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Abstract 25 

Comparing animal consumption to plant primary production provides a means of 26 

assessing an animal’s impact on the ecosystem and an evaluation of resource 27 

limitation.  Here we compared annual fruit and leaf consumption by Japanese 28 

macaques (Macaca fuscata) relative to the annual production of these foods in 29 

the lowlands and highlands of Yakushima Island, Japan.  We estimated 30 

consumption by macaques by the direct observation of macaques groups for 31 

one year in each habitat.  We estimated leaf production as the sum of leaf litter 32 

fall (corrected for the effect of translocated organic and inorganic matter) and 33 

folivory by insects (assumed to be 10%) and by macaques.  We estimated fruit 34 

production as the sum of fruit litter fall and consumption by birds (estimated by 35 

the seed fall) and macaques.  The impact of macaque folivory at the community 36 

level was negligible relative to production (~0.04%) compared with folivory by 37 

insects (assumed to be 10%); however, for some species, macaque folivory 38 

reached up to 10.1% of production.  Tree species on which macaques fed did 39 

not decline in abundance over 13 years, suggesting that their folivory did not 40 

influence tree species dynamics.  For the three major fleshy fruited species in 41 

the highland site, macaques consumed a considerable portion of total fruit 42 

production (6-40%), rivaling the consumption by birds (32-75%).  We conclude 43 

that at the community level, macaque folivory was negligible compared to the 44 

leaf production, but frugivory was not. 45 

Keywords: primary production, primate, productivity, resource limitation, 46 

temperate forest 47 

48 
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INTRODUCTION 49 

Animals depend on plant production to sustain their populations, and animals 50 

can affect plants through pollination [Yumoto 1987], seed dispersal [Howe 1986] 51 

and predation on seeds, flowers and leaves [Adams et al. 2009; Sun et al. 2007].  52 

The effects of plants on animals are usually understandable and well-studied 53 

[Chapman et al. 2010; Hanya et al. 2011], but the impact of animal consumption 54 

on plant primary production is scarcely quantified.  Comparing animal 55 

consumption to plant production provides both a useful mean of assessing the 56 

ecosystem impact of animals and a way of evaluating if their populations are 57 

resource limited.  There is substantial correlative evidence that animal 58 

populations are limited by plant productivity [Hanya et al. 2004; Hanya & 59 

Chapman 2013; Stevenson 2001] and direct tests of food limitation involving 60 

food removal or provisioning have also been conducted [Adler 1998; 61 

Moegenburg & Levey 2003].  However, an experimental approach is not 62 

feasible for animals ranging over a wide area or having a diverse diet, such as 63 

most primates [Hanya & Chapman 2013].  For some primates there is 64 

considerable controversy concerning whether they are limited by food resources 65 

or if such resources are superabundant.  For example, Coelho et al. [1976] 66 

estimated that fruit production far exceeded the food intake for two primates and 67 

concluded the populations were not food limited.  This study was criticized 68 

because it included only 2 months of data, and did not address nutritional 69 

requirements [Cant 1980].  Similarly, many researchers often assume that tree 70 

leaves are as superabundant for folivores, but there is increasing evidence that 71 

folivores compete over access to the best leaves and thus that these food item 72 

can be limiting [Koenig 2002; Snaith & Chapman 2007]. 73 
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        Large animals are often the most endangered species in an ecosystem 74 

[Corlett 2009; Primack 1995], thus, it is important to understand the ecosystem 75 

services they provide and to predict the impact of their disappearance.  For 76 

example, extinction of large primates alters tree species composition as 77 

large-seeded plants, which depend on primate dispersers, are not dispersed 78 

[Chapman & Onderdonk 1998; Nuñez-Iturri & Howe 2007].  Some ecosystem 79 

services will be taken on by other animals with overlapping feeding niches 80 

[Peres & Dolman 2000], but it is difficult to predict which services will remain as 81 

the functional redundancy is affected by various factors [Rosenfeld 2002].  82 

Therefore, it is necessary to assess the relative impact of various animals on 83 

forest productivity. 84 

        We aimed to compare the fruit and leaf biomass consumed by 85 

Japanese macaques (Macaca fuscata), folivorous insects and frugivorous birds, 86 

with the leaf and fruit production over 1 year on Yakushima, Japan.  Our study 87 

sites included a warm- and a cool-temperate forest, which differ with respect to 88 

fruit production, macaque density, and diet [Hanya et al. 2003a; Hanya 2004; 89 

Hanya et al. 2004].  We also assessed the effect of macaques’ folivory on forest 90 

tree species composition over 13 years. 91 

 92 

METHODS 93 

The research complied with protocols approved by the Primate Research 94 

Institute, Kyoto University and it adhered to the legal requirements of Japan and 95 

to the American Society of Primatologists Principles for the Ethical Treatment of 96 

Non Human Primates. 97 

 98 
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Study sites and subjects 99 

We studied in highland (coniferous cool- temperate, 1000-1200 m a.s.l.) and 100 

lowland (evergreen broad-leaved warm-temperate, 0-200 m a.s.l.) forests 101 

separated by 7 km on the island of Yakushima (30°N, 131°E), Japan.  We 102 

observed the feeding behavior of the HR group in the highland site and the NA 103 

and H groups in the lowland site.  The annual home ranges of the HR, NA, and 104 

H groups were 2.7, 0.6, and 0.7 km2, respectively.  The home range of the HR 105 

group was a mosaic of primary and logged forest, but primary forest, where 106 

forest productivity was studied, comprised 83% of the total area.  The home 107 

ranges of NA and H groups overlapped extensively and consisted of old 108 

secondary forest.  Hanya [2004] and Hanya et al. [2007] provide further 109 

information about the study sites and subjects. 110 

In these forests, biomass of sika deer (Cervus nippon) equals that of 111 

macaques [Agetsuma et al. 2003] and they influence forest dynamics [Koda et al. 112 

2008].  However, we did not compare their impact because deer eat leaves 113 

from the ground, where the productivity cannot be estimated by litter trap.  In 114 

addition, they eat a considerable amount of dead leaves [Agetsuma et al. 2011] 115 

they are thus often acting as decomposers.  There are no other folivorous or 116 

frugivorous large mammals in the island.  Marten (Mustela itatsi) and field mice 117 

(Apodemus speciosus and A. argenteus) may also eat fruits, but they were also 118 

not considered as they are terrestrial.  Their biomass seems negligible 119 

compared with that of macaques because they are very small (~2 kg for martens 120 

and 20-60 g for mice) and very rare, considering the much lower photographic 121 

rate (1/10 of macaques) in camera trapping (Hanya et al., unpublished data). 122 

 123 
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Behavioral observations 124 

We collected data between April 2000 and March 2001 for HR group in the 125 

highland site (510 hr) and between October 2003 and August 2004 for NA group 126 

in the lowland site (1080 hr).  To supplement the September data lacking for the 127 

NA group, we also used the data of H group in September 1998.  We collected 128 

behavioral data using focal animal sampling (duration of 1 hr) of seven adult 129 

females and six males for the highland group (mean±SD of observation time: 130 

39±12 hr/individual), and five adult females for the NA group (216±75 131 

hr/individual) and for five adult males in the H group (18±0.86 hr/individual).  132 

Data on the diet are available elsewhere [Hanya 2003; Hanya 2004; Hanya et al. 133 

2007] (Appendix 1).  We defined a feeding bout as starting when the animal put 134 

food into the mouth and stopping when 20 seconds had elapsed without the 135 

subject moving in the tree or manipulating food or when the animal left the tree 136 

or started eating other items.  We recorded the number of food units that the 137 

animal ingested for as long as possible.  One food unit was operationally 138 

defined depending on the particular item and plant species (e.g. one leaf, one 139 

fruit, one cluster of fruits). 140 

 141 

Estimating food consumption 142 

We estimated the dry weight intake of all stages of leaves (both mature and 143 

young leaves) and fruits (including seeds).  We considered consumption as the 144 

removed biomass and included the weight of indigestible parts that were 145 

discarded before ingestion.  For feeding bouts where the number of food units 146 

ingested could not be recorded, we estimated ingestion by multiplying the 147 

duration of the feeding bouts and the average feeding rate (#units/second) of all 148 
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feeding bouts for that item of the species.  To calculate this average, we 149 

discarded data when the duration of a feeding bout was less than 2 min unless 150 

this was the only datum available for the food species/item.  This was because 151 

data of short duration were less reliable.  Then, we multiplied the number of 152 

food units ingested (estimated or actually counted) during each feeding bout by 153 

its unit dry weight and summed the results for all feeding bouts of each focal 154 

observation.  We multiplied the estimated dry weight intake per observation 155 

hour with the average day length of the month and the number of days in the 156 

month, to obtain the total estimated dry weight intake in the month.  This could 157 

be justified as the distribution of observations was not biased to a particular time 158 

of the day or month: we made from dawn to dusk [Hanya 2004; Hanya et al. 159 

2007] and equally distributed observation days in each month.  We calculated 160 

total annual intake by summing the values of the 12 months.  We summarized 161 

data of the unit weight and feeding rate in Appendix 2. 162 

        We estimated intake for age-sex classes that we did not observe 163 

assuming that macaque consumption was proportional to the 0.75 power of 164 

average body mass for the age/sex [Kleiber 1987] using body weight data from 165 

Watanabe [1975] (Appendix 3).  For the highland site, data on adult males and 166 

females were available, so we estimated the average intake using the pooled 167 

data.  For the lowland site, only the female data were available, so we 168 

estimated the male intake following the power rule.  We used age-sex 169 

composition of the HR and NA groups to estimate the proportion of individuals of 170 

each age-sex class in the population.  We used the data of these two particular 171 

groups, rather than the data on age-sex composition collected over a larger 172 

scale.  This was because we needed to use data that were comparable with the 173 
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behavioral and litter trap data, which were taken within the home range of these 174 

two particular groups.   We calculated food consumption of each age-sex class 175 

at the population level by multiplying (1) the estimated food consumption of the 176 

class, (2) proportion of the class in the population and (3) the population density.  177 

We derived density from Yoshihiro et al. [1999] and Hanya et al. [2003b] 178 

(Appendix 3).  We calculated food consumption at the population-level as the 179 

sum of all the age-sex classes.  In the highland site, we also recorded the 180 

amount of leaves that macaques dropped during feeding.  We estimated total 181 

amount of dropped leaves in that month by an adult individual by multiplying the 182 

amount of leaves (g) per observation time, average day length of the month and 183 

the number of days in the month.  We estimated amount dropped at the 184 

population level over the year in the same way as we did for leaf intake. 185 

 186 

Litter trap 187 

We established two vegetation plots within the home ranges of the groups and 188 

identified and measured all tree stems with a diameter at breast height (DBH) > 189 

5 cm.  Plot size was 50m * 50m in the highland site (0.09% of the home range 190 

of the HR group) and 100m * 50m in the lowland site (0.8% of the home range of 191 

the NA group).  Aiba et al. [2007] and Hanya and Aiba [2010a] described details 192 

of the plots.  These plots included both ridge and valley and phenological 193 

change recorded in these plots predicted the seasonal variation in the macaque 194 

diet [Hanya 2004; Hanya et al. 2007].  Therefore these plots seemed to be 195 

representative of the home range.  We placed 25 and 20 litter traps (nylon 196 

mesh of <0.5 mm, 0.58 m2 in size and 1-1.5 m above the ground) evenly 197 

distributed in highland and lowland site plots respectively.  The minimum 198 
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inter-trap distance was 10 m.  We collected litter once a month, oven-dried it at 199 

60 ºC for 96 hr and weighed and sorted items into broad-leaf, conifer needle, 200 

fruits, and others.  Fruits included the whole or partial ripe fruits, unripe fruits 201 

and seeds separated from pulp.  We sorted them by species and weighed them.  202 

We separated bird feces from ‘others’ in the highland plot. 203 

 204 

Estimation of fruit and leaf production 205 

We conducted the species-level analysis of leaf and fruit consumption for 206 

species that accounted for at least 1% of the annual feeding time in each area 207 

and when the fruit or leaf production of these species could be estimated by fruit 208 

fall or tree species composition in the plots.  In addition to these species, we 209 

also examined fruit consumption of three fleshy-fruited species in the highland 210 

site (Eurya japonica, Cleyera japonica, and Symplocos myrtaceae), because we 211 

could also estimate bird consumption for these species. 212 

 213 

Leaf production: We converted litter fall to kg/ha/year by dividing the total annual 214 

weight of litter by total litter trap area.  We could estimate the weight of leaf litter 215 

for particular species from the data of relative basal area of the species because 216 

the relative basal area and leaf litter of each tree species was positively 217 

correlated (r=0.81, p<0.0001, N=37 species, data from the lowland plot for one 218 

year from December 2004).  Therefore, when we estimated leaf fall for each 219 

species, we assumed that the leaf litter weight of a species was proportional to 220 

the species basal area relative to the total basal area in the plot. 221 

In principle, annual leaf production is equal to annual leaf litter fall when 222 

the leaf biomass of the forest reaches equilibrium [Clark et al. 2001].  However, 223 
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these two values are not necessarily the same because of (1) translocation of 224 

organic and inorganic matter from the abscised leaves and (2) herbivory.  Mean 225 

leaf mass loss for temperate evergreen angiosperm leaves is 20.8% [Vergutz et 226 

al. 2012], so we divided the gross leaf litter fall by (1-0.208) to estimate the 227 

biomass of leaves before falling to the trap.  Hereafter, we refer this value as 228 

‘corrected leaf fall’.  We assumed the amount of insect herbivory as 10% of the 229 

leaf production, which is a mean value for temperate forests [Landsberg & 230 

Ohmart 1989] (3-17%).  We calculated the leaf production as the sum of 231 

corrected leaf fall and consumption by macaques and insects, which are the only 232 

animals that eat leaves in the canopy layer on Yakushima. 233 

 234 

Fruit production: We calculated the production of fruit for the highland site as the 235 

sum of fruit fall and consumption by macaques and birds.  However, in the 236 

lowland site, data on bird consumption were lacking so macaque frugivory was 237 

compared only with the fruit fall.  The current estimation in the highland was 238 

based on the data used also in Hanya [2005], who calculated only the total 239 

number of seeds removed by birds.  However, in the current analysis, we 240 

present data for each species of plant.  We confined the estimation of bird 241 

consumption to the three species (E. japonica, C. japonica, and S. myrtaceae) 242 

that constituted 92.5% of the fleshy fruit production in the highland site.  These 243 

species have small seeds (<5 mm long) which were swallowed by macaques 244 

[Otani & Shibata 2000].  Thus, in the estimation, we could regard the pulpless 245 

seeds of these species dropped into the trap as having dispersed by birds 246 

[Kominami et al. 2003], along with the seeds found in bird feces.  We did not 247 

find any macaque feces in the traps in the highland site.  We confirmed that 248 
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macaque feces were recognizable for at least one month after defecation by 249 

experimentally putting feces in a trap.  We estimated the weight of fruits 250 

removed by birds using the data of (1) the number of seeds trapped, (2) the 251 

average number of seeds in one fruit for each species and (3) average weight of 252 

one fruit, of which data we collected by measuring >100 fruits for each species. 253 

 254 

Long-term changes of forest composition 255 

To assess the impact of macaque folivory on forest tree species dynamics, we 256 

established a 2.4 ha vegetation plot (4% of the home range of the NA group) in 257 

1990 in the lowland site.  The plot consisted of 10 line transects (5 m wide, 258 

30-150 m long) set every 100 m within the entire home range of the NA and the 259 

H groups.  We recorded the species and the DBH of all trees >5 cm DBH in 260 

1990 and 2003.  In the highland site, for the analysis of forest composition 261 

dynamics, we used the plot of 0.25 ha that we set to collect litter.  We 262 

established this plot in 1999 and resampled in 2012.  We examined changes in 263 

density between the two periods using a G-test for species with more than 9 264 

stems in one of the years. We tested a null hypothesis which assumed no 265 

difference in the proportion of decreasing species between food and non-food 266 

species.  We examined 47 lowland (5 food and 42 non-food species) and 10 267 

highland species (3 food and 7 non-food species).  268 

 269 

RESULTS 270 

Folivory 271 

In both the lowland and highland sites, the impact of macaque folivory at the 272 

community level was negligible relative to leaf production or assumed folivory by 273 
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insects.  The leaf biomass consumed by macaques was only 0.037% and 274 

0.39% of the estimated total leaf production in the lowland and highland sites, 275 

respectively (Table 1).  These values increased if we considered only food 276 

species, but it still remained low (0.21% in the lowland site and 0.90% in the 277 

highland site).  At the species level, however, macaque leaf consumption 278 

reached 5.7% of the estimated leaf production in the lowland site 279 

(Daphniphyllum teijsmannii) and 10.1% in the highland site (Symplocos 280 

prunifolia).  For other species, macaques consumed between 0.93% and 281 

2.14% of the leaves produced.  In the highland site, we estimated the biomass 282 

of dropped leaves as 3.93 kg/km2/year, which was 0.21% of the consumed 283 

leaves. 284 

     There was no evidence that macaque food trees died at a greater rate than 285 

non-food trees over the 13 years of monitoring (Table 2).  In the lowland site, 286 

the proportion of decreasing species was not different between the food and 287 

non-food species (G=0.50; p=0.48).  None of the species decreased in 288 

abundance at the highland site. 289 

 290 

Frugivory 291 

In contrast to leaves, macaques consumed a considerable portion of the total 292 

fruit production.  For the three fleshy-fruited species in the highland site, for 293 

which we quantified both bird and macaque consumption, macaque 294 

consumption was 3.2-39% of the total fruit production depending on plant 295 

species, whereas birds consumed between 32 and 75% of the fruit production 296 

(Table 3b).  Macaques and birds together consumed more than two-thirds of 297 

the fruit production for all the species.  In the lowland site, fruit consumption by 298 
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macaques constituted 8.8%, 10.1%, and 68.8% of fruit fall for all species, food 299 

species, and the most frequently eaten species, respectively (Table 3a).  300 

Although there were 12 fruiting species that constituted more than 1% of the 301 

annual feeding time (sum of the duration of the feeding bouts) for the lowland 302 

site macaques, fruits of only one of them appeared in the litter trap. 303 

 304 

DISCUSSION 305 

Impact of folivory and its effect on long-term forest dynamics 306 

Our data suggested that at the community level the amount of leaves consumed 307 

by Japanese macaques in Yakushima was negligible compared with the leaf 308 

production.  Total leaf consumption by macaques constituted less than 0.4% of 309 

the total leaf production.  However, for some species, the impact of macaque 310 

folivory reached 10% in the highland site, which was comparable to the 311 

community-level impact of insect folivory known for various types of forests 312 

(3-17%) [Landsberg & Ohmart 1989].  Because some tree species can survive 313 

even if they lose all their leaves by browsing [Rooke & Bergstrom 2007], we 314 

need further study to confirm the effect of folivory on plant longevity, growth, 315 

and/or reproduction. 316 

        Species whose leaves were eaten by macaques did not decrease in 317 

abundance over 13 years.  However, it is still possible that some species are 318 

negatively affected by overgrazing by macaques.  For example, Daphniphyllum 319 

teijsmannii, which was the most extensively eaten species in the lowland site, 320 

decreased in number from 182 to 133 (G= 7.65, p=0.0057).  However, this 321 

species is not shade-tolerant [Aiba et al. 2001] thus the decrease was likely 322 

caused by the lack of forest disturbance. 323 
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        In contrast to our results, Chapman et al. [2013] reported that in Kibale 324 

National Park, Uganda, there was a tendency for tree species that were eaten by 325 

two species of colobus monkeys to decrease in abundance but no such 326 

tendency was found for the species that colobus did not eat.  The difference 327 

between Yakushima and Kibale is likely due to difference in primate biomass.  328 

Primate biomass in Kibale (2759 kg/km2) [Chapman et al. 1999] is 6.77 and 24.2 329 

times larger than that in the lowland and highland sites of Yakushima 330 

respectively and folivorous colobines make up the greatest portion (75%) of that 331 

biomass [Chapman et al. 1999].  Total litter fall (including leaves, branch, and 332 

reproductive parts) in Yakushima was 565,000 kg/km2/year in the lowland site 333 

and 473,000 kg/ km2/year in the highland site.  This represented 71% and 59% 334 

of the average documented for 12 tropical forests (average = 966,200 kg/ 335 

km2/year, maximum: 1,235,000 kg/ km2/year) [Hanya & Aiba 2010b].  Therefore, 336 

if we suppose that leaf production in Kibale is average for a tropical forest, leaf 337 

production in Kibale is calculated only as 1.41 times larger than that in the 338 

lowland site and 1.69 times of that in the highland site of Yakushima.  339 

Supposing further that the amount of leaf consumption is proportional to primate 340 

biomass; leaf consumption/production ratio in Kibale is 4.80 (6.77/1.41) times 341 

larger than in lowland site and 17.1 (24.2/1.41) times larger than in the highland 342 

site of Yakushima.  Given that 75% of the primate biomass in Kibale is 343 

folivorous colobines, this is likely to be a conservative estimate.  That is, if 344 

Japanese macaques in Yakushima consume ca. 10% of produced leaves for 345 

some species, more folivorous Kibale primates would impose more serious 346 

damage to many species.  In addition, latitudinal variations in leaf turn-over 347 

cycle [Reich et al. 1996] may affect the different impact of folivory in Yakushima 348 



Hanya et al. 
Primate impact 

 - 15 - 

  

(temperate) and Kibale (tropical).  More detailed data on leaf production and 349 

consumption by Kibale primates are needed to confirm our estimates.  In any 350 

case, however, comparisons of Yakushima and Kibale suggest that the threshold 351 

value of primate biomass above which primate folivory has a critical impact on 352 

the forest lies somewhere between Yakushima and Kibale. 353 

 354 

Impact of frugivory 355 

Of the three fleshy-fruited species evaluated at the highland site, Japanese 356 

macaques were the most important fruit consumer for one (E. japonica), 357 

consuming approximately 40% of production.  As for the two other species, bird 358 

consumption was 11-23 times larger than that of macaques.  These two groups 359 

of frugivores consumed up to two thirds of the fruit production.  Although one 360 

third of the fruits were not eaten, we think that fruits may nevertheless be a 361 

limited resource.  According to our data on the seasonality of fruit fall, a majority 362 

(91%) of the uneaten fruits of these species dropped before the macaques and 363 

birds stop feeding on them (by November) and it appeared that finding fruits was 364 

difficult.  When frugivores stopped feeding on these fruits, there were only very 365 

few fruits remaining.  In addition, considering the degree of inter-annual 366 

variability in diet, frugivores could have depleted the uneaten fruit biomass.  367 

Hanya [2005] showed that the fruit consumption by macaques and birds in 1999 368 

reached 1.66 times higher than in 2000.  Tsuji et al. [2006] reported even higher 369 

inter-annual variation in the amount of fruits consumed by wild Japanese 370 

macaques in Kinkazan, northern Japan. 371 

The impact of macaque frugivory at the community level remains to be 372 

further investigated, but we can expect that it would be larger than the case of 373 
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folivory, but smaller than the case of intensively-fed E. japonica fruits.  This is 374 

because macaques consumed only 10% of the fruit fall for all the food species.  375 

In addition, most (65%) of the fruit fall for the species eaten by macaques 376 

comprised two gravity-dispersed species (Distylium racemosum and Camellia 377 

japonica) [Hanya & Aiba 2010a], which were unlikely to be eaten by birds (Hanya, 378 

per. obs).  Macaques might be seed predators for these species. 379 

        We cannot fully assess the impact of the frugivory by Japanese 380 

macaques in the lowland site because there are no data on bird consumption 381 

there.  For several reasons, however, it is likely that the tendency would be the 382 

same in the lowland site as in the highland sites.  First, most (58%) of the fruit 383 

fall of food species for macaques in the lowland site was acorns [Hanya & Aiba 384 

2010a], which most birds in Yakushima do not consume.  Second, at the 385 

species level, macaques are likely important fruit consumers for some species.  386 

For example, fruits of Litsea acuminata consumed by macaques reached 68% of 387 

the fruit fall, which is a similar level to that of E. japonica in the highland site.  388 

Fruits of L. acuminata are among the largest in Yakushima and only a few bird 389 

species can swallow the seeds [Noma & Yumoto 1997].  In addition, it has 390 

already been clarified that fruit consumption by macaques in the lowland site 391 

Yakushima is much larger (>32 times) than that by birds for two fleshy-fruited 392 

species (Ficus superba and Myrica rubra) [Otani 2001; Terakawa et al. 2008].  393 

Third, 11 out of 12 major food fruit species for Japanese macaques were ‘rare’ 394 

species whose fruit abundance cannot be accurately estimated by litter traps.  395 

Since they are rare, the fruit production of these species is likely to be lower than 396 

the common species, such as L. acuminata.  Therefore, the ratio of macaque 397 

frugivory to fruit production would be higher for these species than L. acuminata.  398 
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It is already known that the Japanese macaques in Yakushima provide effective 399 

seed dispersal services with respect to the quality, such as dispersal distance 400 

and topography [Noma & Yumoto 1997; Otani & Shibata 2000; Terakawa et al. 401 

2009; Tsujino & Yumoto 2009; Yumoto et al. 1998].  Seed dispersal 402 

effectiveness could be evaluated as the product of quantity and quality of seed 403 

dispersal [Schupp et al. 2010].  Our results suggest the quantitative importance 404 

of seed dispersal by macaques and thus suggest they play an important role in 405 

forest regeneration through seed dispersal. 406 

 407 

Robustness of the results 408 

Our results remain preliminary as they are based on several assumptions.  409 

Here we discuss the possible biases in the estimations and the robustness of 410 

our findings.  We hope our preliminary analysis will stimulate future research in 411 

this rarely studied but important area of primate ecology. 412 

        First, although our dietary data were based on detailed observation of 413 

feeding behavior, food intake at the population level was estimated based on 414 

many assumptions.  Error may have occurred when we (1) estimated food 415 

intake of one age-sex class from the data of different classes, (2) estimated 416 

age-sex composition of the population, and (3) calculated population-level intake 417 

from the population density.  As for the first assumption, Hanya [2003] has 418 

confirmed that variation in the mass of food ingested by wild Japanese 419 

macaques of different age classes are roughly consistent with our assumption.  420 

We believe the second assumption did not cause serious error, as we used the 421 

age-sex composition of the subject groups, which was the most likely 422 

composition of the macaques using the area within the home ranges of the 423 
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subject groups.  As for the third assumption, the density data seemed correct 424 

because they agreed with the the long-term record of the distribution of identified 425 

groups [Yoshihiro et al. 1999; Hanya et al. 2003].  Error could have occurred if 426 

there was heterogeneity in density within the study site and the home range of 427 

the study group was situated where density was particularly high or low, 428 

although it seemed unlikely that this was the case given the distribution of 429 

groups in the study area. 430 

        Second, data on productivity were derived from plots of only 0.25 ha or 431 

0.5 ha.  This area was much smaller than the home ranges of the study groups, 432 

and may not reflect productivity across the entire home range area. We note, 433 

however, that productivity measured in plots within the same altitudinal zones of  434 

Yakushima differed at most by a factor of two [Aiba et al. 2007].  This difference 435 

is much smaller than the difference in leaf productivity and macaque 436 

consumption.  Therefore, the qualitative conclusion of our analysis – that 437 

macaque folivory is negligible – is not likely to be affected by plot size.  438 

However, the conclusion at the population level needs further examination, as 439 

certain plant species may show a non-random in the monkeys’ home range.  440 

Focal tree observation might be a better approach to assess consumption and 441 

productivity for rare species. 442 

Third, the small plot size in the highland site constrained the analysis of 443 

tree species dynamics.  Therefore, our evaluation of forest dynamics in the 444 

highland site is preliminary.  However, given that none of the species decreased 445 

in abundance, it is unlikely that larger plot sizes would produce contrary findings.  446 

We cannot discard the possibility that macaques can have significant negative 447 

impact on rare species which did not appear in the vegetation plot.  Various 448 
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plots are established in different altitudinal zones of Yakushima [Aiba et al. 2007], 449 

so meta-analysis of tree species dynamics with respect to macaque folivory will 450 

be feasible in the future.  The plot size in the lowland site was rather large (2.4 451 

ha) and cover the entire home range, so the results from here seemed reliable. 452 

Finally, there were no data from the NA group for one month, so we 453 

filled in missing values with data from another year and another group.  454 

Considering the large seasonal variation in the diet in Yakushima [Hanya 2004; 455 

Hill], we believe this is a better solution than calculating the intake in this month 456 

as an average of the other 11 months.  Because the home ranges of the two 457 

groups overlapped extensively, we assumed that dietary differences were 458 

minimal.  Main foods in this month were fruits of figs and Rhus succedanea, 459 

both of which exhibit small supra-annual variations in fruiting intensity.  460 

Therefore, large supra-annual variations in the diet in this month also seem 461 

unlikely.  In addition, the actual over- or underestimation related to using the 462 

data of other year/group should be small because it constitutes only one of the 463 

twelve months. 464 

 465 

In conclusion, macaque folivory was negligible compared to leaf production at 466 

the community level because macaque consumption constituted only ~0.04% of 467 

the leaf production and macaque food species did not decrease over 13 years. 468 

However, the impact of macaque frugivory has more important consequences for 469 

the plants consumed. 470 

 471 
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Legend to the figure 644 

Fig. 1. Map of Yakushima showing lowland and highland study sites.  Contours 645 

are drawn every 300 m. 646 

647 
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Table 1. Comparison of leaf consumption by macaques and estimated leaf production

a. Lowland forest of Yakushima

Leaf fall Corrected
leaf fall*

Corrected
leaf

fall+estimate
d

consumption
by insects**

Leaf consumption by
macaques

kg/km2/year
 (% to leaf production)

All species 431000 544000 605000 226
(0.037%)

Food species 76100 96100 107000 226
(0.21%)

Symplocos lucida 1480 1870 2120 35
(1.7%)

Daphniphyllum teijsmannii 410 518 614 35
(5.7%)

b. Highland forest of Yakushima

Leaf fall Corrected
leaf fall*

Corrected
leaf

fall+estimate
d

consumption
by insects**

Leaf consumption by
macaques

kg/km2/year
 (% to leaf production)

All species 352000 444000 495000 1910
(0.39%)

Food species 150000 189000 212000 1910
(0.90%)

Symplocos myrtacea 12100 15300 17200 160
(0.93%)

Eurya japonica 4230 5340 6080 130
(2.1%)

Trochodendron aralioides 36600 46200 51400 78.2
(1.5%)

Symplocos prunifolia 81.3 103 129 13
(10%)

** Insect folivory was assumed to be 10% of the leaf production.

* Corrected leaf fall was calculated by dividing the gross leaf fall by 0.792, which indicated
estimated leaf weight before the translocation of organic and inorganic matter from the
abscised leaves.

Target

kg/km2/year kg/km2/year kg/km2/year

kg/km2/year kg/km2/year kg/km2/year

Target

651 

 652 

653 
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Table 2. Number of species decreasing/not decreasing over 13 years

a. Lowland forest of Yakushima (between 1990 and 2003)
Decrease Not decrease

Food species 2 3
Non-food species 10 32

a. Highland forest of Yakushima (between 1999 and 2012)
Decrease Not decrease

Food species 0 3
Non-food species 0 7  654 

655 
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a. Lowland forest of Yakushima

kg/km2/year kg/km2/year
All species 59900 5230
Food species 52200 5230
Litsea acuminata 887 603

b. Highland forest of Yakushima

kg/km2/year
by Japanese
macaques by birds

All species 10700 381 -
Food species 3810 381 -
Distylium racemosum 1980 176 -
Eurya japonica 24.2 33.4 27.6

(28.4%) (39.2%) (32.3%)
Cleyera japonica 27.1 4.01 92.6

(21.9%) (3.24%) (74.9%)
Symplocos myrtacea 8.95 2.11 25.0

(24.8%) (5.85%) (69.3%)

Table 3. Comparison of fruit/seed consumption by Japanese macaques and
birds to amount of fruit litter

Fruit consumption

Fruit fall
Target

Target
Fruit fall

kg/km2/year (% to fruit production)

Fruit consumption
by Japanese
macaques

  656 
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Appendix 1. Diet composition of the three study groups

%
feeding

time

intake g dry
weight/h

%
feeding

time

intake g dry
weight/h

%
feeding

time

intake g dry
weight/h

Fruit 13% 3.74 34% 11.35 39% 7.03
Seed 4% 1.89 32% 8.40 52% 3.95
Mature leaf 38% 12.76 5% 0.67 2% 0.09
Young leaf 3% 0.24 2% 0.19 0% 0.01
Flower 15% Not estimated 2% Not estimated 0% Not estimated
Pith, stem, bark and roo 4% Not estimated 2% Not estimated 2% Not estimated
Fungi 14% Not estimated 1% Not estimated 0% Not estimated
Animal 1% Not estimated 18% Not estimated 5% Not estimated
Other 7% Not estimated 3% Not estimated 1% Not estimated

HR NA H (September only)
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a. Lowland of Yakushima

Category Species Unit
weight (g)

Feeding
rate

(#unit/sec)

% to total
feeding

time
fruit Ficus superba 0.150 0.22 9.0%
fruit Ficus erecta 0.152 0.29 7.0%
fruit Eurya emarginata 0.019 0.60 4.5%
fruit Actinidia rufa 0.920 0.05 2.4%
fruit Ficus microcarpa 0.148 0.15 2.2%
fruit Myrica rubra 0.067 0.10 2.1%
fruit Litsea acuminata 0.395 0.35 1.9%
fruit Ficus pumila 0.352 0.03 1.6%
fruit Neolitsea sericea 0.147 0.25 1.1%
fruit Morinda umbellata 0.088 0.47 0.9%
fruit Vitis ficifolia 0.013 0.27 0.6%
fruit Melia azedarach 0.405 NA 0.6%
fruit Cinnamomum camphora 0.048 0.28 0.4%
fruit Eurya japonica 0.012 0.63 0.4%
fruit Diospyros japonica 0.352 0.10 0.4%
fruit Elaeocarpus sylvestris 0.356 0.09 0.2%
fruit Psychotria serpens 0.008 0.10 0.2%
fruit Taxillus yadoriki 0.041 0.10 0.1%
fruit Glochidion obovatum 0.195 NA 0.1%
fruit Ardisia sieboldii 0.055 0.21 0.1%

mature leaf Daphniphyllum teijsmannii 0.110 0.07 1.9%
mature leaf Symplocos lucida 0.110 0.17 0.6%
mature leaf Oreocnide pedunculata 0.022 0.34 0.4%
mature leaf Ficus superba 0.270 0.11 0.4%
mature leaf Trema orientalis 0.230 0.07 0.4%
mature leaf Ficus erecta 0.170 0.06 0.2%
mature leaf Callicarpa shikokiana 0.022 0.43 0.2%
mature leaf Maesa tenera 0.120 0.11 0.1%
mature leaf Hydrangea grosseserrata 0.037 NA 0.1%

seed Rhus succedanea 0.093 0.42 8.8%
seed Zanthoxylum ailanthoides 0.007 0.81 5.4%
seed Rhaphiolepis umbellata 0.195 0.22 4.3%
seed Lithocarpus edulis 0.386 0.06 3.8%
seed Cinnamomum camphora 0.048 0.45 3.1%
seed Mallotus japonicus 0.009 0.48 2.4%
seed Ardisia sieboldii 0.055 0.28 0.8%
seed Litsea acuminata 0.001 0.25 0.7%
seed Quercus phillyraeoides 0.490 0.12 0.7%
seed Oreocnide pedunculata 0.007 0.49 0.6%
seed Euscaphis japonica 0.030 0.23 0.6%
seed Neolitsea sericea 0.147 0.36 0.2%
seed Castanopsis sieboldii 0.498 NA 0.2%
seed Glochidion obovatum 0.195 NA 0.1%

young leaf Rhus succedanea 0.039 0.14 1.2%
young leaf Elaeagnus glabra 0.044 0.40 0.2%
young leaf Oreocnide pedunculata 0.006 0.64 0.1%

Appendix 2. Estimated unit weights, feeding rates, and percentage of feeding
time for plants consumed by Japanese macaques living in lowland and highland
forest areas



Hanya et al. Primate ecosystem impact 
Appendix 2 

 

3 
 

b. Highland of Yakushima

Category Species Unit
weight (g)

Feeding
rate

(#unit/sec)

% to total
feeding

time
fruit Eurya japonica 0.012 1.01 5.2%
fruit Prunus sargentii 0.082 0.30 2.4%
fruit Boehmeria longispica 0.067 0.38 1.7%
fruit Eurya japonica var. yakushimensis 0.008 0.71 0.9%
fruit Cornus kousa 0.700 0.14 0.8%
fruit Cleyera japonica 0.038 0.52 0.4%
fruit Dendropanax trifidus 0.030 0.34 0.3%
fruit Symplocos myrtacea 0.030 0.51 0.3%
fruit Neolitsea aciculata 0.036 0.50 0.2%
fruit Vitis ficifolia 0.042 0.17 0.2%
fruit Ilex pedunculosa 0.074 0.16 0.2%
fruit Euonymus yakushimensis 0.018 0.27 0.2%
fruit Ilex crenata 0.065 0.55 0.2%

mature leaf Symplocos myrtacea 0.039 0.56 12.5%
mature leaf Eurya japonica 0.118 0.34 5.3%
mature leaf Histiopteris incisa 0.123 0.25 4.0%
mature leaf Actinidia arguta 0.103 0.24 3.3%
mature leaf Symplocos prunifolia 0.055 0.20 2.2%
mature leaf Sorbus commixta 0.045 0.60 1.7%
mature leaf Rubus croceacanthus 0.008 0.61 1.5%
mature leaf Lepisorus onoei 0.066 0.59 1.5%
mature leaf Trochodendron aralioides 0.325 0.12 1.1%
mature leaf Rubus minusculus 0.035 0.58 1.0%
mature leaf Ficus oxyphylla 0.075 0.17 0.8%
mature leaf Mitchella undulata 0.008 0.76 0.8%
mature leaf Pyrrosia lingua 0.133 0.05 0.4%
mature leaf Zoysia japonica 0.007 0.77 0.4%
mature leaf Miscanthus sinensis 0.034 0.87 0.3%
mature leaf Chloranthus serratus 0.074 0.27 0.3%
mature leaf Gleichenia japonica 0.123 0.23 0.2%
mature leaf Ilex pedunculosa 0.100 0.23 0.1%
mature leaf Clethra barbinervis 0.103 0.38 0.1%

seed Distylium racemosum 0.001 0.10 2.5%
seed Cornus kousa 0.096 0.54 1.0%
seed Camellia japonica 0.019 0.54 0.2%
seed Quercus salicina 0.124 0.50 0.2%

young leaf Symplocos myrtacea 0.779 0.00 2.9%
young leaf Actinidia arguta 1.022 0.02 0.4%
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a. Average day length of each month

Month Day length
(hour)

January 13.0
February 13.2

March 14.2
April 14.0
May 13.3
June 12.5
July 11.5

August 10.7
September 10.2

October 10.3
November 11.1
December 12.0

b. Parameters specific to different age-sex categories

Category Body mass
(kg)

Energy
requirement
relative to an
adult female

Proportion in
the population

(NA group)

Proportion in
the population

(HR group)
Adult male 15.39 1.10 16% 25%

Adule female 13.55 1 28% 35%
Juvenile 6.54 0.58 56% 32%

Infant NA 0 0% 8%

c. Abundance of Japanese macaques

Site
Population

density
(macaque/km2

Lowland 81.1
Highland 11.8

Appendix 3. Parameters used in the estimation of the population-level food
consumption by Japanese macaques

 


