poincaré section at r2 = 0 with 0 < pr2 < 5.2, the overlap between

chaotic trajectories and the KAM tori vanishes as plotted in figure 2.

Finally, it is worth mentioning about Lyapunov spectra. The existence of the quartic

terms of canonical momenta also makes it very difficult to compute them because the

convergence of the exponents would become worse owing to it. In particular, this is the case

even for the largest Lyapunov exponent. So far, no satisfactory result has been obtained.

4.2 No chaos in the radial direction of AdS5

In the previous subsection, we have observed chaotic motions associated with the chaos in

T 1,1. As the next question, it may be interesting to ask the radial direction r coming from

– 7 –
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(a) Poincaré section with E = 1.0. (b) Poincaré section with E = 5.0.

(c) Poincaré section with E = 10. (d) Energy contours in the r1–pr1 phase space.

Figure 1. Poincaré section with the ansatz (4.1).

the AdS5 part may exhibit chaotic motions depending on initial conditions. In fact, the

dynamics of r is affected by the motions of the other T 1,1 variables and hence the answer

would not be far from obvious.

To answer this question, let us consider the following ansatz including the r-direction:

r = r(τ) , pr = pr(τ) , r1 = r1(τ) , pr1 = pr1(τ) , r2 = 0 , pr2 = 0 ,

Φ1 = α1 σ , pΦ1 = 0 , Φ2 = α2 σ , pΦ2 = 0 . (4.3)

Here αi (i = 1, 2) are winding numbers again.

The ansatz (4.3) simplifies the Hamiltonian (3.11) and (3.12) as

H0 =
1

2

[
p2
r1 + p2

r2 + r2 + (1 + α2
1) r2

1

]
,

Hint = −1

8

[
p2
r + p2

r1 − r
2 + (1 + α2

1) r2
1

]2
+

1

6
r4 +

1

2

(
1− α2

1

)
r4

1 . (4.4)

Note here that α2 does not appear.

A Poincaré section at r1 = 0 with pr1 > 0 is plotted for E = 10 with R = α1 = 5.0

[figure 3a]. Energy contours at r1 = pr1 = 0 are drawn in figure 3b. Figure 3a indicates

– 8 –
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Figure 2. Improved Poincaré section with E = 10.

that the KAM tori are not destroyed and there exist no chaotic motions for the r-direction.

This is just an example, but we have obtained similar results for the other energy levels

as far as we have tried. Thus, though we will not present a bunch of the plots, we have

succeeded to give support for the classical integrability for the r-direction.

The classical integrability should be associated with the integrability of AdS5, but

we have not obtained an analytical confirmation for this integrability. It may be a good

direction to try to reveal it.

Finally, it should be remarked that the plot in figure 3b shows that the energy is not

bounded for large values of pr and unbounded trajectories may appear. But the unbounded

motions should not be confused with the onset of chaos.5

5 A near Penrose limit of AdS5×S5 revisited

So far, we have considered the AdS5 × T 1,1 case. Let us here revisit a near Penrose limit

of AdS5×S5. As a matter of course, the AdS5×S5 geometry is known as an integrable

background. However, it would be interesting to ask whether a near pp-wave limit of

AdS5×S5 is still integrable or not. This is because the interaction Hamiltonian contains

the quartic terms of canonical momenta and it does not seem that the classical integrability

is so obvious.

First of all, let us introduce the metric of AdS5×S5 with the global coordinates:

ds2 = R2(ds2
AdS5

+ ds2
S5) , (5.1)

ds2
AdS5

= − cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3 , (5.2)

ds2
S5 = cos2 θ dφ2 + dθ2 + sin2θ dΩ′3

2
. (5.3)

Here R is the curvature radius of the AdS5 and S5. It is convenient to perform the coor-

dinate transformations from ρ and θ to z̃ and ỹ through the relations:

cosh ρ =
1 + z̃2/4

1− z̃2/4
, cos θ =

1− ỹ2/4

1 + ỹ2/4
. (5.4)

5A simple exponential growth is not chaos. In general, the definition of chaos requires the finiteness of

trajectories.
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(a) Poincaré section with E = 10. (b) Energy contours in the r–pr phase space.

Figure 3. Poincaré section with the ansatz (4.3).

Then the metric is rewritten as

ds2
AdS5

= −
(

1 + z̃2/4

1− z̃2/4

)2

dt2 +

(
1− ỹ2/4

1 + ỹ2/4

)2

dφ2 +
dz̃2 + z̃2dΩ2

3

(1− z̃2/4)2
+
dỹ2 + ỹ2dΩ′3

2

(1 + ỹ2/4)2
. (5.5)

In the metric (5.5), the SO(4)× SO(4) isometry is manifest.

Next, by following the work [38], the light-cone coordinates are introduced as

x̃+ = t , x̃− = −t+ φ . (5.6)

After rescaling the coordinates as

x̃+ = x+ , x̃− =
x−

R2
, z̃ =

z

R
, ỹ =

y

R
, (5.7)

the R→∞ limit is taken. The resulting metric is given by

ds2 = ds0
2 +

1

R2
ds2

2 +O
(

1

R4

)
, (5.8)

ds0
2 = 2dx+dx− − (z2 + y2)(dx+)2 + dz2 + z2dΩ3

2 + dy2 + y2dΩ′3
2
, (5.9)

ds2
2 = −2y2dx+dx− +

1

2
(y4 − z4)(dx+)2 + (dx−)2

+
1

2
z2
(
dz2 + z2dΩ3

2
)
− 1

2
y2
(
dy2 + y2dΩ′3

2
)
. (5.10)

This metric with the sub-leading corrections was originally discussed in [38].

Now it is an easy task to derive the light-cone Hamiltonian Hlc on the background (5.8)

by making use of (3.8). After setting p− = 1 and dropping a constant term, we obtain the
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Hamiltonian:

Hlc = H0 +
1

R2
Hint +O

(
1

R4

)
, (5.11)

H0 =
1

2

(
(pA)2 + (x′

A
)2 + (xA)2

)
, (5.12)

Hint =
1

4

(
z2(py

2 + y′
2

+ 2z′
2
)− y2(pz

2 + z′
2

+ 2y′
2
)
)

+
1

8

(
((xA)2)2 − ((pA)2 + (x′

A
)2)2

)
+

1

2
(pAx

′A)2 , (5.13)

where xA = (z, y) and pA = (pz, py). Here we have assumed that a constant position is

taken in each of two S3’s, and dropped the terms concerned with dΩ3
2 and dΩ′3

2, as we did

in section 3. In addition, we will not consider the higher-order terms with O(1/R4).

Poincaré section. The next task is to investigate numerically the dynamics of the Hamil-

tonian system with (5.11). In the following, we will compute a Poincaré section and provide

support for the classical integrability of the system with (5.11).

To make the system simpler, let us take the following ansatz,

y = y(τ) , py = py(τ) , z = z(τ) , pz = pz(τ) . (5.14)

With this ansatz, the light-cone Hamiltonian is simplified as

Hlc = H0 +
1

R2
Hint +O

(
1

R4

)
, (5.15)

H0 =
1

2

(
(pA)2 + (xA)2

)
, (5.16)

Hint =
1

4

(
z2py

2 − y2pz
2
)

+
1

8

((
(xA)2

)2 − ((pA)2
)2)

. (5.17)

A Poincaré section is presented in figure 4a. The section is taken at z = 0 with pz > 0

and computed for E = 10 with R = 5.0. Energy contours are drawn in the y–py phase

space with z = pz = 0 [figure 4b]. Figure 4a shows that there are no chaotic motions at

E = 10. Although the energy is sufficiently high, the KAM tori are not destroyed. Note

that the plot in figure 4b shows that the energy is not bounded for large values of py again.

But, as in section 2.2, the unbounded motions should not be interpreted as the onset of

chaos.

Figure 4a is just an example, but beautiful KAM tori continue to survive for other

energy levels, as far as we have tried. Thus, though we will not present a bunch of the

plots, we have obtained support for the classical integrability even in the near Penrose limit

of AdS5×S5.

This result should be related to the classical integrability of type IIB string theory on

AdS5×S5 [5]. Then, at least in principle, it would be possible to show the integrability by

explicitly constructing an infinite number of conserved charges or the Lax pair. However,

because of the quartic terms of canonical momenta, it seems quite difficult and hence our

numerical support would be valuable.
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(a) Poincaré section with E = 10. (b) Energy contours in the y–py phase space.

Figure 4. Poincaré section with the ansatz (5.14).

6 Conclusion and discussion

In this paper, we have considered chaotic motions of a classical string in a near Penrose

limit of AdS5×T 1,1. We have shown that sub-leading corrections in a Penrose limit provide

an unstable separatrix, so that chaotic motions are generated as a consequence of collapsed

KAM tori. By deriving a reduced system composed of two degrees of freedom with a

winding string ansatz, we have computed Poincaré sections and provided support for the

existence of chaos. In addition, we have argued that no chaos appears in a near Penrose

limit of AdS5×S5, as expected from the classical integrability of the parent system.

There are some open problems associated with the chaos in the AdS5 × T 1,1. A most

important issue is to clarify what kind of gauge-theory operators correspond to the chaotic

string solutions. We have studied here a near Penrose limit and hence the associated

operators should be almost BPS. That is, a few impurities are inserted into the BPS

vacuum operator. Hence it seems likely that the problem would now be much easier than

the setup discussed in [6], because the associated composite operators are quite intricate

in the case of the full geometry. However, we have no definite answer for the operators so

far. We need to make more of an effort, For example, by following the argument for a near

Penrose limit of AdS5×S5 [38]. It may also be useful to try to figure out a fractal structure

associated with the chaos. Probably, one may expect that the impurities would randomly

be inserted in the vacuum operator.

We hope that our result would open up a new arena to check the AdS/CFT correspon-

dence even for chaotic string solutions.
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