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GLP-1 receptor agonist attenuates endoplasmic
reticulum stress-mediated b-cell damage in
Akita mice
Shunsuke Yamane1, Yoshiyuki Hamamoto2, Shin-ichi Harashima1, Norio Harada1, Akihiro Hamasaki1, Kentaro Toyoda1,
Kazuyo Fujita1, Erina Joo1, Yutaka Seino3, Nobuya Inagaki1,4*

ABSTRACT

Aims/Introduction: Endoplasmic reticulum (ER) stress is one of the contributing factors in the development of type 2 diabetes.
To investigate the cytoprotective effect of glucagon-like peptide 1 receptor (GLP-1R) signaling in vivo, we examined the action of
exendin-4 (Ex-4), a potent GLP-1R agonist, on b-cell apoptosis in Akita mice, an animal model of ER stress-mediated diabetes.
Materials and Methods: Ex-4, phosphate-buffered saline (PBS) or phlorizin were injected intraperitoneally twice a day from 3 to
5 weeks-of-age. We evaluated the changes in blood glucose levels, bodyweights, and pancreatic insulin-positive area and number
of islets. The effect of Ex-4 on the numbers of C/EBP-homologous protein (CHOP)-, TdT-mediated dUTP-biotin nick-end labeling
(TUNEL)- or proliferating cell nuclear antigen-positive b-cells were also evaluated.
Results: Ex-4 significantly reduced blood glucose levels and increased both the insulin-positive area and the number of islets com-
pared with PBS-treated mice. In contrast, there was no significant difference in the insulin-positive area between PBS-treated mice
and phlorizin-treated mice, in which blood glucose levels were controlled similarly to those in Ex-4-treated mice. Furthermore, treat-
ment of Akita mice with Ex-4 resulted in a significant decrease in the number of CHOP-positive b-cells and TUNEL-positive b-cells,
and in CHOP mRNA levels in b-cells, but there was no significant difference between the PBS-treated group and the phlorizin-treated
group. Proliferating cell nuclear antigen staining showed no significant difference among the three groups in proliferation of b-cells.
Conclusions: These data suggest that Ex-4 treatment can attenuate ER stress-mediated b-cell damage, mainly through a reduction
of apoptotic cell death that is independent of lowered blood glucose levels. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00075.x,
2011)
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INTRODUCTION
Type 2 diabetes is a chronic metabolic disorder characterized by
the loss of b-cell function and mass. The mechanisms underly-
ing the loss of b-cell function and mass are not fully understood,
but recent studies have shown that endoplasmic reticulum (ER)
stress is one of the causes of b-cell damage in diabetes1. Owing
to increased demand for insulin secretion, b-cells show a highly
developed ER1. The ER has a number of important functions,
such as post-translational modification, folding and assembly of
newly synthesized secretory proteins2–4. Thus, the ER plays an
essential role in cell survival. ER function can be impaired by

various conditions, including inhibition of protein glycosylation,
reduction in formation of disulfide bonds, calcium depletion
from the ER lumen, impairment of protein transport from the
ER to the Golgi and expression of malfolded proteins1. Various
physiological or pathological conditions that compromise ER
functions are collectively termed ER stress1–3. To alleviate ER
stress and promote cell survival, an adaptive response, known as
unfolded protein response (UPR) is activated. UPR comprises
translational attenuation, induction of chaperones and ER
stress-associated degradation (ERAD). However, prolonged acti-
vation of UPR can ultimately lead to cell death by apoptosis.

Increased demand for insulin secretion under certain condi-
tions, such as chronic hyperglycemia, might result in b-cell over-
load. Chronic hyperglycemia in diabetes can therefore induce
persistent ER stress, cause b-cell dysfunction and finally lead to
a reduction in b-cell mass through apoptosis1.

Glucagon-like peptide 1 (GLP-1) is a physiological incretin,
an intestinal hormone released in response to nutrient
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ingestion that stimulates glucose-dependent insulin secretion.
A growing body of evidence suggests that GLP-1 not only
increases insulin secretion and upregulates insulin biosynthesis,
but also stimulates b-cell proliferation and neogenesis5–9, and
inhibits b-cell apoptosis9–16, resulting in increased b-cell mass.
However, demonstration of an in vivo effect in the animal
models of type 2 diabetes is problematic, because enhancement
of GLP-1R signaling lowers blood glucose levels as result of its
insulinotropic action, and it is difficult to evaluate the direct
cytoprotective effects of GLP-1 in conditions of similar glucose
toxicity.

In the present study, we investigated the cytoprotective effect
of GLP-1R signaling in vivo on ER stress-mediated apoptotic
cell death by using Akita mice, an animal model of ER stress-
mediated diabetes mellitus. Akita mice have a point mutation
in the insulin 2 gene, resulting in misfolding of insulin that
leads to severe ER stress17,18. To exclude the possibility that
the effect of Ex-4 on b-cells is mediated through improved
blood glucose levels, we used three groups of mice: Akita
mice treated with phosphate-buffered saline (PBS), Ex-4, or
the sodium-coupled glucose transporter inhibitor phlorizin,
which decreases blood glucose levels without increasing insulin
secretion.

MATERIALS AND METHODS
Experimental Animals
Male C57BL/6 mice and male Akita mice were obtained from
Shimizu (Kyoto, Japan). The animals were housed under a
light/dark cycle of 12 h with free access to food and water. All
experiments were approved by the Kyoto University Animal
Care Committee.

In vivo Treatment
The mice were given twice daily intraperitoneal injections of
PBS, Ex-4 (24 nmol/kg) or phlorizin (0.3 g/kg) for 2 weeks
(from 3 to 5 weeks-of-age). Blood glucose levels were measured
every third day by enzyme electrode method using a portable
glucose analyzer (Glutest sensor; Sanwakagaku, Nagoya, Japan).
Blood samples were collected from tail cuttings from these mice
fed ad libitum. At the end of the experimental period, blood
samples were collected from the inferior vena cava under anes-
thesia to determine the plasma glycoalbumin levels (Oriental
Yeast, Tokyo, Japan). Pancreas samples from each of the animal
groups were obtained for histological evaluation, and islets
were isolated for measurement of insulin content and RNA
extraction.

Evaluation of Pancreatic Insulin-Positive Area and Number
of Islets
The pancreas samples were fixed in Bouin’s solution. Serial
5-lm paraffin-embedded tissue sections were mounted on
slides. After rehydration, sections were incubated with polyclonal
rabbit anti-insulin antibodies (Santa Cruz Biotechnology, Santa
Cruz, CA, USA), with a biotinylated goat anti-rabbit antibody

(DAKO, Carpinteria, CA, USA), and then with a streptavidin
peroxidase conjugate and substrate kit (DAKO) using standard
protocols. The total pancreas area and insulin-positive area were
quantified on five distal, random, non-overlapping sections from
five mice of each group using a BZ-8100 microscope equipped
with a BZ-Analyzer (KeyEnce, Osaka, Japan). Insulin-positive
areas and the number of islets of each group were adjusted by
total pancreas area15.

Measurement of Insulin Contents of Isolated Islets
Pancreatic islets were isolated by collagenase digestion. To deter-
mine insulin contents, islets were homogenized in 400 lL acid
ethanol (37% HCl in 75% ethanol, 15:1000 [v/v]) and extracted
at 4�C overnight. The acidic extracts were dried by vacuum,
reconstituted and subjected to insulin measurement. The
amount of immunoreactive insulin was determined by radio-
immunoassay (RIA).

Measurement of mRNA Expression of C/EBP-Homologous
Protein and BiP in Isolated Islets
Measurement of mRNA expression of C/EBP-homologous pro-
tein (CHOP) and BiP was carried out by quantitative reverse
transcription polymerase chain reaction (RT–PCR) as described
previously19. Briefly, total RNA was extracted from isolated islets
with an RNeasy mini kit (Qiagen, Valencia, CA, USA) and trea-
ted with DNase (Qiagen). cDNA was prepared by SuperScript
Reverse Transcriptase system (Invitrogens, Carlsbad, CA, USA)
according to the manufacturer’s instructions. CHOP mRNA
levels and BiP mRNA levels in the islets were measured by
quantitative RT–PCR using an ABI PRISM 7000 Sequence
Detection System (Applied Biosystems, Foster City, CA, USA).
The sequences of forward and reverse primers to evaluate
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Figure 1 | Ex-4 significantly reduced blood glucose levels in Akita mice.
(a) Blood glucose concentration and (b) bodyweight were measured in
wild-type C56BL/6 mice (closed diamond, n = 10), Akita mice treated
with PBS alone (closed circle, n = 10), Ex-4 (closed square, n = 12) and
phlorizin (closed triangle, n = 10). Each symbol represents mean ± SE.
*P < 0.05, **P < 0.01 vs PBS-treated Akita mice.
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CHOP expression were 5¢-GAGCT- GGAAGCCTGGTATGA-3¢
and 5¢-GGACGCAGGGTCAAGAGTAG-3¢, respectively; the
sequences of forward and reverse primers to evaluate BiP
expression were 5¢-TTTCTGCCATGGTTCTCACTAA-3¢ and
5¢-GCTGGGCATCATTGAAGTAAG-3¢, respectively; and the
sequences of forward and reverse primers to evaluate glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) expression were
5¢-AGCTCACTGGCATGGCTTCCG-3¢ and 5¢-GCCTGCTTC-
ACCACCTTCTTGATG-3¢, respectively. SYBER Green PCR
Master Mix (Applied Biosystems) was prepared for the PCR
run. Thermal cycling conditions were denatured at 95�C for
10 min followed by 50 cycles at 95�C for 15 s and 60�C for

1 min. Total CHOP and total BiP levels were corrected by
GAPDH mRNA levels.

Immunofluorescence Staining
For pancreatic CHOP and insulin immunohistochemistry, the
tissues were fixed and embedded in paraffin. Serial 5-lm sec-
tions were stained with anti-CHOP/GADD153 (Santa Cruz Bio-
technology) and anti-insulin (DAKO) antibodies using standard
protocols. Insulin immunopositive areas were measured on five
distal, random, non-overlapping sections from five mice of each
group using a BZ-8100 fluorescence microscope equipped with
a BZ-Analyzer (KeyEnce), and the number of cells showing
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Figure 2 | Ex-4 treatment increased insulin-positive areas, number of islets and insulin content. (a–d) Representative mouse pancreata at 5 weeks-
of-age stained with insulin. (a) Wild, (b) Akita mice treated with PBS, (c) Ex-4 or (d) phlorizin. (e) Insulin-positive areas and (f) number of islets were
evaluated as described in Materials and Methods (n = 5 for each group). (g) Pancreatic insulin content was measured as described in Materials and
Methods, and expressed as ng/islet (n = 5 for each group). Each column represents mean ± SE. *P < 0.05, **P < 0.01.
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both nuclear CHOP and cytoplasmic insulin immunopositivity
was determined. The ratio of CHOP-positive b-cells was calcu-
lated by adjusting the number of CHOP-positive b-cells by the
insulin-positive area20. The effect of Ex-4 treatment on b-cell
replication and apoptosis was evaluated histologically by prolif-
erating cell nuclear antigen (PCNA) staining (Abcam, Cam-
bridge, MA, USA) and TdT-mediated dUTP-biotin nick-end
labeling (TUNEL) staining (Takara Bio, Otsu, Japan), respec-
tively. The ratio of TUNEL-positive and PCNA-positive b-cells
was also calculated as described earlier.

Statistical Analysis
Data are presented as means ± SEM. Statistical analyses were
carried out by unpaired t-test. A P-value of <0.05 was consid-
ered significant.

RESULTS
Effect of Ex-4 on Hyperglycemia and Bodyweight in Akita Mice
Akita mice showed acute and progressive hyperglycemia at
14 days after birth and thereafter. Twice-daily intraperitoneal
injection of Ex-4 from 3 to 5 weeks-of-age significantly reduced
blood glucose levels compared with those in PBS-treated mice
(Figure 1a). Plasma glucose levels in phlorizin-treated Akita
mice were similar to those in Ex-4-treated mice. Plasma glycoal-
bumin levels were significantly lower in the Ex-4- and phlori-
zin-treated groups than those in the PBS-treated group, but no
significant difference was observed between the Ex-4- and
phlorizin-treated groups (12.9 ± 1.5 vs 8.7 ± 0.7 vs 8.2 ± 0.6,
respectively, n = 10–12). Ex-4 treatment or phlorizin treatment
did not change bodyweight compared with PBS treatment
(Figure 1b). Ex-4 or phlorizin treatment did not change the
amount of food intake assessed at 4 weeks-of-age (data not
shown).

Effect of Ex-4 on Insulin-Positive Area and Number of Islets
Preservation of b-cell morphology was observed by treatment
with Ex-4, as shown in Figure 2a. Quantitative histological anal-
yses showed that Ex-4 treatment significantly increased both the
insulin-positive area and the number of islets, whereas there was
no significant difference between the PBS-treated group and the
phlorizin-treated group (Figure 2b,c).

Effect of Ex-4 on Pancreatic Insulin Content
Figure 2d shows the effect of Ex-4 treatment on insulin
content in pancreatic islets. Treatment with Ex-4 signifi-
cantly increased insulin content in isolated islets, but phlorizin
treatment did not.

Quantitative Estimation of CHOP and BiP Expression Levels
by Real-Time PCR
The expression levels of CHOP mRNA are shown in Figure 3a,
and those of BiP mRNA are shown in Figure 3b. Ex-4 signifi-
cantly lowered the expression levels of CHOP and BiP mRNA,
but there was no significant difference in the expression levels of

CHOP or BiP mRNA between the phlorizin- or PBS-treated
groups.

Effect of Ex-4 on the Ratio of CHOP-, TUNEL- and
PCNA-Positive b-cells
Figure 4a depicts the representative pancreata stained with insu-
lin (red), CHOP (green) and DAPI (blue), respectively. Simi-
larly, Figure 5a shows the representative pancreata stained with
insulin (red) and TUNEL (green). Treatment with Ex-4 sig-
nificantly decreased the ratio of CHOP-positive b-cells and
TUNEL-positive b-cells (Figures 4b and 5b), but there was no
significant difference in the ratio of CHOP-positive or TUNEL-
positive b-cells between the PBS- and phlorizin-treated groups.
Figure 6a shows the representative pancreata stained with insu-
lin (red) and PCNA (green). PCNA staining showed no signifi-
cant difference in proliferation of b-cells among the three
groups of Akita mice (Figure 6b). Interestingly, the ratio of
PCNA-positive b-cells was increased in all three groups when
compared with wild-type C57BL/6 mice.

DISCUSSION
Akita mice are widely used as an animal model of ER stress-
mediated diabetes. Akita mice have a point mutation (C96T)
in the insulin 2 gene21 that disrupts the disulfide bond forma-
tion between the A and B chains of proinsulin, resulting in a
drastic conformational change of the molecule. The unfolded
proinsulin accumulates to the ER, causing severe ER stress
leading to b-cell apoptosis. In humans, it has recently been
shown that a mutation in the insulin gene, which is identical
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Figure 3 | Ex-4 treatment resulted in a significant decrease in the
expression levels of C/EBP-homologous protein (CHOP) mRNA and
Bip mRNA in Akita mice. (a) mRNA expression levels of CHOP were
evaluated by quantitative real-time polymerase chain reaction (PCR).
(b) mRNA expression levels of BiP were evaluated by quantitative
real-time PCR. Data are expressed as the ratio to that of glyceraldehyde
3-phosphate dehydrogenase in the same sample (n = 5 for each
group). Each column represents mean ± SE. *P < 0.05, **P < 0.01.
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to that in the Akita mouse, causes permanent neonatal diabetes
within the first month of life that requires lifelong insulin
injection22.

In the present study, we have shown that Ex-4 treatment has
a protective effect on b-cells in Akita mice. The insulin-positive
area and the number of islets were maintained along with a
decreased ratio of CHOP- and TUNEL-positive cells in the

islets, showing that the major effect of Ex-4 treatment in the
maintenance of b-cell mass is through decreasing b-cell apopto-
sis in response to ER stress. Because phlorizin decreases blood
glucose levels without increasing insulin secretion, it might well
reduce ER stress by decreasing the insulin demand. However, in
contrast to the Ex-4 treatment, phlorizin treatment failed to
show a reduction of ER stress or b-cell protective effects against
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apoptosis in our conditions. These findings show that Ex-4 has
a direct effect on ER stress-mediated b-cell apoptosis that is
independent of decreased insulin demand.

There are several in vitro and in vivo studies showing that
GLP-1R agonists inhibit b-cell apoptosis9–16, and several molec-
ular mechanisms have been suggested. For example, GLP-1
treatment decreases the expression levels of proapoptotic protein
caspase-3 and increases those of anti-apoptotic protein bcl-2 in
isolated human islets10. It also has been shown that the anti-
apoptotic effect of Ex-4 is associated with the activation of pro-
tein kinase B/Akt through PKA-dependent phosphorylation of
CREB11. There are some reports that GLP-1 ameliorates ER
stress. Yusta et al. found that treatment by Ex-4 reduces blood
glucose levels in obese db/db mice along with a decrease in the
number of CHOP-positive b-cells20. Tsunekawa et al.23 reported
a beneficial effect of Ex-4 on b-cell damage in calmodulin-over-
expressing transgenic (CaMTg) mice that develop diabetes
through ER stress-mediated b-cell apoptosis. They found that
Ex-4 treatment reduced blood glucose levels while retaining the
insulin-positive areas and decreasing the expression levels of
CHOP mRNA in CaMTg mice. In vitro studies have found that
rapid recovery from translational attenuation19 or upregulation
of BiP and JunB24 accounts for the attenuation of ER stress-
mediated b-cell damage by Ex-4 treatment. However, results of
chronic Ex-4 treatment in animal models of type 2 diabetes
should be carefully interpreted, because enhancement of
GLP-1R signaling reduces the blood glucose level by its insulino-
tropic action. Therefore, the possibility remains that reduced
hyperglycemia attenuates persistent ER stress and ameliorates

b-cell apoptosis. Our present findings clearly show that Ex-4
treatment attenuates ER stress-mediated b-cell damage in Akita
mice through a reduction of apoptotic cell death that is indepen-
dent of decreased blood glucose levels.

Although several studies have found that the cytoprotective
effect of GLP-1R signaling is not only through inhibition of
b-cell apoptosis, but also through stimulation of b-cell prolifera-
tion5–9, we did not find any effect of Ex-4 treatment on b-cell
proliferation. It is possible that the administration period in the
present study was too short to observe b-cell proliferation by
Ex-4 or that stimulation of b-cell proliferation does not play a
significant role in the cytoprotective effect of GLP-1R signaling
in Akita mice. The ratio of PCNA-positive b-cells was increased
not only in the Ex-4-treated group of Akita mice, but also in
the phlorizin-treated group and the untreated group compared
with that in wild-type C57BL/6 mice. Whether or not this result
can be attributed to the phenotype of Akita mice requires fur-
ther study.

Islet mass is reported to be decreased in patients with type 2
diabetes at the time of diagnosis25. Although Ex-4 is in clinical
use for treatment of type 2 diabetes26, superiority of Ex-4 over
the other antidiabetic drugs has not been shown. Our data
confirm the previous findings of a beneficial effect of Ex-4
on glycemic control, but also suggest that Ex-4 has a direct
b-cell-protective effect independently of improved glycemic
control. Thus, Ex-4 and other GLP-1R agonists might well be
more effective than other antidiabetic drugs in clinical use in
terms of alleviating b-cell damage and maintaining b-cell mass
for diabetic patients.
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