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Locally weighted partial least squares (LW-PLS) is one of Just-in-Time (JIT) modeling methods; PLS is used to
build a local linear regression model every time when output variables need to be estimated. The prediction ac-
curacy of localmodels strongly depends on the definition of similarity between a newly obtained sample and past
samples stored in a database. To calculate the similarity, the Euclidean distance and the Mahalanobis distance
have been widely used, but they do not take account of the relationship between input and output variables.
This fact limits the achievable performance of LW-PLS and other locally weight regression methods. Thus, in
the present work, covariance-based locally weighted PLS (CbLW-PLS) is proposed by integrating LW-PLS and a
new similarity index based on the covariance between input and output variables. CbLW-PLS was applied to
two industrial problems: soft-sensor design for estimating unreacted NaOH concentration in an alkali washing
tower in a petrochemical process, and process analytical technology (PAT) for estimating concentration of a re-
sidual drug substance in a pharmaceutical process. The proposed similarity indexwas comparedwith six conven-
tional indexes based on distances, correlations, or regression coefficients. The results have demonstrated that
CbLW-PLS achieved the best prediction performance of all in both case studies.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Real-time monitoring and control of product quality are difficult in
most manufacturing processes because product quality is not always
measured in real time. On the other hand, the number of measured var-
iables and the amount of data stored in databases are rapidly increasing.
Such a situation has motivated us to predict the difficult-to-measure
product quality from easily measurable process variables and to use
predicted values instead of measurements for real-time monitoring
and control. In other words, virtual sensing technology is crucial in
predicting product quality or other important variables when online
analyzers are not available [1]. Virtual sensing technology has been
successfully applied to various processes in various industries. It is
known as soft-sensors in the refinery/petrochemical industry, pro-
cess analytical technology (PAT) in the pharmaceutical industry,
and virtual metrology (VM) in the semiconductor industry.

In recent years, Just-in-Time (JIT) modeling has attracted a lot of
attention in order to prevent deterioration of prediction accuracy due
to changes in process characteristics and operating conditions. In fact,
Kano and Ogawa reported in 2009 that the maintenance of models is

the most critical issue concerning soft-sensors on the basis of the ques-
tionnaire survey of process control applications [2]. More than 30% of
the engineers pointed out the necessity to cope with changes in process
characteristics and operating conditions in order to keep the prediction
performance of soft-sensors.

To copewith changes in process characteristics and operating condi-
tions, various recursive methods have been proposed and their applica-
tions have been reported. A review of adaptation techniques was given
by Kadlec et al. [3]. The concept drift theorywas exploited to classify the
algorithms into three different types: 1) moving windows techniques,
2) recursive adaptation techniques, and 3) ensemble-based methods.
Recursivemethods can adaptmodels to new operating conditions grad-
ually, but the model may adapt excessively and not function in a suffi-
ciently wide range of operating conditions when a process is operated
within a narrow range for a certain period of time. An approach to pre-
vent excessive recursive PLS update is minimizing the number of recur-
sive PLS update runs while maintaining the model [4]. A more serious
drawback of recursive methods is that they cannot cope with abrupt
changes in process characteristics.

In such situations, JIT modeling is desirable. JIT modeling technique
constructs a model every time when prediction is required so that it
can adapt themodel to time-varying process characteristics and operat-
ing conditions. It constructs a local model by weighting samples in a
database according to the similarity between a newly obtained sample
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(query) and past samples. The JITmodeling concept has been integrated
with linear and nonlinear regression methods such as multiple regres-
sion analysis (MRA) [5] and support vector regression (SVR) [6,7]. JIT
modeling and its industrial applications were recently surveyed by
Kano and Fujiwara [1].

In particular, JITmodeling integratedwith partial least squares (PLS) is
called locally weighted PLS (LW-PLS) [8], which has been successfully ap-
plied to various industrial processes. In the pharmaceutical industry, for
example, LW-PLS has been applied to estimation of active pharmaceutical
ingredients (API) content with near infrared (NIR) spectroscopy [8], esti-
mation of the amount of residual drug substances in cleaning processes
with infrared-reflection absorption spectroscopy (IR-RAS) [9], and NIR-
based real-time monitoring of ingredient concentration during blending
[10]. Other applications of LW-PLS include inferential control of product
quality in the petrochemical industry [11], maize hardness characteriza-
tion in the food industry [12], VM in the semiconductor industry [13],
and determination of clinical parameters in human serum samples with
Fourier transform infrared (FTIR) spectroscopy [14]. In addition, several
updating strategies including LW-PLSwere compared in the prediction ac-
curacy byusing anNIRdataset of gasoline [15]. Furthermore, LW-PLS algo-
rithm was extended to improve the estimation performance or to cope
with different problems. Such extension includes locally weighted partial
least squares-discriminant analysis (LW-PLS-DA) for non-linear classifica-
tion [16] and a Bayesian framework providing a systematic way for real-
time parameterization of the similarity function, selection of the
local PLS model structure, and estimation of the correspondingmodel pa-
rameters [17].

The definition of similarity plays a crucial role in improving the pre-
diction accuracy of JIT modeling technique including LW-PLS. Similarity
indexes are usually defined on the basis of the Euclidean distance or the
Mahalanobis distance [8,18]. Other similarity indexes take account of
the angles between a query and samples in a database [6,19]. In addi-
tion, the prediction accuracy can be significantly improved by using
the similarity index based on the weighted distance, whose weights
are derived from physical properties of target material [9]. There have
been various works that calculate the weighted distance based on the
regression coefficients of MRA, PLS, and LW-PLS [5,20]. However,
these methods require constructing a regression model in advance to
calculate the similarity index, therefore the computational load is heavy.

In the present work, focusing on LW-PLS, we propose a new similar-
ity index that takes account of the relationships both among input
variables and among input and output variables with suppressing an in-
crease in computational load. The proposed method is referred to as
covariance-based LW-PLS (CbLW-PLS). Case studies are conducted
through two different operation data in real plants to compare the pro-
posed similarity index with other similarity indexes in the prediction
performance of LW-PLS.

This paper is organized as follows: LW-PLS is described in Section 2,
and the new similarity index is proposed in Section 3 The distribution of
each similarity index is visualized through a numerical experiment in
Section 4. The case studies are shown in Section 5 to demonstrate the
effectiveness of the proposed method. Finally, the conclusion is given
in Section 6.

2. Locally weighted partial least squares (LW-PLS)

In this section, PLS and LW-PLS are briefly explained.

2.1. Partial least squares (PLS)

In general, PLS is preferable to multiple regression or ordinary least
squares (OLS) when a linear regression model is built from process
data, because PLS can deal with multicollinearity that prevents from
obtaining a reliable model by using OLS. Multicollinearity appears in a
situationwhere input variables are nearly or completely linearly depen-
dent; such a situation is common in process data analysis. To address

this issue, PLS derives latent variables as linear combinations of input
variables and uses them to predict output variables.

Suppose data of input variables and an output variable are given as
X∈ℜN × M and y∈ℜN. These variables aremean-centered and properly
scaled, e.g. normalized. A PLSmodel with K latent variables is expressed
as follows:

X ¼ TPT þ E ð1Þ

y ¼ Tqþ f ð2Þ

where T ∈ℜN × K is a score matrix consisting of latent variables tk ∈ℜN

(k=1, 2,…, K), P ∈ℜM × K consisting of pk ∈ℜM is a loading matrix of
X, q ∈ ℜK is a regression coefficient vector from latent variables to the
output variable, and E and f are residuals.

In PLS, the model is constructed in an iterative manner through the
NIPALS algorithm [21]. After X1 = X and y1 = y are set, the variable
matrices at the k th iteration (k ≥ 2) are written as

Xk ¼ Xk−1−tk−1pT
k−1 ð3Þ

yk ¼ yk−1−tk−1qk−1 : ð4Þ

The k th latent variable tk is expressed as

tk ¼ Xkwk ð5Þ

where the k th weighting vector wk, the kth column of the weighting
matrix W, is determined so that the inner product between tk and yk
is maximized under the constraint ‖wk‖ = 1. The Lagrange multiplier
method enables us to derive wk, pk, and qk as follows.

wk ¼
XT
kyk

XT
kyk

��� ��� ð6Þ

pk ¼
XT
ktk

tTktk
ð7Þ

qk ¼
yTktk
tTktk

: ð8Þ

This procedure is repeated until k reaches the number of adopted
latent variablesK. This PLS algorithm is knows as PLS1 because the num-
ber of output variables is one; PLS2 is available when multiple output
variables need to be predicted simultaneously.

2.2. Locally weighted partial least squares (LW-PLS)

LW-PLS is a JIT modeling method that constructs a local regression
model according to the similarity between a query (target sample)
and past samples stored in a database [8]. It has attracted much atten-
tion as a tool for virtual sensing since it can cope with changes in oper-
ating conditions and process characteristics.

Here the algorithm of LW-PLS is explained. {xnm} and {ynl} (n =
1, 2, …, N; m = 1, 2, …, M; l = 1, 2, …, L) are preprocessed measure-
ments of input and output variables, where M and L are the numbers
of input and output variables, respectively. As the preprocess, an
adequate scaling is necessary to achieve high prediction performance.
The same preprocess should be applied both to samples in the database
and to the query. The n th sample is expressed as

xn ¼ xn1; xn2;…; xnM½ �T ð9Þ

yn ¼ yn1; yn2;…; ynL½ �T : ð10Þ
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The input and output variable matrices X and Y consist of these
vectors. In LW-PLS, X and Y are stored in a database, and the similarity
indexωn between a query xq and the nth sample xn is calculated to con-
struct a local PLS model when an output prediction is required for xq.
The predicted output ŷq is calculated through the following procedure.

1. Determine the number of latent variables K and set k = 1.
2. Calculate a similarity matrix Ω.

Ω ¼ diag ω1;ω2;…;ωNf g ð11Þ

where diag{} denotes a diagonal matrix. The details are mentioned
below.

3. Calculate Xk, Yk, and xq,k

Xk ¼ X−1N x1; x2;…; xM½ � ð12Þ

Yk ¼ Y−1N y1; y2;…; yL½ � ð13Þ

x q;k ¼ xq− x1; x2;…; xM½ �T ð14Þ

�xm ¼
XN

n¼1
ωnxnmXN

n¼1
ωn

ð15Þ

�yl ¼
XN

n¼1
ωnynlXN

n¼1
ωn

ð16Þ

where 1N ∈ ℜN is a vector of ones.
4. Set ŷq ¼ �y1; �y2;…; �yL½ �T.
5. Derive the kth latent variable of Xk:

tk ¼ Xkwk ð17Þ

where wk is the eigenvector of Xk
TΩYkYk

TΩXk, which corresponds to
the maximum eigenvalue, and it is derived by

wk ¼
XT
kΩYk

XT
kΩYk

��� ��� : ð18Þ

6. Derive the kth loading vector of Xk and the k th regression coeffi-
cient vector.

pk ¼
XT
kΩtk

tTkΩtk
ð19Þ

qk ¼
YT
kΩtk

tTkΩtk
ð20Þ

7. Derive the kth latent variable of xq.

tq;k ¼ xT
q;kwk ð21Þ

8. Replace ŷq with ŷq + tq,kqk.
9. If k = K, then finish prediction. Otherwise, set

Xkþ1 ¼ Xk−tkpT
k ð22Þ

Ykþ1 ¼ Yk−tkqT
k ð23Þ

xq;kþ1 ¼ xq;k−tq;kpk : ð24Þ

10. Set k = k + 1 and go to step 5.

The definition of similarity significantly affects the prediction
performance of LW-PLS. The similarity index ωn is defined as

ωn ¼ exp −
φdn
σd

� �
ð25Þ

dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn−xq
� �TΘ xn−xq

� �q
ð26Þ

Θ ¼ diag θ1; θ2;…; θMf g ð27Þ

where φ is a localization parameter, σd is the standard deviation of {dn},Θ is aweightingmatrix, and θm is aweight of them th input variable. The
weighting matrix Θ does not have to be diagonal, but it is diagonal in
most literatures. It is clear from Eq. (25) that LW-PLS is equivalent to
PLS when ϕ= 0 andωn = 1. Thus, selecting the localization parameter
properly can lead to constructing a LW-PLS model with higher accuracy
than or at least the same accuracy as PLS. The localization parameter can
be determined through cross-validation. The optimal value of ϕ is usu-
ally found in the range of 0 to 10.
Although an identity matrix is often used as Θ, the prediction perfor-
mance of LW-PLS can be improved by determining Θ in a way that the
relationships among input variables and among input and output vari-
ables are taken into consideration. This fact motivates us to propose
covariance-based LW-PLS (CbLW-PLS).

3. Covariance-based locally weighted partial least squares
(CbLW-PLS)

In this section, a new similarity index, into which the relationships
among input variables and among input and output variables are incor-
porated, is proposed to improve the prediction performance of LW-PLS.
The proposed modeling method is called covariance-based LW-PLS
(CbLW-PLS).

The new similarity index is calculated through Eqs. (25) and (26) so
that the weightingmatrix Θ has the desired properties, that is, the rela-
tionships among input variables and among input and output variables
are taken into account simultaneously. Given Θ = ΓΓT with a matrixΓ ∈ ℜM × γ (γ ≤ M), Eq. (26) is rewritten as

dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn−xq
� �TΓΓT xn−xq

� �q
ð28Þ

where the Euclidean distance is computed after linear transformation of
samples {xn} and xq with ΓT.
3.1. Conventional weighting

When Γ is a square matrix, i.e., γ = M, the similarity index is calcu-
lated on the M dimensional input variable space. When the M dimen-
sional identity matrix IM is employed as Γ, Θ is also an identity matrix;Θ = IM. In this case, dn is the Euclidean distance on the original input
variable space; in other words, the coordinates are not transformed.

In the case where an weight θm (≥0) is used for each variable, Γ is a
diagonal matrix, whose diagonal elements are

ffiffiffiffiffiffi
θm

p� 	
. This weighting is

regarded as scaling of each input variable. Kim et al. investigated and
compared various scaling methods in the prediction performance of
LW-PLS [22]. For example, absolute values of regression coefficients of
PLS or LW-PLS are used as {θm}.

Θ ¼ diag b1j; jb2j;…; jbMj jf g ð29Þ

where b= [b1, b2,…, bM]T is a regression coefficient vector of PLS, LW-
PLS, or another model. This method incorporates the relationships
among input variables and among input and output variables into the
similarity index. However, computational load is heavy, since a model
has to be constructed in advance of similarity index calculation;
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modeling requires to determine parameters such as the number of
latent variables and a localization parameter.

Another well-known distance is the Mahalanobis distance, which
takes account of the covariance of input variables by using the inverse
of a covariance matrix of input variables as Θ.
Θ ¼ S−1

X ¼ PΛ−1PT ð30Þ

Here the eigenvalue decomposition is applied to the covariance matrix
SX:

SX ¼ 1
N−1

XXT ¼ PΛPT ð31Þ

where P is an orthogonal matrix and Λ is a diagonal matrix. The
Mahalanobis distance is interpreted as the distance derived by linear
transformation of a sample with ΓT = Λ−1/2PT. In other words, it is the
distance computed after the coordinate rotation with the rotation
matix PT and then the scaling with the diagonal matrix Λ−1/2. This pro-
cedure is associated with principal component analysis (PCA). PT repre-
sents linear transformation to perform rotation to the space spanned by
principal components (PCs), and Λ is a diagonal matrix whose diagonal
elements are the variances of PCs. Thus, theMahalanobis distance is the
distance normalized by using the standard deviations of PCs on theprin-
cipal component space.

By employing a non-diagonal matrix such as SX−1 as Θ, the relation-
ship among input variables is incorporated into the similarity index. An-
other simple approach is to use a covariance matrix as a weighting
matrix, i.e., Θ = SX. This weighting method is just the opposite of the
Mahalanobis distance. In either case, the relationship between input
variables and an output variable is not taken into account.

Correlation coefficients between input variables and an output vari-
able can be used as weights {θm}.

Θ ¼ diag
xT
1y



 


x1k k yk k ;

xT
2y



 


x2k k yk k ;…;

xT
My



 


xMk k yk k

( )
ð32Þ

where the mth input variable xm and the output variable y are mean-
centered. In this case, the relationship among input variables is not
taken into account. The weighting matrices introduced here are sum-
marized in Table 1.

3.2. New weighting

To construct a local regression model with high prediction accuracy,
the similarity should be defined by evaluating both the relationship
among input variables and the relationship between input and output
variables. Moreover, the computational load should be reduced. From
these viewpoints, the present work proposes a new similarity index,
which takes account of both relationships and is easy to derive.

The proposedweightingmethod is based on the covariance between
input variables and an output variable. Given X= [x1, x2,…, xM] and y,
the weighting matrix Θ is expressed as

Γ ¼ XTy

XTy
��� ��� ð33Þ

Θ ¼ ΓΓT ¼ XTyyTX

XTy
��� ���2 ð34Þ

where Γ is equivalent to the first weighting vectorw1 of PLS1. Both the
proposed weighting based on covariance and the conventional
weighting based on correlation coefficients use the inner product xmT y
to define the weighting matrix, but they are significantly different. The
conventional correlation-based weighting matrix is diagonal; it scales
each input variable separately. This means that the correlation-based
weighting does not take account of the relationship among input
variables explicitly. On the other hand, the covariance-based weighting
matrix is non-diagonal; the covariance-based weighting takes account
of the relationship among input variables as well as the relationship
between input variables and the output variable. In addition, in the
covariance-based weighting method, the distance is computed after
projecting samples {xn} and xq onto one dimensional space with ΓT.

Another advantage of the covariance-based weighting method over
conventional weighting methods is its light computational load. In
conventionalmethods, to deriveweights by taking account of both the re-
lationship among input variables and the relationship between input and
output variables, the weights are determined on the basis of regression
coefficients of PLS or LW-PLS. These approaches are time-consuming, be-
cause they need to build one or more PLS models to derive the weights.
On the other hand, the proposed CbLW-PLS does not require any model
to calculate weights even though it takes account of both the relationship
among input variables and the relationship between input and output
variables. Among variousweightingmatrices listed in Table 1, the compu-
tational load of CbLW-PLS is similar to those of other methods, in which
weights based on Euclidean distance, Mahalanobis distance, covariance
among input variables SX, or correlation coefficients between input and
output variables rxy are used. The average calculation time of output pre-
diction for each query depends on the size of database, and it is usually
less than 10 ms from the authors' experience.

3.3. CbLW-PLS

The proposed modelingmethod, LW-PLS with the covariance-based
similarity index, is referred to as covariance-based locallyweighted par-
tial least squares (CbLW-PLS). The algorithm of CbLW-PLS is as follows:

1. Prepare an input variable matrix X and an output variable vector y,
where all variables are mean-centered and appropriately scaled.

2. Calculate the weighting matrix Θ through Eq. (34).
3. Calculate the similarity index ωn according to Eqs. (25) and (26).
4. Predict the output variable based on the LW-PLS algorithm.

4. Visualization of similarity

This section aims to visualize various similarity indexes listed in
Table 1 through a numerical example. Given a query, the distribu-
tion of each similarity index between the query and samples in a
database is displayed on a two dimensional space. 1000 samples
of input variables {xm} (m = 1, 2, 3, 4) were generated through
the following equations and stored in the database.

x1 ¼ u1 ð35Þ

Table 1
Comparison of weighting matrices to calculate similarity indexes, which are inte-
grated with LW-PLS. Weights are based on Euclidean distance, Mahalanobis dis-
tance, covariance among input variables SX, correlation coefficients between
input and output variables rxy, regression coefficients of PLS and LW-PLS, and co-
variance among input and output variables.

Method Weighting matrix Θ
Euclidean IM = diag{1, 1, …, 1}
Mahalanobis SX−1 = PΛ−1PT

SX SX = PΛPT

rxy diag
xT
1yj j

x1k k yk k ;
xT
2yj j

x2k k yk k ;…;
xT
Myj j

xMk k yk k

� �
PLS diag{|b1|, |b2|, …, |bM|}
LW-PLS diag{|b1|, |b2|, …, |bM|}
Covariance XTyyTX

XTyk k2
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x2 ¼ u1 þ 0:2u2 ð36Þ

x3 ¼ 3 u1−0:5ð Þ3 þ 0:2u3 ð37Þ

x4 ¼ u4 ð38Þ

um∼U 0; 1ð Þ ð39Þ

where U a; bð Þ is the Uniform distribution from a to b. The output
variable y was related to the first principal component (PC1) t of
{xm + vm}.

y ¼ 3t3 þ v0 ð40Þ

t ¼ PC1 of xm þ vmð Þ ð41Þ

v0∼N 0;0:012
 �

ð42Þ

vm∼N 0;0:022
 �

ð43Þ

where N μ;σ2
� �

denotes the Normal distribution with mean μ and
variance σ 2. 1000 samples of ywere stored in the database together
with those of {xm}. The samples are visualized in Fig. 1, where blue
small points are samples in the database and the red large point is
the query.

The similarity indexes were calculated after all variables were nor-
malized, i.e., their mean and variance are 0 and 1. The distributions of
the similarity indexes are displayed on two dimensional spaces in
Figs. 2 and 3.

In Fig. 2, the similarity index based on the Euclidean distance is dis-
tributed concentrically regardless of the relationship among input vari-
ables. The similarity index based on the Mahalanobis distance is
adjusted according to the covariance of input variables. The similarity
index based on the covariance of input variables SX is distributed at
right angles to that of the Mahalanobis distance.

The x1 − x4 plot at the upper right of Fig. 3 is representative of the
similarity index based on the absolute values of the correlation coeffi-
cients among input and output variables rxy. This plot shows that x1 is
more similar to y than x4, because the similarity index depends more
greatly on x1 than x4. In fact, x1, which is correlated with x2 and x3, has
stronger correlationwith y than x4. The similarity index based on the ab-
solute values of the regression coefficients of PLS is similar to that of rxy,
because weighting is performed according to the contribution of each
input variable to the output variable in both methods. The similarity
index based on the absolute values of the regression coefficients of
LW-PLS is different from that of PLS, because the LW-PLS model is
local while the PLS model is global. Finally, the proposed covariance-
based similarity index is shown at the bottom of Fig. 3. Since this simi-
larity index is calculated on one dimensional space, it is distributed in
one direction. The distribution is different from the others. This affects
the prediction performance of LW-PLS as shown in the next section.

5. Industrial case studies

This section aims to compare a variety of LW-PLS with the similarity
indexes introduced in Section 4. To validate the practicability of the pro-
posed CbLW-PLS, themodelingmethods were applied to two industrial
case studies: 1) soft-sensor for estimating unreacted NaOH concentra-
tion in an alkali washing tower in a petrochemical process, and 2) pro-
cess analytical technology (PAT) for estimating the concentration of a
residual drug substance in a pharmaceutical process.

When the regression coefficients of PLS or LW-PLS are employed for
calculating the similarity index, the parameters such as the number of
latent variables or a localization parameter have to be determined in ad-
vance. In this work, optimal parameters were selected through leave-
one-out cross validation (LOOCV), and the regression coefficients of
constructed models were used for similarity index calculation.

5.1. Petrochemical process

The first case study focuses on soft-sensor design in the petrochem-
ical process. The objective of the soft-sensor is to predict the concentra-
tion of unreacted NaOH in an alkali washing tower.

The alkali washing tower removes impurities, H2S and CO2, from
cracked gas generated in the ethylene plant. The cracked gas is fed to
the tower from the bottom and NaOH is fed from the top. Both H2S
and CO2 in the cracked gas are reactedwithNaOH through the following
chemical reactions.

H2Sþ 2NaOH→Na2Sþ 2H2O

CO2 þ 2NaOH→Na2CO3 þH2O

The formulated salts, Na2S and Na2CO3, and unreacted NaOH come
out of the tower from the bottom, while the washed cracked gas
comes out from the top. To maximize the productivity and the profit-
ability of this process, the concentration of unreacted NaOH should be
as low as possible. Since the concentration ismeasured at the laboratory
by analysing samples, that is, it is not measured in real time, the soft-
sensor plays a crucial role in achieving real-time monitoring and feed-
back control.

As a soft-sensor design method, LW-PLS is preferable because it can
cope with changes in process characteristics and enables engineers to
avoid frequent model maintenance. In addition, this company has al-
ready developed an in-house software to design soft-sensors based on
LW-PLS. Thus, developing a new soft-sensor based on LW-PLS is faster
and lower-cost than building another model including a first-principle
model.

A total of 11 process variables such as temperature, flow rate, and
pressure were selected and used for soft-sensor design. To take process
dynamics into account, not only current measurements but also past
measurements were used as input variables. This type of modeling has
been widely used in the process industry [23]. The number of past
measurements used as input variables was determined for each process
variable according to the process knowledge. As a result, the number of
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input variables was determined to be 50 by experienced engineers and
operators. The number of modeling samples was 211, and that of test
samples was 141. Here, older samples were used as modeling samples,
and newer ones were used as test samples.

The prediction results are summarized in Table 2, where #LV is the
number of latent variables adopted in each LW-PLSmodel,ϕ is the local-
ization parameter of LW-PLS, and the prediction accuracy is evaluated
through the correlation coefficient between predicted values and refer-
ence values (R) and root mean square error of prediction (RMSEP). The
results clearly show that the proposed CbLW-PLS, which combines LW-
PLS with the covariance-based similarity index, achieved the best
prediction performance of all. The selected parameters of LW-PLS,
i.e., #LV andφ, of CbLW-PLSwere close to those of LW-PLSwith the sim-
ilarity index based on Mahalanobis distance. Although Rs of both
methods were the same, RMSEPs were different. In fact, RMSEP of
CbLW-PLS was significantly smaller than the others.

In addition, the selected parameters and the prediction performance
of LW-PLS with the similarity indexes based on the correlation

coefficients rxy and PLS regression coefficients were close to each
other. The similarity indexes of these methods are based on the influ-
ence of each input variable on the output variable; therefore, the similar
prediction accuracy was achieved. The similar results were observed in
the other case study.

5.2. Pharmaceutical process

The second case study focuses on process analytical technology
(PAT) in the pharmaceutical process. To minimize the risk of cross con-
tamination, it is crucial to develop a rapid measurement method that
enables continuous monitoring of the amount of residual drug sub-
stances in pharmaceutical manufacturing equipment after each
cleaning. If it is detected with rapid measurement that the amount
of residual drug substances is beyond the limit of acceptance
criteria, the amount should be analyzed with a conventional method
such as the swab method in more detail. Such a rapid measurement
method will have the great advantage in mitigating the risk of the
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cross contamination. In this way, rapid measurement methods of resid-
ual drug substances lead to paradigm shift of the cleaning process as
PAT tools. To develop a rapid and accurate measurement method of re-
sidual drug substances without sampling, the use of infrared-reflection
absorption spectroscopy (IR-RAS) and LW-PLS was evaluated [9].

The problem investigated in this case study is the same as that in [9].
The concentration of a residual drug substance, ibuprofen, was estimat-
ed by using the absorbance at 753wavenumbers,whichweremeasured

by IR-RAS. The numbers ofmodeling, parameter determination, and test
sampleswere 69, 53, and 63, respectively. The parameter determination
samples were used to optimize the number of latent variables and the
localization parameter. The test samples were used to evaluate the pre-
diction accuracy of LW-PLS models constructed by using the modeling
samples.

The prediction results summarized in Table 3 show that the calibra-
tionmodel constructed through CbLW-PLS achieved the best prediction
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Table 2
Prediction results of LW-PLS with different similarity indexes (1): prediction of the
unreacted NaOH concentration in an alkali washing tower in a petrochemical process.

Method #LV φ R RMSEP

Euclidean 6 1.5 0.856 1.003
Mahalanobis 9 0.8 0.870 0.940
SX 6 1.6 0.866 0.931
rxy 6 1.9 0.864 0.993
PLS 6 1.8 0.865 0.987
LW-PLS 6 1.5 0.862 1.002
Covariance 8 0.8 0.870 0.889

Table 3
Prediction results of LW-PLS with different similarity indexes (2): prediction of the
concentration of a residual drug substance in a pharmaceutical process.

Method #LV φ R RMSEP

Euclidean 8 0.7 0.968 1.38
Mahalanobis 8 0.6 0.964 1.46
SX 8 0.8 0.971 1.26
rxy 8 0.7 0.971 1.29
PLS 8 0.9 0.974 1.24
LW-PLS 8 0.7 0.970 1.37
Covariance 8 0.7 0.973 1.17
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performance of all. Although R of CbLW-PLSwas slightly lower than that
of LW-PLSwith the similarity index based on PLS regression coefficients,
CbLW-PLS outperformed all the others in RMSEP.

5.3. Discussion

In summary, the proposed method, CbLW-PLS, achieved the best
performance in two case studies. In addition, CbLW-PLS is less time-
consuming than the other methods, particularly the methods requiring
model development in advance.

It should be also noticed that the selection of samples stored in the
database have a huge effect on the prediction accuracy. Thus, appropri-
ate selection of samples stored in the database is crucial in applications
of LW-PLS. In general, samples should be stored in the database in de-
scending order of their importance, which is evaluated from the three
viewpoints: the newness, the (probability) density, and the nonlineari-
ty. Newer samples are more important than older ones, samples be-
come more important in the region where they are sparse, and more
samples are needed to describe stronger nonlinearity. In the application
of LW-PLS to a cracked gasoline (CGL) fractionator and a purification
section of an acetyl plant [11], for example, dozens of newest samples
were stored in the database to cope with recent changes in process
characteristics, and hundreds of past samples were selected as core
data, which were always stored in the database to prevent over-
adaptation and cope with abrupt changes in process characteristics. It
was reported that the use of core data was significantly useful to make
LW-PLS soft-sensors robust. Further discussion on the database man-
agement is found in [11].

In addition, the treatment of missing data and outliers is important
to achieve high and robust prediction performance regardless ofmodel-
ing techniques. In conventional (non JIT) modeling methods, missing
data are usually complemented by using other measurements on the
basis of the correlation among variables. Such an approach is also avail-
able in JIT modeling. However, another easy-to-use approach may be
adopted by taking account of the fact that a local model is built repeat-
edly in JITmodeling such as CbLW-PLS: to build a localmodel by exclud-
ing or ignoring the missing data (variables). Furthermore, it should be
emphasized that LW-PLS including CbLW-PLS is robust against outliers
because the weights on outliers usually become very small and the
outliers are ignored when LW-PLS builds a local model, although any
technique can be used for outlier detection.

6. Conclusions

To improve the prediction performance of LW-PLS, the new similar-
ity index that takes account of the relationships among input variables
as well as among input and output variables was proposed. The new
LW-PLS based on the proposed similarity index is referred to as
covariance-based locally weighted partial least squares (CbLW-PLS).

The advantages of CbLW-PLS over the other six methods were dem-
onstrated through two industrial case studies: 1) soft-sensor design for
estimating the unreacted NaOH concentration in the alkali washing
tower in the petrochemical process, and 2) process analytical technolo-
gy (PAT) for estimating the concentration of the residual drug substance
in the pharmaceutical process. The similarity indexes compared with
the proposed one were similarity indexes based on 1) Euclidean dis-
tance, 2) Mahalanobis distance, 3) weighted distance using covariance
of input variables, 4) weighted distance using absolute values of corre-
lation coefficients between input and output variables, 5) weighted
distance using absolute values of regression coefficients of PLS, and
6) weighted distance using absolute values of regression coefficients
of LW-PLS.

CbLW-PLS provided better prediction performance than the other
methods in both case studies. Although it is inappropriate to conclude
that CbLW-PLS is the bestmethod in general, the presentwork succeeded
to demonstrate the practicability of CbLW-PLS because it outperformed
the other methods in different real problems in different industrial
processes.
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