

Г

Title	Decomposing ability of diverse litter-decomposer macrofungi in subtropical, temperate, and subalpine forests
Author(s)	Osono, Takashi
Citation	Journal of Forest Research (2014), 20(2): 272-280
Issue Date	2014-12-16
URL	http://hdl.handle.net/2433/200207
Right	The final publication is available at Springer via http://dx.doi.org/10.1007/s10310-014-0475-9.; The full-text file will be made open to the public on 16 December 2015 in accordance with publisher's 'Terms and Conditions for Self- Archiving'.
Туре	Journal Article
Textversion	author

1	Decomposing ability of diverse litter-decomposer macrofungi in subtropical,
2	temperate, and subalpine forests
3	
4	Takashi Osono
5	
6	T. Osono
7	Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113 Japan
8	e-mail: tosono@ecology.kyoto-u.ac.jp
9	
10	AbstractAn integrative survey was conducted on the ability of litter-decomposing
11	macrofungi from forests of different climatic regions to decompose litter materials
12	and recalcitrant compounds in the litter under pure culture conditions. A total of

75 isolates in six families of litter-decomposing macrofungi from subtropical (ST), cool temperate (CT), and subalpine (SA) forests in Japan were tested for their ability to decompose a total of eight litter types that are major substrates for macrofungi at each site. The mass loss of the litter (% original mass) during incubation for 12 weeks at 20°C ranged from -3.1% to 54.5%. Macrofungi

18	originated from forests of different climatic regions exhibited similar decomposing
19	abilities, but the SA isolates caused negligible mass loss of <i>Abies</i> needles, possibly
20	due to inhibitory compounds. Decomposing activity for recalcitrant compounds (as
21	acid unhydrolyzable residues, AUR) was found in many macrofungal isolates. The
22	isolates of Marasmiaceae were generally more able to cause selective
23	decomposition of AUR than those of Mycenaceae and to decompose AUR in partly
24	decomposed materials. The isolates of Xylariaceae had lower ligninolytic activity
25	than those of Basidiomycetes. The AUR mass loss caused by CT isolates was
26	significantly lower in nitrogen-rich beech litter than in its nitrogen-poor
27	counterpart, suggesting a retarding effect of nitrogen on AUR decomposition,
28	which was obvious for Mycenaceae. The effect of fungal family was generally more
29	significant than that of litter type, suggesting that possible changes in the
30	composition of fungal assemblages influence their functioning more than changes
31	in the quality of substrates.
32	

33 Keywords Acid unhydrolyzable residue · Climate · Lignin
34 decomposition · Ligninolytic fungi · Selective delignification

 $\mathbf{2}$

36 Introduction

38	Fungi play central roles in decomposition processes of leaf litter because they are
39	a dominant component of soil biota and are primary decomposers of lignin and
40	other recalcitrant compounds that often limit the decomposition but which other
41	soil organisms are rarely able to mineralize. Litter-decomposing macrofungi
42	(LDM) are of particular interest in this regard, as they comprise active
43	ligninolytic species in Basidiomycota and Ascomycota (Osono 2007; Lindahl and
44	Boberg 2008; van der Wal et al. 2013). Researchers have investigated the
45	decomposing abilities of LDM with the pure culture test under laboratory
46	conditions, commonly using single litter types inoculated with several (usually
47	less than 10) LDM species associated with them (Miyamoto et al. 2000; Steffen et
48	al. 2007; Valášková et al. 2007; Boberg et al. 2011; Žifčáková et al. 2011). To the
49	knowledge of the author, few studies have compared the abilities of diverse LDM
50	to decompose multiple litter types, and compared these abilities among isolates
51	belonging to different taxa and originating from different climatic regions. I

52	hypothesized that the macrofungal assemblages in warmer climates included a
53	larger number of species that had ligninolytic potential and/or that could
54	selectively decompose recalcitrant compounds than macrofungal assemblages in
55	cooler climates. This was based on casual observations that the decomposition of
56	recalcitrant compounds, such as lignin, is more active in soils at warmer climates
57	(e.g. Hirobe et al. 2004; Osono 2006; Osono et al. 2009).
58	The purpose of the present study was to conduct an integrative survey on
59	the ability of LDM from forests of different climatic regions to decompose litter
60	materials and recalcitrant compounds in the litter under pure culture conditions.
61	A total of 75 isolates in six families of LDM from subtropical, cool temperate, and
62	subalpine forests in Japan were tested for their ability to decompose a total of
63	eight litter types that were major substrates for LDM at each study site. The
64	contents of acid unhydrolyzable residues were analyzed for litter materials
65	decomposed by LDM to investigate the ability of the LDM to decompose lignin and
66	other recalcitrant compounds in the litter and the degree of selective
67	decomposition of these compounds. These measures were analyzed statistically to
68	evaluate the relative effects of fungal family, litter type, and their interaction on

69 the decomposition by macrofungi from three climatic regions.

70

71 Materials and methods

72

73 Study sites and collection of macrofungi

74

75Samples were collected from three sites in Japan: a subtropical forest (ST), a cool 76 temperate forest (CT), and a subalpine forest (SA). The location, climatic 77conditions, vegetation, and properties of the forest floor are described in Osono 78(2014a, 2014b). Fruiting bodies of litter-decomposing macrofungi (LDM) were 79collected from the forest floor of the study sites from March 2007 to January 2008 80 in ST, from May to November 2001 in CT, and June to October 2008 in SA (Osono 81 2014b). In the laboratory, mass spores or tissues of fruiting bodies were 82aseptically plated onto lignocellulose agar (LCA) modified by Miura and Kudo 83 (1970) for isolation. LCA contains glucose 0.1%, $KH_2PO_4 0.1\%$, $MgSO_4 \cdot 7H_2O 0.02\%$, 84 KCl 0.02%, NaNO₃ 0.2%, yeast extract 0.02%, and agar 1.3% (w/v). Note that the 85 modified LCA described by Miura and Kudo (1970) does not contain lignin or other recalcitrant compounds. Isolates were maintained on slants of 1% malt extract
agar medium [MEA, malt extract 1% and agar 2% (w/v)] at 20°C in darkness until
the tests were performed.

89

90 Fungal isolates

91

92A total of 75 isolates were used in the decomposition test to compare the 93 decomposing ability of multiple fungal species from each study site, including 37 isolates from ST, 16 from CT, and 22 from SA (see Electronic Supplementary 94Material). These fungal isolates from ST, CT, and SA were inoculated to litter 9596 types collected from ST, CT, and SA, respectively (denoted as ST, CT, and SA tests). 97 Seventy-one of the 75 isolates were obtained from mass spores or tissues of 98 fruiting bodies during the field survey as described above. One isolate of 99 Marasmius sp.ST3 was isolated from decomposing Castanopsis sieboldii leaves by 100 the surface disinfection method and used for ST tests. The identification of all ST 101 and several SA isolates to species level was not successful (Osono 2014b), and the 102 isolates were analyzed for base sequences of the rDNAs ITS1, 5.8S, ITS2, and 28S

103	D1/D2 and assigned mostly to genus level by comparing the base sequences with
104	the GenBank database using BLAST (see ESM for the accession numbers in NIAS
105	Genebank). Three isolates (Mycena polygramma IFO33011, Ampulloclitocybe
106	clavipes IFO30524, and Rhodocollybia butyracea IFO30747) were obtained from
107	the culture collection (IFO, Osaka, Japan) and used for CT tests. These three
108	fungal species are commonly encountered in temperate regions (Imazeki and
109	Hongo 1987; Osono 2014b).

111 Litter materials

112

A total of eight litter types were used as substrata for the decomposition tests, including freshly fallen leaves of seven tree species and one forest floor material. The seven tree species were dominant components of forest stands and major substrates for LDM in each study site (Osono 2014b). Newly shed leaves of *Castanopsis sieboldii* and *Schima wallichii* without obvious fungal or faunal attack were collected from the forest floor of ST in March 2008, a peak period of litterfall, and used for ST tests. Newly shed leaves of *Fagus crenata* and *Quercus*

120	crispula without obvious fungal or faunal attack were collected from the forest
121	floor of CT in November 2002, a peak period of litterfall, and used for CT tests.
122	Specifically, leaves of <i>F. crenata</i> from the upper and lower parts of the forest slope
123	were collected separately and used for CT tests. These leaves differed in nitrogen
124	(N) content (1.32% w/w for the upper litter versus 1.75% for the lower litter),
125	mainly due to soil N availability and N use by F. crenata (Tateno and Takeda
126	2010). At the same time, partly decayed materials were collected from F layer at
127	the lower slope and used for CT tests. Hence, four litter types [Fagus (upper),
128	Fagus (lower), Quercus, and partly decomposed material] were used for CT tests.
129	Newly shed leaves of <i>Abies mariesii</i> and <i>Betula ermanii</i> without obvious fungal or
130	faunal attack were collected from the forest floor of SA in October 2008 and used
131	for SA tests. Leaves of broadleaved tree species were cut into strips 1 cm wide.
132	The leaves were oven-dried at 40°C for one week and preserved in vinyl bags until
133	the experiment was started. Tree species used as substrata are referred to as their
134	genus names in the present study for the sake of simplicity.
135	

136 Pure culture decomposition test

138	An individual pure culture decomposition test consisted of one fungal isolate
139	inoculated to one litter type, making 74 tests (37 isolates \times 2 litter types) for ST,
140	64 tests (16 isolates \times 4 litter types) for CT, and 44 tests (22 isolates \times 2 litter
141	types) for SA. Litters (0.3 g) were sterilized by exposure to ethylene oxide gas at
142	60°C for 6 hours and used in the tests according to the methods described in
143	Osono and Hirose (2011). The sterilized litters were placed on the surface of Petri
144	dishes (9-cm diameter) containing 20 ml of 2% agar. Inocula for each assessment
145	were cut out of the margin of previously inoculated Petri dishes on 1% MEA with
146	a sterile cork borer (6 mm diameter) and placed on the agar adjacent to the litters,
147	one plug per plate. The plates were incubated for 12 weeks in the dark at 20°C.
148	The plates were sealed firmly with laboratory film during incubation so that
149	moisture did not limit decomposition on the agar. After incubation, the litters
150	were retrieved, oven-dried at 40°C for 1 week, and weighed. The initial,
151	undecomposed litters were also sterilized, oven-dried at 40°C for 1 week, and
152	weighed to determine the original mass. Four plates were prepared for each test,
153	and four uninoculated plates served as a control. Mass loss of litter was

154	determined as a percentage of the original mass, taking the mass loss of litter in
155	the uninoculated and incubated control treatment into account, and the mean
156	values were calculated for each plate. The original data are listed in ESM. Prior to
157	the tests, the sterilized litters were placed on 1% MEA, and after 8 weeks of
158	incubation at 20°C in darkness, no microbial colonies had developed on the plates.
159	Thus, the effectiveness of the sterilization method used in the present study was
160	verified. The initial litter, the control litter, and the litters with more than or
161	equal to 5.0% mass loss were used for chemical analyses as described below.

163 Chemical analyses

164

Litter materials from four replicate plates were combined to make one sample for each test and ground in a laboratory mill (0.5-mm screen). The amount of acid-unhydrolyzable residue (AUR) in the samples was estimated by means of gravimetry as acid-insoluble residue, using hot sulfuric acid digestion (King and Heath 1967). Samples were extracted with alcohol-benzene at room temperature (15-20°C), and the residue was treated with 72% sulfuric acid (v/v) for 2 h at room

171	temperature with occasional stirring. The mixture was diluted with distilled
172	water to make a 2.5% sulfuric acid solution and autoclaved at 120°C for 60 min.
173	After cooling, the residue was filtered and washed with water through a porous
174	crucible (G4), dried at 105°C and weighed as AUR. This AUR fraction contains a
175	mixture of organic compounds in various proportions, including condensed
176	tannins, phenolic and carboxylic compounds, alkyl compounds such as cutins, and
177	true lignin (Preston et al. 1997).
178	Mass loss of AUR was determined as a percentage of the original mass,
179	taking the mass loss of AUR in the uninoculated and incubated control treatment
180	into account. AUR/litter mass (AUR/L) loss ratio is a useful index of the selective
181	delignification caused by each fungal species (Osono and Hirose 2009). AUR/L loss
182	ratio of each fungal species was calculated according to the equation:
183	AUR/L loss ratio = mass loss of AUR (% of original AUR mass) / mass loss
184	of litter (% of original litter mass)
185	
186	Statistical analysis
187	

188	Effects of fungal family, litter type, and the fungal family \times litter type interaction
189	on the mass loss of litter and AUR and AUR/L loss ratio were analyzed with
190	generalized linear models (GLMs) with a Gaussian distribution for each of ST, CT,
191	and SA tests. Only the fungal family was used as an independent variable in the
192	GLMs to test the mass loss of AUR and AUR/L loss ratio for Betula litter in SA
193	tests, because the mass loss of $Abies$ litter was less than 5% for all fungal isolates
194	tested and no AUR analysis was conducted. The GLMs were performed with the
195	<i>glm</i> function of R version 3.0.2 for Mac (http://www.r-project.org) and with the <i>glht</i>
196	function of the R multcomp package for multiple comparisons with Tukey's test.
197	Paired t-test was also used to compare the mass loss of litter and AUR and AUR/L
198	loss ratio between Fagus (lower) and Fagus (upper) litter, using JMP 6.0 for
199	Macintosh.
200	
201	Results
202	
203	Litter mass loss

205	The mean mass loss of the litter caused by 37 isolates of ST tests ranged from
206	2.3% to 34.3% of the original litter mass for $Castanopsis$ litter, and from -0.4% to
207	30.3% for <i>Schima</i> litter; that caused by 16 isolates of CT tests ranged from $4.1%$ to
208	30.2% for Fagus (upper) litter, from 2.3% to 29.3% for Fagus (lower) litter, from
209	0.1% to 42.8% for $Quercus$ litter, and from 2.9% to 34.1% for partly decomposed
210	material; and that caused by 22 isolates of SA tests ranged from -3.1% to 0.6% for
211	Abies litter and from 0.0% to 54.5% for $Betula$ litter (Fig. 1). The largest mean
212	mass loss was found for <i>Marasmius androsaceus</i> inoculated to <i>Betula</i> litter in the
213	SA test, whereas all SA isolates caused negligible mass loss of <i>Abies</i> litter.
214	In ST tests, the mass loss of litter was significantly larger for
215	Mycenaceae than for Marasmiaceae (GLM, d.f.=3, deviance=625.0, P<0.05; Table
216	1) and was not significantly different between Castanopsis and Schima litter
217	(GLM, d.f.=1, deviance=135.6, P=0.17; Fig. 1). The effect of fungal family \times litter
218	type interaction was not significant (GLM, d.f.=3, deviance=81.1, P=0.77). In CT
219	tests, the mass loss of litter was not significantly different among fungal families
220	(GLM, d.f.=3, deviance=733.7, P=0.08; Table 1), four litter types (GLM, d.f.=3,
221	deviance=548.5, P=0.17; Fig. 1), or the fungal family \times litter type interaction

222(GLM, d.f.=9, deviance=973.2, P=0.46). When analyzed separately, the mean mass 223loss caused by the 16 CT isolates was not significantly different between Fagus (upper) and Fagus (lower) litter (paired t-test, d.f.=15, t=0.176, P=0.86), 224225indicating that the initial N level in litter had no significant effect on fungal 226 decomposition of the whole litter. In SA tests, the mass loss of litter was significantly affected by fungal family (GLM, d.f.=4, deviance=1007.6, P<0.05; 227Table 1), litter type (GLM, d.f.=1, deviance=4577.5, P<0.001; Fig. 1), and the 228229fungal family \times litter type interaction (GLM, d.f.=4, deviance=1071.5, P<0.05). 230The mass loss of Betula litter was generally larger for Mycenaceae than for Hymenogasteraceae (Table 1). 231232

233 AUR loss

The mean mass loss of acid-unhydrolyzable residues (AUR) caused by ST isolates ranged from 0.7% to 62.6% of the original AUR mass for *Castanopsis* litter and from 0.5% to 41.0% for *Schima* litter; that caused by CT isolates ranged from 20.1% to 70.5% for *Fagus* (upper) litter, from 17.2% to 64.8% for *Fagus* (lower)

239	litter, from 7.6% to 69.4% for <i>Quercus</i> litter, and from 12.7% to 70.4% for partly
240	decomposed material; and that caused by SA isolates ranged from 0.2% to 70.6%
241	for Betula litter (Fig. 2). Abies litters inoculated with SA isolates were not
242	analyzed for AUR loss because the values of mass loss of litter caused by SA

isolates were negligible (Fig. 1).

244In ST tests, the mass loss of AUR was significantly larger for Mycenaceae and Marasmiaceae than for Xylariaceae (GLM, d.f.=3, deviance=2561.0, P<0.001; 245246Table 1) and was not significantly different between Castanopsis and Schima 247litter (GLM, d.f.=1, deviance=45.8, P=0.59; Fig. 2). The effect of fungal family \times litter type interaction was not significant (GLM, d.f.=3, deviance=239.8, P=0.68). 248249In CT tests, the mass loss of AUR was significantly larger for Marasmiaceae than 250for Mycenaceae and Tricholomataceae (GLM, d.f.=3, deviance=5584.1, P<0.001; 251Table 1) and was not significantly different among four litter types (GLM, d.f.=3, 252deviance=83.7, P=0.94; Fig. 2). The effect of fungal family × litter type interaction 253was not significant (GLM, d.f.=7, deviance=640.6, P=0.91). When analyzed 254separately, however, the mean mass loss of AUR caused by CT isolates was 255significantly lower in Fagus (lower) than in Fagus (upper) litter (paired t-test, 256d.f.=14, t=2.15, P<0.05), suggesting that the higher initial N level in the lower 257litter suppressed fungal decomposition of AUR. Specifically, this reduction was 258attributed to the isolates of Mycenaceae, as the mean mass loss of AUR caused by 259six isolates of Mycenaceae was significantly lower in the lower litter than in the upper litter (paired t-test, d.f.=5, t=2.65, P<0.05). In contrast, no significant 260261difference was found for the AUR mass loss between the upper and lower litter 262inoculated with six isolates of Marasmiaceae (paired t-test, d.f.=5, t=1.06, 263P=0.337). In SA tests, the mass loss of AUR in *Betula* was not significantly different among fungal families (GLM, d.f.=4, deviance=2612.1, P=0.07; Table 1). 264

265

266 Degree of selective decomposition of AUR

267

The mean AUR/L loss ratio for ST isolates ranged from 0.04 to 3.17 for *Castanopsis* litter and from 0.04 to 2.21 for *Schima* litter; that for CT isolates ranged from 1.33 to 3.70 for *Fagus* (upper) litter, from 0.93 to 3.17 for *Fagus* (lower) litter, from 1.00 to 2.00 for *Quercus* litter, and from 1.39 to 2.57 for partly decomposed material; and that for SA isolates ranged from 0.03 to 2.00 for *Betula* 273 litter (Fig. 2).

274	In ST tests, AUR/L loss ratio was significantly different among fungal
275	families (GLM, d.f.=3, deviance=11.7, P<0.001; Table 1) and was not significantly
276	different between <i>Castanopsis</i> and <i>Schima</i> litter (GLM, d.f.=1, deviance=0.02,
277	P=0.75; Fig. 3). That is, AUR/L loss ratio was significantly larger for
278	Marasmiaceae than for Mycenaceae and was significantly lower for Xylariaceae
279	than for Marasmiaceae and Mycenaceae. The effect of fungal family \times litter type
280	interaction was not significant (GLM, d.f.=3, deviance=0.52, P=0.50). In CT tests,
281	AUR/L loss ratio was significantly larger for Marasmiaceae than for Mycenaceae
282	(GLM, d.f.=3, deviance=4.2, P<0.001; Table 1) and was significantly larger in
283	Fagus (upper) and partly decomposed material than in Quercus litter (GLM,
284	d.f.=3, deviance=3.4, P<0.01; Fig. 3). The effect of fungal family \times litter type
285	interaction was not significant (GLM, d.f.=7, deviance=1.04, P=0.77). When
286	analyzed separately, the mean AUR/L loss ratio for CT isolates was significantly
287	lower in Fagus (lower) than in Fagus (upper) litter (paired t-test, d.f.=14, t=2.45,
288	P<0.05), indicating that the higher initial N level in the lower litter reduced the
289	degree of selective decomposition of AUR. In SA tests, AUR/L loss ratio in Betula

290 was significantly larger for Mycenaceae than for Tricholomataceae (GLM, d.f.=4, 291deviance=2.7, P<0.001; Table 1). 292Discussion 293 294295Decomposing ability of litter 296 297The mass loss values of litter-decomposing macrofungi (LDM) in the present 298study (Fig. 1) are within the range in previous reports of pure culture decomposition by basidiomycetes (Miyamoto et al. 2000; Boberg et al. 2011; 299 300 Žifčáková et al. 2011) and by xylariaceous Ascomycetes (Osono et al. 2011b). The 301 results also demonstrated the stronger decomposition of litter and

acid-unhydrolyzable residues (AUR) by LDM than non-ligninolytic microfungi on
leaf litter of subtropical and tropical (Osono et al. 2008, 2009), temperate (Osono
and Takeda 2002; Osono et al. 2003; Koide et al. 2005; Osono et al. 2006), and
subalpine forests (Osono and Takeda 2006). The negligible mass loss values of *Abies* needles caused by SA isolates are possibly attributable to essential oils in

307 needles that can inhibit fungal growth (Bağci and Diğrak 1996).

308

309 Fungal taxa and the decomposition of recalcitrant compounds

310

311 Decomposing activity for AUR was found in many macrofungal isolates in the 312 three sites (Figs 2 and 3), and has previously been primarily attributed to the 313production of extracellular ligninolytic enzymes (Steffen et al. 2007; Valášková et 314 al. 2007). My data indicated that the isolates of Marasmiaceae were generally 315 better able to cause selective decomposition of AUR than those of Mycenaceae 316 (Table 1), although there was a degree of variation among the isolates. The ability 317 of Marasmiaceae to decompose AUR from partly decomposed material in CT tests 318 appeared unique as it contrasted with the abilities of Mycenaceae, which 319 exhibited reduced mass loss in partly decomposed material compared to freshly 320 fallen leaves of Fagus and Quercus (Table 1). This suggested that species in 321Marasmiaceae are physiologically adapted to the partly decomposed materials 322enriched in AUR, as proposed by Osono et al. (2011a). The isolates of Xylariaceae 323 in ST tests had lower ligninolytic activity than Basidiomycetes and caused

324	selective decomposition of components other than AUR (Table 2), in accordance
325	with previous findings that xylariaceous fungi prefer cellulose to lignin (Nilsson
326	and Daniel 1989). Fukasawa et al. (2009) also showed that the production by
327	Xylaria species of pseudosclerotinial plates, which are insoluble to hot acid and
328	registered as AUR, could lead to a net increase of AUR (i.e., an apparent decrease
329	in mass loss of AUR) during pure culture decomposition.
330	

331 Effect of litter quality

333 In CT tests, the mean value of AUR mass loss was lower in N-rich Fagus (lower) litter than in N-poor Fagus (upper) litter (Fig. 2, Table 1), suggesting a retarding 334 effect of N on AUR decomposition. The lack of significant changes in the mass loss 335 of whole litter (Fig. 1) indicated the enhanced decomposition of other organic 336 337 components (possibly polymer carbohydrates, such as cellulose; Osono and Takeda 2001) than AUR. Such a retarding effect of N seemed more obvious for the isolates 338 339of Mycenaceae than for those of Marasmiaceae (Table 1), supporting my previous discussion that the ligninolytic system of Mycenaceae appears to be more 340

341	sensitive to litter quality (i.e. the content of AUR and N) than that of
342	Marasmiaceae. Laboratory experiments documented the suppression of
343	ligninolytic enzyme activities produced by basidiomycetes due to N amendments
344	(Fenn et al. 1981; Reid 1991). Similarly, excess N supply often suppressed the
345	decomposition of recalcitrant components, such as lignin, in the field (Berg and
346	Laskowski 2006; Hagiwara et al. 2012), and the activity of ligninolytic enzymes in
347	soil (Sinsabaugh et al. 2005).
348	

349 Comparison of macrofungi originated from different climates

350

Overall, the decomposing ability for leaf litter was similar at the level of macrofungal assemblage among the three study sites. This appeared contradictory to the hypothesis that the decomposition of AUR in leaf litter is more active in warmer than in cooler climates. This discrepancy may be explained by differences in the assemblage composition of LDM, in the soil layer which LDM colonized, and in temperature. First, the richness and frequency of occurrence of Mycenaceae were similar among the three sites, whereas those of Marasmiaceae,

358	which included active decomposers of AUR (Table 1), were higher at warmer than
359	at cooler sites (Osono 2014b). The relative dominance of ligninolytic fungi in
360	Marasmiaceae in the macrofungal assemblage at warmer sites may be associated
361	with the more active decomposition of recalcitrant compounds in warmer than in
362	cooler climates. This is not contradictory with the finding of Osono (2011) that
363	non-ligninolytic microfungi in Ascomycetes were more frequent in surface litter at
364	cooler sites.
365	Secondly, field observations indicated that LDM mainly colonized the
366	surface L layer in ST, whereas they mainly colonized the deeper layers in CT and
367	SA (Osono 2014b). The present study demonstrated that AUR decomposition by
368	major macrofungal species in Mycenaceae was suppressed when such species
369	were inoculated to partly decomposed materials from F layer, compared to freshly
370	fallen leaves (Table 1), potentially leading to the retarded decomposition of
371	recalcitrant compounds in cooler climates. Thirdly, the higher temperatures in
372	warmer climates can enhance AUR decomposition by some ligninolytic fungi
373	(Adaskaveg et al. 1995; Osono et al. 2011c). However, how the decomposition of

374 AUR by LDM used in the present study responds to temperature and to what

extent the temperature-dependent response varies among the LDM isolates ofdifferent origins remain unclear and should be examined in the future.

377

378 Conclusion

379

380 The pure culture decomposition tests in the present study demonstrated that 381LDM included isolates that were capable of decomposing litter actively and 382removing recalcitrant compounds selectively. An array of LDM thus play major 383 roles in decomposition processes and nutrient recycling on the forest floor and are probably major determinants of forest productivity and matter cycling within 384 385forest ecosystems of the study sites. Litter-decomposing macrofungi originated 386 from forests of different climatic regions exhibited similar decomposing abilities, 387 but the decomposing ability of LDM varied with their taxonomic position (at the 388 family level) and the type of substrate (i.e., tree species, nutrient level, and the 389 degree of decomposition). In most cases, the effect of fungal family was more 390 significant than that of litter type, suggesting that possible changes in the 391 composition of LDM assemblages influence the functioning of LDM on the forest floor more than possible changes in the quality of substrates. This result is in accordance with the finding of Osono (2014c) and emphasizes that studying the species composition of fungal assemblages and decomposing abilities of individual fungal species is crucial for predicting the response of fungal decomposition to possible climate changes.

397

Acknowledgments I thank Ms. K. Koide for help with pure culture tests;
and Dr. Elizabeth Nakajima for critical reading of the manuscript. This study
received partial financial support from the Ministry of Education, Culture, Sports,
Science, and Technology of Japan (MEXT) (No. 19780114), National Institute of
Agrobiologial Sciences (NIAS) Japan, The Sumitomo Foundation, Nissan Global
Foundation, Nippon Life Inst. Foundation, and the Grants for Excellent Graduate
Schools, MEXT, Japan (12-01) to Kyoto University.

- 405
- 406 **References**

407

408 Adaskaveg JE, Gilbertson RL, Dunlap MR (1995) Effects of incubation time and

Ganoderma colossum. Appl Environ Microbiol 61:138-144
Bağci E, Diğrak M (1996) Antimicrobial activity of essential oils of some Abies
(Fir) species from Turkey. Flavour Fragr J 11:251-256
Berg B, Laskowski R (2006) Litter decomposition: a guide to carbon and nutrient
turnover. Amsterdam: Academic Press
Boberg JB, Ihrmark K, Lindahl BD (2011) Decomposing capacity of fungi
commonly detected in <i>Pinus sylvestris</i> needle litter. Fungal Ecol
4:110-114
Fenn P, Choi S, Kirk TK (1981) Ligninolytic activity of Phanerochaete
chrysosporium: physiology of suppression by NH4+ and L-glutamate.
Arch Microbiol 130:66-71
Fukasawa Y, Osono T, Takeda H (2009) Effects of attack of saprobic fungi on twig
litter decomposition by endophytic fungi. Ecol Res 24:1067-1073
Hagiwara Y, Osono T, Ohta S, Wicaksono A, Hardjono A (2012) Colonization and
decomposition of leaf litter by ligninolytic fungi in Acacia mangium
plantations and adjacent secondary forests. J For Res 17:51-57

426	Hirobe M, Sabang J, Bhatta BK, Takeda H (2004) Leaf-litter decomposition of 15
427	tree species in a lowland tropical rain forest in Sarawak: dynamics of
428	carbon, nutrients, and organic constituents. J For Res 9:347-354
429	Imazeki R, Hongo T. 1987. Colored Illustration of Mushrroms of Japan. Vol. I.
430	Hoikusha, Tokyo, Japan (in Japanese)
431	King HGC, Heath GW (1967) The chemical analysis of small samples of leaf
432	material and the relationship between the disappearance and
433	composition of leaves. Pedobiologia 7:192-197
434	Koide K, Osono T, Takeda H (2005) Fungal succession and decomposition of
435	<i>Camellia japonica</i> leaf litter. Ecol Res 20:599-609
436	Lindahl B, Boberg J (2008) Distribution and function of litter basidiomycetes in
437	coniferous forests. In: Boddy L, Frankland JC, van West P (eds) Ecology
438	of Saprotrophic Basidiomycetes. Academic Press, London, pp. 183-196
439	Miura K, Kudo M (1970) An agar-medium for aquatic hyphomycetes. Trans Mycol
440	Soc Japan 11:116-118 (in Japanese with English abstract)
441	Miyamoto T, Igarashi T, Takahashi K (2000) Lignin-degrading ability of
442	litter-decomposing basidiomycetes from <i>Picea</i> forests of Hokkaido.

443 Mycoscience 41:105-110

- 444 Nilsson T, Daniel G (1989) Chemistry and microscopy of wood decay by some
 445 higher ascomycetes. Holzforschung 43:11-18
- 446 Osono T (2006) Fungal decomposition of lignin in leaf litter: comparison between
- 447 tropical and temperate forests. In: Meyer W, Pearce C (eds) Proceedings
- 448 for the 8th International Mycological Congress, August 20-25, 2006.
- 449 Cairns, Australia. Medimond, Italy, pp. 111-117
- 450 Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter
 451 decomposition. Ecol Res 22:955-974
- 452 Osono T (2011) Diversity and functioning of fungi associated with leaf litter
- 453 decomposition in Asian forests of different climatic regions. Fungal Ecol
 454 4:375-385
- 455 Osono T (2014a) Mycelial biomass in the forest floor and soil of subtropical,
- 456 temperate, and subalpine forests. J For Res
- 457 Osono T (2014b) Diversity, resource utilization, and phenology of fruiting bodies of
- 458 litter-decomposing macrofungi in subtropical, temperate, and subalpine
- 459 forests. J For Res

460	Osono T (2014c) Effects of litter type, origin of isolate, and temperature on
461	decomposition of leaf litter by macrofungi. J For Res
462	Osono T, Takeda H (2001) Effects of organic chemical quality and mineral
463	nitrogen addition on lignin and holocellulose decomposition of beech leaf
464	litter by <i>Xylaria</i> sp. Eur J Soil Biol 37:17-23
465	Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse
466	fungi in a cool temperate deciduous forest in Japan. Mycologia
467	94:421-427
468	Osono T, Fukasawa Y, Takeda H (2003) Roles of diverse fungi in larch needle litter
469	decomposition. Mycologia 95:820-826
470	Osono T, Takeda H (2006) Fungal decomposition of <i>Abies</i> needle and <i>Betula</i> leaf
471	litter. Mycologia 98: 172-179
472	Osono T, Hobara S, Koba K, Kameda K (2006) Reduction of fungal growth and
473	lignin decomposition in needle litter by avian excreta. Soil Biol Biochem
474	38:1623-1630
475	Osono T, Ishii Y, Takeda H (2008) Fungal colonization and decomposition of
476	Castanopsis sieboldii leaves in a subtropical forest. Ecol Res 23:909-917

~~

.

477	Osono T, Hirose D (2009) Effects of prior decomposition of <i>Camellia japonica</i> leaf
478	litter by an endophytic fungus on the subsequent decomposition by
479	fungal colonizers. Mycoscience 50:52-55
480	Osono T, Ishii Y, Takeda H, Seramethakun T, Khamyong S, To-Anun C, Hirose D,
481	Tokumasu S, Kakishima M (2009) Fungal succession and lignin
482	decomposition on Shorea obtusa leaves in a tropical seasonal forest in
483	northern Thailand. Fungal Div 36:101-119
484	Osono T, Hirose D (2011) Colonization and lignin decomposition of pine needle
485	litter by <i>Lophodermium pinastri</i> . For Path 41:156-162
486	Osono T, Hobara S, Hishinuma T, Azuma JI (2011a) Selective lignin
487	decomposition and nitrogen mineralization in forest litter colonized by
488	Clitocybe sp. Eur J Soil Biol 47:114-121
489	Osono T, To-Anun C, Hagiwara Y, Hirose D (2011b) Decomposition of wood, petiole
490	and leaf litter by Xylaria species from northern Thailand. Fun Ecol
491	4:210-218
492	Osono T, Hagiwara Y, Masuya H (2011c) Effects of temperature and litter type on
493	fungal growth and decomposition of leaf litter. Mycoscience 52:327-332

494	Preston CM, Trofymow JA, Sayer BG, Niu J (1997) ¹³ C nuclear magnetic
495	resonance spectroscopy with cross-polarization and magic-angle spinning
496	investigation of the proximate-analysis fractions used to assess litter
497	quality in decomposition studies. Can J Bot 75:1601-1613
498	Reid I (1991) Nutritional regulation of synthetic lignin (DHP) degradation by
499	Phlebia (Merulius) tremellosa: effect of nitrogen. Can J Bot 69:156-160
500	Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR (2005) Extracellular
501	enzyme activities and soil organic matter dynamics for northern
502	hardwood forests receiving simulated nitrogen deposition. Biogeochem
503	75:201-215
504	Steffen KT, Cajthaml T, Šnajdr J, Baldrian P (2007) Differential degradation of
505	oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes.
506	Res Microbiol 158:447-455
507	Tateno R, Takeda H (2010) Nitrogen uptake and nitrogen use efficiency above and
508	below ground along a topographic gradient of soil nitrogen availability.
509	Oecol 163:793-804
510	Valášková V, Šnajdr J, Bittner B, Cajthaml T, Merhautová V, Hofrichter M,

511	Baldrian P (2007) Production of lignocellulose-degrading enzymes and
512	degradation of leaf litter by saprotrophic basidiomycetes isolated from a
513	<i>Quercus petraea</i> forest. Soil Biol Biochem 39:2651-2660
514	Van der Wal A, Geydan TD, Kuyper TW, de Boer W (2013) A thready affair:
515	linking fungal diversity and community dynamics to terrestrial
516	decomposition processes. FEMS Microbiol Rev 37:477-494
517	Žifčáková L, Dobiášová P, Kolářová Z, Koukol O, Baldrian P (2011) Enzyme
518	activities of fungi associated with Picea abies needles. Fungal Ecol
519	4:427-436

Table 1. Mass loss (% original mass) of litter and AUR and AUR/litter mass (AUR/L) loss ratio caused *in vitro* by isolates of macrofungi from subtropical (ST), cool temperate (CT), and subalpine forests (SA) at 20°C for 12 weeks in darkness. Fungal isolates were inoculated to litter collected from the respective forest sites. Values are means ± standard errors for individual fungal families. Numbers of fungal isolates examined are indicated in parentheses. Nd, not determined. My, Mycenaceae; Mr, Marasmiaceae; Tr, Tricholomataceae; Hg, Hygrophoraceae; Hm, Hymenogasteraceae; Xy, Xylariaceae; Un, unidentified.

	ST				СТ								SA			
	Castanopsis		Schima	chima	Fagus (upper)		Fagus (lower)		Quercus	Partly			Abies		Betula	
											decompose	decomposed				
											material					
Mass Ic	oss%															
My	18.0 ± 2.9	(15)	14.3±2.9	(15)	18.2 ± 3.2	(6)	19.0 ± 3.2	(6)	22.6 ± 5.1	(6)	5.2 ± 1.2	(6)	-1.2±0.3	(10)	26.7 ± 4.3	(10)
Mr	12.3±1.3	(17)	9.4 ± 1.4	(17)	18.0 ± 4.2	(7)	16.9 ± 3.8	(7)	22.8 ± 6.2	(7)	16.7 ± 4.6	(7)	-0.2	(2)	29.2	(2)
Tr	nd		nd		14.2	(2)	14.1	(2)	1.6	(2)	7.3	(2)	-0.5 ± 0.3	(5)	11.7 ± 7.0	(5)
Hg	nd		nd		10.5	(1)	11.0	(1)	1.4	(1)	13.8	(1)	nd		nd	
Hm	nd		nd		nd		nd		nd		nd		-0.7 ± 0.5	(4)	4.0 ± 2.9	(4)
Ху	10.3 ± 2.6	(4)	13.3±3.6	(4)	nd		nd		nd		nd		nd		nd	
Un	25.7	(1)	19.0	(1)	nd		nd		nd		nd		-0.5	(1)	29.9	(1)

HAR SURVEVENENT S104																
M1 26.2±A, (14) 27.0±A, (1) 29.7±A, (6) 26.7±A, (6) 14.4±A, (3) nd 43.4±A, Mr 26.7±A, (1) 21.7±A, (12) 46.3±A, (6) 35.3±A, (6) 49.9±A, (5) nd 70.6 Tr nd - 7.4 28.3 (2) 26.0 (2) nd 14.9 (1) nd 70.6 Ma nd - 7.4 2.4 28.3 (2) 26.0 (2) nd 12 14.9 (1) nd 70.6 70.6 Ma nd - 14.7 01 14.9 (1) nd 14.9 10 nd 70.6 70.7 Ma nd - 14.7 01 14.9 10 14.9 10 14.9 10 14.9 10.	AUR los	UR loss%														
Mr 26.7±3.2 1.5 21.7±3.1 1.2 46.3±7.9 1.6 43.5±8.0 1.6 43.5±8.0 1.6 49.9±7.0 1.0	My	26.2 ± 4.3	(14)	27.0 ± 3.7	(11)	29.7 ± 2.6	(6)	26.7 ± 3.0	(6)	26.5 ± 4.6	(6)	14.4±1.6	(3)	nd	43.4±6.1	(10)
Image: Proper	\mathbf{Mr}	26.7 ± 3.2	(15)	21.7 ± 3.1	(12)	46.3±7.9	(6)	43.5 ± 8.0	(6)	45.3 ± 9.5	(6)	49.9 ± 7.9	(5)	nd	70.6	(1)
Hq id ··· id ··· id Market 133401 14 14 144 144 144 id i	Tr	nd		nd		28.3	(2)	26.0	(2)	nd		14.9	(1)	nd	19.8±18.7	(3)
Hmnd.nd.nd.nd <td>Hg</td> <td>nd</td> <td></td> <td>nd</td> <td></td> <td>20.4</td> <td>(1)</td> <td>22.7</td> <td>(1)</td> <td>nd</td> <td></td> <td>26.3</td> <td>(1)</td> <td>nd</td> <td>nd</td> <td></td>	Hg	nd		nd		20.4	(1)	22.7	(1)	nd		26.3	(1)	nd	nd	
Xy3.5±1.3(4)7.9±4.4(3)nd <td>Hm</td> <td>nd</td> <td></td> <td>nd</td> <td></td> <td>nd</td> <td></td> <td>nd</td> <td></td> <td>nd</td> <td></td> <td>nd</td> <td></td> <td>nd</td> <td>22.5</td> <td>(1)</td>	Hm	nd		nd		nd		nd		nd		nd		nd	22.5	(1)
Ind30.3(1)17.2(1)ndndndndnd46.2AUR/	Xy	3.5 ± 1.3	(4)	7.9 ± 4.4	(3)	nd		nd		nd		nd		nd	nd	
AUR/L STRIPTION My 1.35 \pm 0.14 (14) 1.51 \pm 0.09 (11) 1.81 \pm 0.23 (6) 1.54 \pm 0.17 (6) 1.26 \pm 0.15 (6) 2.18 \pm 0.23 (6) 1.26 \pm 0.15 (6) 2.18 \pm 0.23 (6) 1.26 \pm 0.23 (6) 1.26 \pm 0.23 (6) 1.26 \pm 0.23 (6) 1.27 \pm 0.23 (6) 1.27 \pm 0.23 (6) 1.27\pm0.23 (6) 1.23\pm0.23 (6) 1.27\pm0.23 (6) 1.23\pm0.23 (6) 1.27\pm0.23 (6) 1.27\pm0.23 (6) 1.27\pm0.23 (6) 1.27\pm0.23 (6) 1.23\pm0.23 (6) 1.27\pm0.23 (6) 1.23\pm0.23 (6) 1.27\pm0.23 (6) 1.27\pm0.23 (6) 1.27\pm0.23 (6) 1.37\pm0.23 (6) 1.37\pm0.23 (6) 1.37\pm0.23 (6) 1.37\pm0.23 (6) 1.37\pm0.23 (6) 1.37\pm0.23 (7) <t< td=""><td>Un</td><td>30.3</td><td>(1)</td><td>17.2</td><td>(1)</td><td>nd</td><td></td><td>nd</td><td></td><td>nd</td><td></td><td>nd</td><td></td><td>nd</td><td>46.2</td><td>(1)</td></t<>	Un	30.3	(1)	17.2	(1)	nd		nd		nd		nd		nd	46.2	(1)
My 1.35 ± 0.14 1.4 1.51 ± 0.09 (11) 1.81 ± 0.23 (6) 1.26 ± 0.15 (6) 2.18 ± 0.28 (3) nd 1.63 ± 0.18 Mr 1.93 ± 0.13 (15) 1.70 ± 0.16 (12) 2.59 ± 0.34 (6) 2.30 ± 0.23 (6) 1.77 ± 0.08 (6) 2.33 ± 0.11 (5) nd 1.29 Tr nd 1.70 ± 0.16 (12) 2.59 ± 0.34 (6) 2.30 ± 0.23 (6) 1.77 ± 0.08 (6) 2.33 ± 0.11 (5) nd 1.29 Tr nd 1.70 ± 0.16 (12) 2.09 (2) 1.61 1.39 (1) nd 0.59 ± 0.44 Hg nd nd 1.95 (1) 2.06 (1) nd (1) nd nd 1.91 (1) nd nd 1.84 Hm nd 1.42 nd 1.63 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.6	AUR/L I	loss ratio														
Mr 1.93±0.13 (15) 1.70±0.16 (12) 2.59±0.34 (6) 2.30±0.23 (6) 1.77±0.08 (6) 2.33±0.11 (5) nd 1.29 Tr nd nd 2.08 (2) 1.89 (2) nd 1.39 (1) nd 0.59±0.44 Hg nd nd 1.95 (1) 2.06 (1) nd 1.91 (1) nd nd 0.59±0.44 Hg nd nd 1.95 (1) 2.06 (1) nd 1.91 (1) nd nd 1.91 10 nd 1.91 10 nd 1.91 10 nd 1.91 10 1.91 10 1.91 10 1.91 1.91 10 1.91 1.91 10 1.91	My	1.35 ± 0.14	(14)	1.51 ± 0.09	(11)	1.81 ± 0.23	(6)	1.54 ± 0.17	(6)	1.26 ± 0.15	(6)	2.18 ± 0.28	(3)	nd	1.63 ± 0.18	(12)
Tr nd 2.08 (2) 1.89 (2) nd 1.39 (1) nd 0.59 ± 0.44 Hg nd nd 1.95 (1) 2.06 (1) nd	\mathbf{Mr}	1.93 ± 0.13	(15)	1.70 ± 0.16	(12)	2.59 ± 0.34	(6)	2.30 ± 0.23	(6)	1.77 ± 0.08	(6)	2.33±0.11	(5)	nd	1.29	(1)
Hgnd 1.95 $1)$ 2.06 $1)$ nd 1.91 $1)$ nd nd Hmnd nd nd nd nd nd nd nd 1.84 Xy 0.41 ± 0.14 (4) 0.43 ± 0.20 (3) nd nd nd nd nd nd nd nd Un 1.18 (1) 0.90 (1) nd nd nd nd nd nd 1.54	Tr	nd		nd		2.08	(2)	1.89	(2)	nd		1.39	(1)	nd	0.59 ± 0.44	(3)
Hmndndndndnd 1.84 Xy 0.41 ± 0.14 (4) 0.43 ± 0.20 (3) ndndndndndndndUn 1.18 (1) 0.90 (1) ndndndndnd1.54	Hg	nd		nd		1.95	(1)	2.06	(1)	nd		1.91	(1)	nd	nd	
Xy 0.41±0.14 (4) 0.43±0.20 (3) nd nd nd nd nd nd nd Un 1.18 (1) 0.90 (1) nd nd nd nd nd 1.54	Hm	nd		nd		nd		nd		nd		nd		nd	1.84	(1)
Un 1.18 (1) 0.90 (1) nd nd nd nd 1.54	Xy	0.41 ± 0.14	(4)	0.43±0.20	(3)	nd		nd		nd		nd		nd	nd	
	Un	1.18	(1)	0.90	(1)	nd		nd		nd		nd		nd	1.54	(1)

1	Figure	legends

	-		
6			
•	4	,	
	^	۰.	
4			
•	5	2	$\overline{2}$

3	Fig. 1. Mass loss of leaf litter caused by multiple macrofungal isolates. Note that									
4	the y-axis for <i>Abies</i> litter is expanded. M, the mean value.									
5										
6	Fig. 2. Mass loss of acid unhydrolyzable residue (AUR) caused by multiple									
7	macrofungal isolates.									
8										
9	Fig. 3. Acid unhydrolyzable residue-litter loss ratio (AUR/L) of multiple									
10	macrofungal isolates.									

Mass loss of litter (% original mass)

AUR/L loss ratio

Electronic Supplementary Material

Decomposing ability of diverse litter-decomposer macrofungi in subtropical, temperate, and subalpine forests

Takashi Osono

S1: Mass loss (% original mass) of litter and AUR, and AUR/litter mass loss ratio (AUR/L) caused by isolates of macrofungi from subtropical (ST), cool temperate (CT), and subalpine forests (SA) at 20°C for 12 weeks in darkness. Values indicate means ± standard errors (n=4). Hy, Hygrophoraceae; Hm, Hymenogasteraceae; Mr, Marasmiaceae; My, Mycenaceae; Tr, Tricholomataceae; Xy, Xylariaceae; and Un, unidentified. nd, not determined.

Taxa	Accession	Family	Mass loss of	Mass loss	AUR/L	Mass loss of	Mass loss	AUR/L
			litter	of AUR		litter	of AUR	
Subtropical forest			Castanopsis			Schima		
<i>Mycena</i> sp. ST2	MAFF241604	My	34.3±3.6	41.7	1.22	30.3±2.1	40.2	1.32
Mycena sp. ST6	MAFF241594	My	34.2±4.4	40.6	1.19	28.1±1.9	33.1	1.18
Mycena sp. ST1	MAFF241586	My	31.5±2.2	44.8	1.42	26.7±3.1	37.4	1.40
<i>Mycena</i> sp. ST2	MAFF241590	My	30.6±1.4	47.2	1.54	26.9±1.2	40.9	1.52
<i>Mycena</i> sp. ST2	MAFF241589	My	28.8±2.0	49.2	1.71	26.1±2.9	41.0	1.57
Unidentified ST1	MAFF241593	Un	25.7±3.4	30.3	1.18	19.0±1.2	17.2	0.90

<i>Mycena</i> sp. ST2	MAFF241596	My	21.9±1.9	29.6	1.35	16.3±3.6	18.0	1.10
Gymnopus sp. ST3	MAFF241614	Mr	20.1±2.5	26.9	1.34	9.9±1.5	21.7	2.21
Marasmiellus sp. ST1	MAFF241613	Mr	20.0±1.2	33.0	1.65	19.9±1.6	39.4	1.98
Crinipellis sp. ST1	MAFF241601	Mr	19.7±3.6	62.6	3.17	16.4±1.3	25.2	1.54
Mycena sp. ST11	MAFF241595	My	19.3±1.9	22.9	1.19	21.2±3.0	30.6	1.44
<i>Xylaria</i> sp. ST1	MAFF241629	Ху	17.7±2.3	0.8	0.04	22.5±2.7	15.8	0.70
Crinipellis sp. ST1	MAFF241588	Mr	16.0±1.6	27.7	1.73	9.9±0.8	16.1	1.62
Crinipellis sp. ST2	MAFF241605	Mr	15.6±1.9	28.1	1.80	12.3±1.8	18.2	1.48
Mycena sp. ST1	MAFF241606	My	15.1±2.8	12.2	0.81	10.4 ± 2.1	13.3	1.27
Gymnopus sp. ST1	MAFF241616	Mr	14.7±2.0	31.5	2.15	12.8±2.8	21.8	1.71
Gymnopus sp. ST4	MAFF241609	Mr	14.0±0.9	32.5	2.32	17.4±0.5	37.6	2.16
Marasmiellus sp. ST1	MAFF241610	Mr	13.8±1.6	31.2	2.25	13.4±1.4	25.7	1.91
<i>Mycena</i> sp. ST5	MAFF241625	My	11.9±0.8	20.0	1.68	6.0±1.2	11.2	1.86
Marasmiellus sp. ST1	MAFF241615	Mr	11.5±1.9	22.4	1.95	14.4 ± 0.8	27.9	1.93
Gymnopus sp. ST2	MAFF241611	Mr	10.8±2.0	24.5	2.27	4.2±0.7	nd	nd
Marasmius sp. ST2	MAFF241603	Mr	10.6±2.2	19.1	1.79	6.2±0.7	12.3	1.98
Marasmius sp. ST3	MAFF241632	Mr	10.5±0.7	21.9	2.07	7.7±1.2	13.7	1.78
<i>Mycena</i> sp. ST8	MAFF241592	My	10.4±2.3	24.3	2.34	8.3±1.1	15.9	1.93
Marasmius sp. ST2	MAFF241602	Mr	10.0±1.3	20.7	2.08	3.8±1.4	nd	nd
<i>Gymnopus</i> sp. ST1	MAFF241612	Mr	10.0±1.9	14.3	1.44	2.4±0.3	nd	nd
<i>Xylaria</i> sp. ST1	MAFF241599	Ху	9.5±1.6	6.9	0.73	13.3±1.0	7.4	0.55

<i>Xylaria</i> sp. ST1	MAFF241598	Ху	8.3±2.3	4.1	0.50	12.4±1.3	0.5	0.04
Mycena sp. ST5	MAFF241626	My	8.0±2.6	10.0	1.25	2.6±2.6	nd	nd
Mycena sp. ST5	MAFF241627	My	8.0±1.9	12.0	1.49	$7.4{\pm}2.2$	15.2	2.06
Mycena sp. ST3	MAFF241617	My	7.3±1.4	0.7	0.09	2.3±1.0	nd	nd
Mycena sp. ST7	MAFF241628	My	7.0±2.0	11.7	1.67	2.0±0.4	nd	nd
<i>Xylaria</i> sp. ST1	MAFF241600	Ху	5.7±0.8	2.1	0.37	4.9±1.2	nd	nd
Marasmius sp. ST1	MAFF241591	Mr	5.0±0.8	4.9	0.98	1.1±0.9	nd	nd
Marasmius sp. ST1	MAFF241587	Mr	4.3±1.1	nd	nd	1.8 ± 0.5	nd	nd
cf. Calyptella sp. ST1	Y42_07110217	Mr	3.0±0.9	nd	nd	6.9±3.0	1.0	0.14
Mycena sp. ST4	MAFF241597	My	2.3±0.3	nd	nd	-0.4±0.6	nd	nd
Cool temperate forest			Fagus (upper)			Fagus (lower)		
Gymnopus dryophilus	20CD_020412	Mr	30.2±1.8	70.5	2.34	27.3±1.0	64.8	2.38
Mycena polygramma	21MP_010929	My	27.7±3.9	37.4	1.35	29.3±4.0	36.1	1.23
Mycena amygdalina	17MA_0110MA	My	26.4±1.6	35.2	1.33	23.1±3.8	32.3	1.40
Gymnopus dryophilus	NBRC100095	Mr	26.3±3.1	63.7	2.42	25.2±2.1	62.4	2.47
Gerronema nemorale	24GN_010914	Mr	25.9±2.9	37.9	1.46	16.0±1.9	23.0	1.44
Rhodocollybia butyracea	19CB_000522	Mr	24.3±2.4	53.0	2.18	27.5±2.9	55.1	2.00
Mycena rorida	22MR_010903	My	18.4 ± 0.4	30.8	1.67	18.2±0.7	31.2	1.71
Infundibulicybe gibba	NBRC100092	Tr	17.7±5.1	30.1	1.70	16.5±3.6	26.3	1.60
Mycena polygramma	IFO33011	My	16.4±4.4	24.5	1.50	23.4±3.4	21.9	0.93
Mycena crocata	15MC_0110MC	My	12.6±0.7	29.7	2.36	11.6±0.5	21.8	1.88

Pseudoclitocybe cyathiformis	18PC_0109PC	Tr	10.8±2.6	26.5	2.47	11.7±1.1	25.6	2.18
Ampulloclitocybe clavipes	IFO30524	Hy	10.5±3.6	20.4	1.95	11.0±3.2	22.7	2.06
Gymnopus peronatus	NBRC100096	Mr	9.5±0.6	32.7	3.44	10.6±0.3	33.6	3.17
Mycena amicta	16MA_0109MA	My	7.8 ± 0.5	20.7	2.66	8.3±0.4	17.2	2.08
Marasmius pulcherripes	23MP_010929	Mr	5.4±0.9	20.1	3.70	$9.4{\pm}0.9$	21.9	2.33
Rhodocollybia butyracea	IFO30747	Mr	4.1±1.5	nd	nd	2.3±1.0	nd	nd
			Quercus			Partly decomp	osed material	
Gymnopus dryophilus	20CD_020412	Mr	35.8±1.7	69.4	1.94	31.0±0.8	70.4	1.91
Mycena polygramma	21MP_010929	My	38.7±2.6	38.8	1.00	3.0±1.2	nd	2.27
Mycena amygdalina	17MA_0110MA	My	35.2±2.4	36.9	1.05	3.9±2.1	nd	nd
Gymnopus dryophilus	NBRC100095	Mr	42.8±1.5	65.4	1.53	34.1±2.0	67.5	1.98
Gerronema nemorale	24GN_010914	Mr	5.0±1.6	8.7	1.76	2.9±1.0	nd	2.57
Rhodocollybia butyracea	19CB_000522	Mr	37.3±1.5	57.9	1.55	16.4±2.3	41.8	1.39
Mycena rorida	22MR_010903	My	20.7±1.0	29.0	1.40	10.8 ± 1.1	17.5	2.54
Infundibulicybe gibba	NBRC100092	Tr	3.0±0.6	nd	nd	10.7 ± 2.1	14.9	2.36
Mycena polygramma	IFO33011	My	21.5±3.7	22.1	1.03	2.9±1.3	nd	nd
Mycena crocata	15MC_0110MC	My	12.6±0.9	24.6	1.96	5.1±0.9	13.0	nd
Pseudoclitocybe cyathiformis	18PC_0109PC	Tr	0.1 ± 0.4	nd	nd	3.9±1.9	nd	2.55
Ampulloclitocybe clavipes	IFO30524	Hy	$1.4{\pm}1.0$	nd	nd	13.8±3.3	26.3	2.27
Gymnopus peronatus	NBRC100096	Mr	20.8±0.4	38.4	1.84	14.0±0.8	35.9	nd
Mycena amicta	16MA_0109MA	My	6.8 ± 0.8	7.6	1.12	5.4±0.3	12.7	1.62

Marasmius pulcherripes	23MP_010929	Mr	1.6±0.9	nd	nd	3.7±1.0	nd	nd
Rhodocollybia butyracea	IFO30747	Mr	16.0±1.3	31.9	2.00	14.9±2.1	33.8	nd
Subalpine forest			Abies			Betula		
Marasmius androsaceus	O14_08072204	Mr	0.6±0.7	nd	nd	54.5±1.6	70.6	1.29
Tricholomataceae sp. SA1	O23_08100702	Tr	0.0±0.4	nd	nd	39.4±2.8	57.1	1.45
Mycena sp. SA3	O20_08091705	My	-3.1±0.2	nd	nd	37.3±1.9	56.7	1.52
Mycena aurantiidisca	O2_07101503b	My	-0.3±0.3	nd	nd	32.7±1.8	41.7	1.28
Mycena epipterygia	O9_07101508	My	-2.3±1.1	nd	nd	30.9±2.2	46.5	1.50
Unidentified SA1	O17_08081203	Un	-0.5±0.5	nd	nd	29.9±2.1	46.2	1.54
Mycena epipterygia	O8_07101507b	My	-2.2±0.2	nd	nd	29.0±2.8	52.5	1.81
Mycena epipterygia	O7_07101507a	My	-0.3±0.1	nd	nd	27.8±1.6	44.5	1.60
Mycena cf. filopes	O11_07101510	My	-1.7±0.6	nd	nd	27.5±1.4	47.2	1.71
Mycena sp. SA2	O13_08072202	My	-0.1±0.7	nd	nd	26.5±2.1	53.0	2.00
Mycena cf. stipata	O24_08100703a	My	-1.0±0.3	nd	nd	25.2±3.5	44.8	1.78
Mycena aurantiidisca	O1_07101503a	My	0.0±0.2	nd	nd	$18.4{\pm}1.1$	29.7	1.62
Mycena cf. stipata	O25_08100703b	My	-1.8±0.5	nd	nd	12.2±4.9	22.5	1.84
Galerina atkinsoniana	O15_08072207	Hm	-0.9±0.6	nd	nd	12.0±1.9	17.4	1.45
Tricholomataceae sp. SA1	O10_07101509	Tr	-0.7±0.1	nd	nd	$7.8{\pm}1.1$	2.2	0.28
Tricholomataceae sp. SA1	O19_08091702	Tr	-1.5±0.4	nd	nd	6.4±1.7	0.2	0.03
Mycena cf. pura	O3_07101504	Tr	0.3±0.2	nd	nd	4.6±1.1	nd	nd
Clitocybe sp. SA1	O16_08081201	Mr	-1.0±0.6	nd	nd	3.8±1.6	nd	nd

Galerina atkinsoniana	O5_07101505b	Hm	0.1±0.4	nd	nd	3.7±2.2	nd	nd
Collybia cookei	O18_08091701	Tr	-0.6±0.1	nd	nd	0.4 ± 0.4	nd	nd
Galerina atkinsoniana	O6_07101506	Hm	0.1 ± 0.4	nd	nd	0.3±0.7	nd	nd
Galerina atkinsoniana	O4_07101505a	Hm	-1.2±0.3	nd	nd	0.0±0.6	nd	nd