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Carboxylic acids and their derivatives are important classes of compounds in organic chemistry. Although various methods for 

synthesis of carboxylic acids have been used so far, carboxylation using CO2 gas as a carbon feedstock[1] is useful and attractive from an 
environmental point of view.[2] Despite recent remarkable advances in this field,[3] classical carboxylation of organometallics with CO2 
still serves as a powerful method because of efficiency and convenience.[4] However, the method suffers from the problem of 
incompatibility of electrophilic functional groups such as nitro, cyano, and carbonyl groups, which causes severe limitations in the 
synthesis of carboxylic acids and their derivatives having a variety of functions and biological activities.  

Recently, we have reported that various short-lived highly unstable organolithiums such as aryllithiums bearing electrophilic 
functional groups could be generated and used for reactions with subsequently added electrophiles before they decompose[5] by taking 
advantages extremely short residence times, which is one of the characteristic features of flow microreactors.[6-8]  

There are two hurdles that we expected in the implementation of CO2 as an electrophile in the reactions of short-lived organolithium 
species; the mass transfer between the CO2 gas phase and the solution phase and the rate of the chemical reaction of organolithium species 
with dissolved CO2. The first one seems to be mainly the issue of fluidics although the mass transfer rate also depends on the nature of the 
gas and that of the solution. It is well known that the use of flow microreactors enables fast mass transfer in gas-liquid biphasic 
reactions.[9,10] The second one is the issue of chemistry. The reaction with CO2 should be faster than that with an electrophilic functional 
group in the organolithium species, although the rate depends on the concentration of CO2 in the solution. The question is what kind of 
electrophilic functional groups are compatible with the carboxylation. Here, we show that these hurdles were overcome using the flow 
microreactor system and that aromatic carboxylic acids bearing electrophilic functional groups were synthesized from the corresponding 
aromatic halides. 

The reactions were carried out using a flow microreactor system composed of three T-shaped micromixers (M1, M2 and M3) and 
three microtube reactors (R1, R2 and R3) as shown in Figure 1. An aryl halide and nBuLi or PhLi were mixed in M1 and the 
halogen/lithium exchange was carried out in R1 to generate the corresponding aryllithium. In the next step, CO2 gas (1.5 eq) that was 
pressurized to 3.0 bar with a gas pressure regulator valve was introduced at M2 using a flow controller, and the carboxylation was carried 
out in R2. In the last step the reaction was quenched by MeOH at M3 and R3.   
 

(Insert Figure 1) 
 

The carboxylation of p-nitrophenyllithium[11] was first examined. The iodine/lithium exchange reaction was carried out with the residence 
time of 0.014 s at –20 oC. In the previous work,[11] we have already revealed that p-nitrophenyllithium can be effectively generated under 
these conditions. We have also revealed that  p-nitrophenyllithium decomposes with the residence time longer than ca. 0.4 s at –20 oC.  As 
shown in Table 1, the corresponding carboxylic acid was obtained in 78% yield. This means gas/liquid mass transfer and the chemical 
reaction of p-nitrophenyllithium with CO2 are much faster than its decomposition. Under similar conditions m- and o-nitrophenyllithiums 
were carboxylated effectively. The carboxylation reactions of p-, m-, and o-cyanophenyllithiums[12] were also successfully accomplished 
using the flow microreactor system. The carboxylation of alkoxycarbonylphenyllithiums[13]  was more challenging, because esters react 
with organolithiums very quickly. We have already revealed that p-ethoxycarbonylphenyllithium decomposes with the residence time 
longer than ca. 0.4 s at –60 oC.[13] However, the carboxylation of p-ethoxycarbonylphenyllithium could be accomplished to obtain the 
corresponding carboxylic acid in a reasonable yield. Therefore, the gas/liquid mass transfer and the carboxylation reactions are 
unexpectedly fast, and are much faster than the decomposition even at low temperatures such as –60 oC. Thus, carboxylation of 
aryllithiums bearing electrophilic functional groups, which is very difficult or impossible by conventional batch reactions, was achieved 
by using flow microreactors. 

      The carboxylation of phenyllithiums bearing electron-donating substituents such methoxy group and unsubstituted phenyllithium 
are easier as shown in Table 1. Notably, the carboxylation of phenyllithium using CO2 (1.5 eq)[14] could be carried out at 0 oC. It is known 
that at such temperatures the carboxylation of organolithiums using CO2 often leads to the formation of significant amounts of byproducts. 
For example, the carboxylation of phenyllithium at 0 oC in a batch macro reactor gave a mixture of benzoic acid, benzophenone, and 
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triphenylmethanol, although the reaction at -78 oC gave benzoic acid in good selectivity (87% yield) (Scheme 1). In contrast, the reaction 
in the flow microreactor system gave benzoic acid in 87% yield even at 0 oC. This feature of flow microreactor systems, presumably 
because of fast heat transfer, is especially important from a view point of industrial production. 

 
(Insert Scheme 1) 

 
(Insert Table 1) 

 
The initial products before quenching with methanol in the present reaction are lithium salts of carboxylic acids, which are highly 

reactive toward activating agents such as TSTU (O-(N-succinimidyl)-1,1,3,3-tetramethyl uronium tetrafluoroborate) or PyBop (1H-
benzotriazole-1-yloxytris(pyrrolidine-1-yl)phosphonium hexafluorophosphate). Therefore, active esters (esters with a good leaving group), 
which are commonly used for making peptides from carboxylic acids can be directly synthesized. Thus, the product solutions were treated 
with the activating agents without methanol quenching. No intentionally added base was required. The corresponding active esters were 
obtained in good yields as shown in Figure 2. 
 

(Insert Figure 2) 
 

N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) is most commonly used to acylate lysine residues and N-terminal amine groups of 
peptides for positron emission tomography (PET).[15] The following application to this protocol demonstrates the power of the present 
method, although cold 19F was used instead of hot 18F. The carboxylation of p-fluorophenyllithium generated from 1-bromo-4-
fluorobenzene with CO2 followed by the reaction with TSTU was completed within 1 min to give the N-succinimidyl-4-fluorobenzoate 
(SFB) in 55% yield. Then, a solution of SFB and triethylamine in CH3CN was added to a solution of cyclo(Arg-Gly-Asp-D-Phe-Lys) 
(c(RGDfK)) in H2O and CH3CN. The mixture was incubated at 37 °C for 10 min and was purified by preparative HPLC to give the 
desired coupling product in 91% (Figure 3). The present fast synthesis also demonstrates the possibility of synthesizing compounds 
containing short-lived positron emitting radionuclide 11C (t1/2 = 20.4 min) using 11CO2[16].  
 

(Insert Figure 3) 
 
In conclusion, we have developed an extremely fast and efficient method for carboxylation of short-lived organolithiums with CO2 gas by 
virtue of fast gas/liquid mass transfer and short and precise residence time control in flow microreactors. We anticipate that this new tactic 
will provide an access to a wide range of carboxylic acids and their derivatives bearing electrophilic functional groups. Further work is in 
progress to explore a wide range of applications of the present method. 
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Figure 1. A flow microreactor system for the reactions of organolithiums with CO2 gas. T-shaped micromixers: M1, M2, M3; 
microtube reactors: R1, R2, R3; flow controller: FC; pressure gage: P. 
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Figure 2. Flow microreactor synthesis of activative esters. 
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Figure 3. Coupling reaction of cyclo(Arg-Gly-Asp-D-Phe-Lys) (c(RGDfK)) with N-succinimidyl-4-fluorobenzoate (SFB). 
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Scheme 1. Reaction of phenyllithium with carbon dioxide using a conventional macro batch reactor. 
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Table 1. Carboxylation of aryllithiums with CO2 gas using a flow microreactor system.a 

Halobenzene RLi T 
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a The reactions were carried out using 1.05 equiv of a lithiating agent and 1.50 equiv of CO2.  
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 Carboxylation of short-lived 
organolithiums bearing electrophilic 
functional groups such as nitro, 
cyano, and alkoxycarbonyl groups 
with CO2 to give carboxylic acids 
and active esters was accomplished  

in a flow microreactor system. The 
successful reactions indicates that 
gas/liquid mass transfer and the 
subsequent chemical reaction with 
CO2 are extremely fast. 
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