Synthesis and **Genuine** Catalytic Activities of Porphyrin-based PCP Pincer Complexes

Keisuke Fujimoto†, Tomoki Yoneda†, Hideki Yorimitsu†‡*, Atsuhiro Osuka†*

†Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
‡ACT-C, JST, Sakyo-ku, Kyoto 606-8502, Japan

Supporting Information Placeholder

ABSTRACT: 2,18-Bis(diphenylphosphino)porphyrins undergo peripheral cyclometalation with group 10 transition metal salts to afford the corresponding porphyrin-based PCP pincer complexes. The porphyrinic plane and the PCP-pincer unit are apparently coplanar with small strain. The genuine catalytic activities of the porphyrin-based pincer complexes at the periphery were investigated in allylation of benzaldehyde with allylstannane and in 1,4-reduction of chalcone to find electronic interplay between the inner metal and the outer metal in catalysis for the first time.

Whereas a porphyrin scaffold usually accommodates a metal in its inner cavity to alter its electronic and structural properties, porphyrins bearing a porphyrinic carbon–transition metal σ bond on the periphery have been emerging as a new class of porphyrin complexes. They are not only structurally novel but also intriguing to investigate electronic interplay between the inner metal and the outer metal. In addition, peripheral cyclometalated motifs can serve as linkers in multiporphyrinic assemblies and potent chromophores for luminescent and nonlinear optical materials.

Many conventional porphyrin transition metal complexes show important catalytic activities such as oxygenation. In contrast, the catalytic activities of peripherally metalated porphyrins remain unexplored. We reported the synthesis of porphyrin-based NCN-pincer palladium complexes as the first porphyrin-based pincer complexes. We were anxious about possible oxidation of the trivalent phosphines to phosphine oxides in air. Indeed, is sensitive to air and was gradually oxidized in solution to lead to a decreased yield of . However, is stable in air and can be handled without special care, and its structure has been confirmed by X-ray diffraction analysis (SI). Porphyrin exhibits a Soret band at 427 nm that is red-shifted by 18 nm from the parent Ni(II) porphyrin as an influence of β,β-diphosphination. The following cyclometalation with soluble group 10 metal salts proceeded smoothly in the presence of sodium acetate as a base. Bimetallic pincer complexes were isolated as stable solids by recrystallization in good yields. Freebase porphyrin pincer complexes were obtained by selective removal of the inner zinc of under acidic conditions, which underscores the robustness of the PCP-pincer structure.

Chart 1. Porphyrin-based pincer complexes.

The synthesis of pincer ligand (M = Ni and Zn) was achieved through palladium-catalyzed phosphination of porphyrinyl ditriflate (Scheme 1). We were anxious about possible oxidation of the trivalent phosphines to phosphine oxides in air. Indeed, is sensitive to air and was gradually oxidized in solution to lead to a decreased yield of . However, is stable in air and can be handled without special care, and its structure has been confirmed by X-ray diffraction analysis (SI). Porphyrin exhibits a Soret band at 427 nm that is red-shifted by 18 nm from the parent Ni(II) porphyrin as an influence of β,β-diphosphination. The following cyclometalation with soluble group 10 metal salts proceeded smoothly in the presence of sodium acetate as a base. Bimetallic pincer complexes were isolated as stable solids by recrystallization in good yields. Freebase porphyrin pincer complexes were obtained by selective removal of the inner zinc of under acidic conditions, which underscores the robustness of the PCP-pincer structure.

- a) 5 equiv. HPPh₂, 20 mol% Pd(OAc)₂, 20 mol% dppb, 10 equiv. NEt₃, DMF, 90 °C, 12 h;
- b) 1.1 equiv. NiCl₂(PPh₃)₂, 1.1 equiv. NaOAc, toluene, 110 °C, 24 h;
- c) 1.1 equiv. PdCl₂(MeCN)₂, 1.1 equiv. NaOAc, toluene, 80 °C, 3 h;
- d) 1.1 equiv. K₂PtCl₄, 1.1 equiv. NaOAc, toluene/DMF, 100 °C, 10 h;
- e) TFA/CH₂Cl₂, 20 °C, 10 min.

The structures of 2NiM₂ were unambiguously determined by X-ray crystallographic analysis (Figure 1 for 2NiPd and Figure SXX in SI for 2NiNi and 2NiPt). The porphyrinic plane and the PCP-pincer unit are obviously flat together and, especially for 2NiPd, constitute an almost perfect plane, which is in sharp contrast to the previous NCN-pincer complexes that take highly distorted structures. The porphyrinic C–P bonds are directed inward to the outer metal due to strong coordination with P1-C1-C2 and P2-C5-C4 angles of 114.25 ° for both in 2NiPd. The length of the C3–Pd bond is 2.014 Å, which is apparently longer than that of our previous NCN-pincer palladium complex (1.977 Å) and is similar to that of the closely related anthracene-based PCP-pincer palladium complex (2.010 Å).

Electronic perturbations induced by the outer metals were investigated through UV/vis absorption spectroscopy (Figure 2). Compared to parent bidentate ligand 4Ni, palladium and platinum pincer complexes 2NiPd and 2NiPt exhibit similar yet enhanced and red-shifted Soret bands, which would be ascribable to their more rigid conformations. In contrast, homobimetallic nickel complex 2NiNi displays a broad and largely split Soret band at 397 and 458 nm and the most red-shifted Q-band. Since 2NiM₂ are structurally similar to other porphyrin pincer complexes (Figure SXX in SI), the unique absorption of 2NiNi is attributable to rather strong interaction between the outer nickel d orbitals and the porphyrinic π orbitals.

Figure 1. ORTEP Drawings of 2NiPd. Thermal ellipsoids represent 50% probability. The meso-aryl groups are omitted for clarity.

Figure 2. UV/vis absorption spectra of 2NiNi, 2NiPd, 2NiPt, and 4Ni in dichloromethane.

Pincer complexes are well known to show a wide spectrum of catalytic activity. Seeking after the catalytic activity of porphyrin-based pincer complexes that sustain their pincer structures during catalytic cycles, we firstly selected catalytic allylation of benzaldehyde with allylt tributyltin as a model reaction. Different from the Heck reaction, the allylation is known to proceed with keeping the valence of the transition metal during the catalytic cycle and without significant decomposition of the catalyst. Therefore, we considered that the allylation is an ideal reaction to investigate the genuine catalytic activity of porphyrin-based pincer complexes.

The allylation indeed occurred in the presence of 2M₁M₂ (Table 1). Additions of AgPF₆ are essential to generate catalytically active cationic pincer complexes by removal of the chloride on M₂. The allylation that was catalyzed by 2NiNi or 2H₂Ni did not go to completion due to decomposition of the catalysts during the reaction. With these two exceptions, the other 2M₁M₂ were robust enough to complete the allylation and exhibited very similar catalytic activities regardless of the inner and outer metals. It is worth noting that the pincer catalysts 2M₁M₂ could be recovered after the reactions. For example, we recovered 72% of 2NiPd after work-up with brine followed by silica gel column purification and recrystallization. The recyclability indicates that the PCP-pincer complexes served as catalysts with their framework intact under the reaction conditions.
The catalytic activities of complexes take rather unbiased and flat geometry. The legitimation of benzaldehyde with allylstannane and in 1,4-reduction of chalcone is gravely influenced by the electronic interplay of inner metals.

We have also found that peripheral palladium complexes \(2M1Pd\) catalyze 1,4-reduction of chalcone in 1-butanol through transfer hydrogenation.\(^{15}\) Interestingly, the catalytic reaction did not take place in the presence of \(\text{PdCl}_2(\text{PPh}_3)_2\), \(\text{Pd}_2(\text{dba})_3\), or \(\text{Pd}(ext{OAc})_2\) instead of \(2M1Pd\), which indicates that not palladium colloids but the pincer complexes do have the catalytic activity.

![Figure 3. Effect of inner metals on 1,4-reduction catalyzed by \(2M1Pd\).](image)

In conclusion, we have synthesized a family of new peripherally metalated porphyrins, porphyrin-based PCP-pincer complexes bearing a \textit{meso}-carbon-metal \(\sigma\) bond. The complexes take rather unbiased and flat geometry. The legitimate catalytic activities of \(2M1M2\) were investigated in allylation of benzaldehyde with allylstannane and in 1,4-reduction of chalcone. In the latter catalytic reaction, apparent electronic interplay of \(2M1Pd\) in catalysis was observed for the first time. Development of new peripherally metalated porphyrin catalysts is under way by taking advantage of the electronic effect of inner metals.

Supporting Information Available

Experimental details and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

yori@kuchem.kyoto-u.ac.jp, osuka@kuchem.kyoto-u.ac.jp,

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported by Grants-in-Aid from MEXT (Nos.: 24106721 “Reaction Integration” and 25107002 “Science of Atomic Layers”) and from JSPS (Nos.: 25220802 (Scientific Research (S)), 24685007 (Young Scientists (A)), 23655037 (Exploratory Research)). T.Y. acknowledges JSPS Fellowship for Young Scientists.

REFERENCES

(6) Richeter nicely demonstrated that N-heterocyclic carbene-fused π-extended porphyrins can coordinate to generate the corresponding rhodium complexes, the electronic properties of which are modified upon internal protonation or metalation: Lefebvre, J.-F.; Lo, M.; Leclercq, D.; Richeter, S. Chem. Commun. 2011, 47, 2976.

(8) Matano reported that peripheral palladium complexes of meso-(diphenylphosphino)porphyrins are catalytically active similarly for the Heck reaction although the actual catalytic species has not been characterized. See ref 2j.

(10) We reported that 1,4-reduction of ethyl cinnamate with hydrosilane in the presence of a porphyrin-based NCN pincer Ir complex. However, there is no discussion about the stability of the Ir complex during the reaction and about the actual catalytic species. See ref. 3h.

$2M^1\text{Pd}$

$M^1 = \text{Zn, Ni, H}_2$

electronic interplay of the inner and outer metals