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Abstract 
Since End-of-life vehicles (ELVs) contain toxic substances, they have to be treated properly. The 

purpose of this study was to obtain useful information for ELVs management from the viewpoint of 

toxicity. We focused on lead as a representative toxic substance contained in vehicles and 

investigated the dynamic substance flow of lead contained in ELVs and its content in automobile 

shredder residue (ASR). A population balance model was used to estimate the number of ELVs 

generated between FY (fiscal year) 1990–2020, employing a Weibull distribution for the lifespan 

distribution. 16 lead-containing components of the vehicle were considered. It was estimated that the 

annual number of ELVs generated would be 2.9 million as of FY2020. The results implied it is hard 

to remove Pb completely. This is because 5,000–11,000 t-Pb will still remain in vehicles in use in 

FY2020 even though most components in new model vehicles could be replaced by lead-free 

alternatives. As of FY2010, the substance flow showed that Pb contained in ELVs amounted to 

4,600–5,700 t-Pb. Of this, 13.2–14.0% was contained in ASR. The Pb content in ASR could be 

dramatically decreased by FY2020, but it will continue to contain 240–420 mg-Pb/kg if the 

treatment system is not improved. 

1 
 



Introduction 
The automotive industry is one of the biggest industries in the world, as vehicles are indispensable 

for modern life. Unlike other used products such as home appliances and small electronic equipment, 

ELVs (end-of-life vehicles) can easily be monitored and collected because every owner can be 

identified by the vehicle registration system. Common metals (ferrous and non-ferrous) account for a 

high proportion of the total weight of a vehicle; ferrous and non-ferrous metals account for 

approximately 70–80% and 5–10% of a passenger vehicle, respectively [1]. The remaining weight 

consists of other materials such as plastics and rubbers. Some components contain toxic substances 

such as lead, mercury, and cadmium, and therefore, vehicles should be collected and treated properly 

at the end of their useful lifespan. 

In Japan, MITI (the Ministry of International Trade and Industry, Japan) issued the “Automobile 

recycling initiative” in 1997 [2]. Then, JAMA (Japan Automobile Manufacturers Association, Inc.) 

established an action plan and revised it in 2002 considering EU Directive (2000/53/EC) [3]. One of 

their targets was to reduce the Pb content of components of passenger vehicles (except for the 

lead-acid battery) by more than 90% by 2006, compared to the total content in 1996 of 1,850 g-Pb 

per vehicle. This target was continued after January 2006 and this progress was considered in our 

analysis. 

Estimating the number of disposed ELVs not only in the past and present but also in the future is 

necessary for ELV management. A population balance model (PBM) is a dynamic estimation model 

that can be described basing on the mass balance between input, stock, and output of materials or 

products that have a lifespan. For instance, Kim et al. [4] estimated the amount of WEEE generated 

in the period 2000–2020 in South Korea and Polák et al. [5] estimated the number of mobile phones 

generated in 1990–2020 in the Czech Republic. Estimation of the flow of toxic or valuable 

substances contained in a product is also possible by employing a material flow analysis of the 

product using PBM. Tasaki et al. [6] conducted a substance flow analysis (SFA) of brominated flame 

retardants (BFRs), Sb, and PBDDs/DFs in components of TV sets after predicting the material flow 

of TV sets in the period 1995–2020. Daigo et al. [7] estimated the amount of copper and copper 

alloy generated from in-use stock including vehicles. They also estimated the amount of Cr and Ni in 

stainless steel [8]. 

With regard to the SFA of lead, Tukker et al. [9] conducted an SFA to analyze trends in uses and 

emissions of lead in the EU from 2000 to 2030. Elshkaki et al. [10] developed dynamic SFA, which 

combines physical and socio-economic elements to estimate lead demand and supply in different 

applications. They also used SFA to demonstrate that non-intentional flows of lead originating from 

mixed primary resource applications such as the production of zinc are larger than those originating 

from the waste streams of intentional applications of lead [11]. Fuse et al. [12] showed the impact of 

this by shifting to lead-free solders in Japan using dynamic material flow analysis. Although there 
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have been some studies focused on the SFA of lead or on the elemental analysis of lead content in 

ASR, which will be mentioned later, few studies have applied dynamic SFA to lead contained in 

ELVs. 

The purpose of this study was to obtain useful information for ELV management in Japan from 

the viewpoint of toxicity. We focused on lead as a representative toxic substance contained in 

vehicles and investigated the dynamic substance flow of lead contained in ELVs and its content in 

ASR after estimating the numbers of ELVs generated in the past, present, and future. 

 

Materials and methods 
Generation of ELVs  

The dynamic generation of ELVs between FY1990 and FY2020 was estimated using PBM. Here, 

passenger vehicles and freight vehicles were considered, while light motor vehicles (below 660 cc 

displacement) were excluded owing to a lack of data. It was considered that passenger vehicles and 

freight vehicles were sufficient to elucidate the disposal trend of ELVs, as the number of light motor 

vehicles in use in Japan accounted only for 36.8% of the total number of vehicles in use at the end of 

FY2010 [13] [14]. 

PBM considers the lifespan of a vehicle and was used to estimate the number of ELVs generated. 

The lifespan in this study was defined as the period from the fiscal year in which the vehicle was 

first registered in Japan to the fiscal year when its registration was cancelled. Owing to a shortage of 

data, all vehicles whose registration had been cancelled were regarded as ELVs, although some 

vehicles were exported after the registration had been cancelled. Statistical data did not differentiate 

exported used vehicles from new ones until FY2001. In the estimation of the flow of Pb, export was 

considered only between FY2001 and FY2011. 

The estimation process is depicted in Fig. 1. To estimate the number of ELVs generated, the 

annual number of vehicles whose first registration year, as reported by AIRIA (Automobile 

Inspection & Registration Information Association) and JADA (Japan Automobile Dealers 

Association) [15], was between FY1973 and FY2010 was used as past data and between FY2011 

and FY2020 was used as prospective future data. The annual total number of ELVs generated in FY 

Y could be calculated by summing up the number of ELVs generated by first registration year, as 

shown in Eq. 1. The number of ELVs generated in FY Y, which were first registered in year y, was 

calculated by subtracting the number of vehicles in use, as shown in Eq. 2. 

 

𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝑌𝑌 =  �𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝑌𝑌 (𝑦𝑦)
𝑦𝑦

 (1) 

𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝑌𝑌 (𝑦𝑦) = 𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈𝑌𝑌−1(𝑦𝑦)  −𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈𝑌𝑌 (𝑦𝑦) (2) 

Y : Counted fiscal year 
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𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝑌𝑌  : The annual total number of ELVs generated in FY Y 

𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝑌𝑌 (y) : The number of ELVs in FY Y that were first registered in year y and disposed of 

𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈𝑌𝑌 (𝑦𝑦) : The number of vehicles in use in FY Y that were first registered in year y 

 

To estimate the number of vehicles in use, 𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈𝑌𝑌 (𝑦𝑦), a lifespan distribution with respect to the 

first registration year had to be determined. A Weibull distribution, which has been frequently used 

in previous studies [4-8], was employed for the lifespan distribution of a vehicle. Considering that 

the remaining rate obtained from actual statistical data showed a sharp decrease soon after 

registration, a combination of two Weibull distributions with the same average lifespan were 

assumed: the first distribution describes the user group that tends to dispose of their vehicles 

relatively soon after registration and the other describes the user group without such preferences. The 

remaining rate function of the vehicle for the first registration year 𝑦𝑦 can be described by Eq. 3. It 

was assumed that the lifespans of different types of vehicles were not different but varied by their 

first registration years. Linear approximations were assumed for the shape parameter (𝑝𝑝𝑦𝑦,𝑞𝑞𝑦𝑦), the 

scale parameter, and the proportion 𝑟𝑟𝑦𝑦 from FY1990 to FY2020 of those parameters between 

FY1979 to FY1994 were obtained using the maximum likelihood method, as explained below. 

 

𝐹𝐹(𝑦𝑦, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝 �−�
𝑡𝑡 + 0.5
𝜂𝜂

�
py
�× 𝑟𝑟𝑦𝑦 + 𝑒𝑒𝑒𝑒𝑝𝑝 �−�

𝑡𝑡 + 0.5
𝜂𝜂

�
qy
�× �1− 𝑟𝑟𝑦𝑦� (3) 

𝐹𝐹(𝑦𝑦, 𝑡𝑡) : Remaining rate 

𝑦𝑦 : First registration year 

𝑡𝑡 : Vehicle age 

𝑝𝑝𝑦𝑦,𝑞𝑞𝑦𝑦 : Shape parameter 

𝜂𝜂 : Scale parameter 

𝑟𝑟𝑦𝑦 : Proportion of two distributions 

 

The discard rate 𝐷𝐷(𝑦𝑦|𝑡𝑡) for a vehicle first registered in the year y and disposed of at an age 

greater than t and less than t+1 can be described using the remaining rate function 𝐹𝐹(𝑦𝑦, 𝑡𝑡) , as 

shown in Eq. 4, and was expressed as 𝐷𝐷𝑡𝑡,𝑡𝑡+1. Here, the probabilities 𝐷𝐷(𝑦𝑦|𝑡𝑡 = 0, 1, 2,⋯ ) are 

independent of one another. In addition, the number of ELVs first registered in year y and disposed 

of at the age of t was 𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸(𝑦𝑦, 𝑡𝑡). Therefore, the likelihood of this can be described by Eq. 5 and its 

log likelihood function is given by Eq. 6. Then, each parameter in 𝐹𝐹(𝑦𝑦, 𝑡𝑡) can be determined when 

L(y) is maximised. 

 

𝐷𝐷(𝑦𝑦|𝑡𝑡)  =  � 𝐹𝐹(𝑦𝑦, 𝑡𝑡)
𝑡𝑡+1

𝑡𝑡
 𝑑𝑑𝑡𝑡 = 𝐷𝐷𝑡𝑡,𝑡𝑡+1 (4) 
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𝑙𝑙(𝑦𝑦) ∝  �𝐷𝐷0,1�
𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸(𝑦𝑦,0)

× �𝐷𝐷1,2�
𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸(𝑦𝑦,1)

⋯× �𝐷𝐷𝑛𝑛,∞�
𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸(𝑦𝑦,𝑛𝑛)

 (5) 

𝐿𝐿(𝑦𝑦) ∝  ��𝐸𝐸(𝑦𝑦, 𝑡𝑡) × 𝑙𝑙𝑙𝑙 𝐷𝐷𝑡𝑡,𝑡𝑡+1�
𝑡𝑡

 (6) 

𝐷𝐷(𝑦𝑦|𝑡𝑡) 
: Discard rate of a vehicle first registered in year y and disposed of at an age greater 

than t and less than t+1 (= 𝐷𝐷𝑡𝑡,𝑡𝑡+1) 

𝑙𝑙(𝑦𝑦) : Likelihood function 

𝐿𝐿(𝑦𝑦) : Log likelihood function 

 

Average weight of a vehicle 

The average weight of a vehicle by its first registration year, 𝑊𝑊𝑊𝑊𝑈𝑈𝑈𝑈𝑈𝑈(𝑦𝑦), was estimated to consider 

that the weight has tended to increase over time. AIRIA reports the number of vehicles by both first 

registration year and vehicle weight [16, 17]. Using these data, the mass balance equation of the 

vehicles in use for each FY can be described by Eq. 7. Then, the average weight of a vehicle first 

registered in year y between 1991 and 2009, 𝑊𝑊𝑊𝑊𝑈𝑈𝑈𝑈𝑈𝑈(𝑦𝑦) , was calculated. A linear approximation 

was applied to estimate the average weight for other years, including those in the future. 

 

𝑊𝑊𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈𝑌𝑌  =  �{𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈𝑌𝑌 (𝑦𝑦) × 𝑊𝑊𝑊𝑊𝑈𝑈𝑈𝑈𝑈𝑈(𝑦𝑦)}
𝑦𝑦

= �{𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈𝑌𝑌 (𝑢𝑢) × 𝑊𝑊𝑊𝑊𝑈𝑈𝑈𝑈𝑈𝑈(𝑢𝑢)}
𝑢𝑢

 (7) 

𝑊𝑊𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈𝑌𝑌  : Total weight of vehicles in use in FY Y 

𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈𝑌𝑌 (𝑢𝑢) : The number of vehicles in use in FY Y categorized as u on a weight basis 

𝑊𝑊𝑊𝑊𝑈𝑈𝑈𝑈𝑈𝑈(𝑦𝑦) : Average weight of a vehicle first registered in year y 

𝑊𝑊𝑊𝑊𝑈𝑈𝑈𝑈𝑈𝑈(𝑢𝑢) : Average weight of a vehicle categorized as u on a weight basis. 

 

Pb content in ELV and ASR 

The 16 components of the new model vehicle that contained Pb as of 1996 were reported by JAMA. 

Lead-acid batteries were not included in these components because they are dealt with under another 

recycling scheme. JAMA and car producers have published the progress of reduction for each 

component based on their action plans. According to the reported information, progress was divided 

into three periods: no reduction, under reduction, and reduction complete (lead free). A linear 

reduction in Pb content was assumed during the reduction period. The assumed Pb contents in each 

component for every sales release year are shown in Table 1. Most components in new model 

vehicles sold after 2006 achieve a “lead-free” status, except for printed circuit board, other engine 

components, and other car components. 

The Pb content per vehicle for every first registration year was estimated using the Pb contents of 

each component in Table 1. The Pb contents of vehicles that will be sold between 2011 and 2020 
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were assumed to decay exponentially. Here, not all vehicles sold as of year y are new models. It is 

not clear whether components in vehicles sold before year y are replaced with newer ones containing 

less Pb. Therefore, two cases were assumed in the analysis. The first case is referred to as the 

“minimum case,” in which it is assumed that the Pb content in a vehicle registered in year y and 

started to be sold before y equals the Pb content of the newest model in year y. The other case is the 

“maximum case,” in which it is assumed that the components are not replaced with newer model 

ones until full model of the vehicles is started selling. It is thought that the actual Pb content per 

vehicle will be in the range of these two cases. 

After usage, depending on the ELV treatment system, components containing Pb enter three 

streams in stages. First, some components of the ELV are dismantled and collected in the 

dismantling process. Then, the ELV with the remaining components is shredded and some fraction of 

this is recovered as resources. Finally, the remaining fractions are disposed of as ASR and treated in 

ASR recycling facilities. In this way, Pb contained in the vehicle components is partitioned into each 

stream. Table 2 shows the partition ratio on a weight basis. 

The amounts of Pb contained in vehicles in use and ELVs for every first registration year were 

estimated by multiplying the number or weight of vehicles by the Pb content per vehicle. 

Additionally, partition ratios were multiplied to estimate the Pb content in collected components, 

recovered resources, and ASR. The total weight of ASR generated in FY Y was estimated using Eq. 8, 

which JAMA obtained by shredding experiment [19]. 

 

𝑊𝑊𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌  =  0.1819 ×  𝑊𝑊𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝑌𝑌  − 11.078 (8) 

𝑊𝑊𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌  : Total weight of ASR generated in FY Y [kg] 

𝑊𝑊𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝑌𝑌  : Total weight of ELVs generated in FY Y [kg] 

 

 

Results and discussion 
Generation of ELVs 

The estimated results with statistical data are shown in Fig. 2. The number of ELVs generated 

annually decreased after FY2003 while it had increased up until then. As of FY2010, 3.8 million 

ELVs were estimated to be generated annually, and 2.9 million were predicted to be generated in 

FY2020. The calculation error in each estimate against the actual statistical data between FY1990 to 

FY2010 seemed large, ranging between -21.3 and 35.7%. However, the trends of ELV generation 

were considered to be well described because the calculation error in the estimated total numbers of 

ELVs against the total number of actual statistical data in these periods was 0.69%. It should note 

that this estimated generation of ELVs includes exported ELVs. 
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Dynamic SFA of Pb in vehicles 

The estimates of the amount of Pb potentially contained in the vehicles are shown in Fig. 3. 

Reductions in the Pb content of vehicles and the decrease in the number of vehicles in use resulted in 

a reduction in the net amount of Pb. In total, a 54–69% reduction in the Pb content was achieved 

between FY1995 and FY2010, while a 72-81% reduction is to be expected between FY2010 and 

FY2020. This result shows that it is hard to remove Pb completely, and 5,000–11,000 t-Pb will 

remain in vehicles in use in FY2020, even though most components will have been replaced with 

lead-free alternatives. 

After disposal as of an ELV, most ELVs were treated in Japan, whereas some wereexported as 

used vehicles. Fig. 4 shows the partitioning of Pb contained in ELVs in FY2001–2011. The reduction 

of Pb contained in ASR seemed slower than in the other streams because components containing Pb, 

such as printed circuit board, tended to be partitioned to ASR. Fig. 5 shows the substance flow of Pb 

as of FY2010. Pb contained in vehicles in use and in ELVs accounted for 26,000–39,000 t-Pb (590–

890 g-Pb per vehicle) and 4,600–5,700 t-Pb (1,200–1,500 g-Pb per vehicle), respectively. Thus, 

compared to a vehicle in use, an ELV seems to contain larger amounts of Pb. This is because ELVs 

are older and contain more Pb, whereas vehicles in use are newer and contain less Pb. 

The results indicated that 19.5–21.1% of Pb contained in ELVs ends up in foreign countries as 

used vehicles. This outflow may cause pollution if they are not properly treated after usage in the 

countries to which they are exported. With respect to the domestic treatment stream, most Pb is 

partitioned into collected components in the dismantling process, with 13.2–14.0% of Pb in ELVs 

estimated to be contained in ASR. As comparison to a previous study, Fuse et al. [20] estimated that 

38,000 t-Pb were contained in ELVs generated as of 2005, but this included lead-acid batteries. If the 

Pb content in a lead-acid battery and in an ELV excluding the battery are assumed to be 7.9 kg-Pb 

[21] and 1.85 kg-Pb, respectively (using reported the values reported by JAMA), the Pb content in 

ELVs excluding lead-acid batteries is estimated to be 7,200 t-Pb. Our estimate, which was in the 

range 7,200–7,700 t-Pb as of FY2005, was quite similar to this value. 

 

Pb content in ASR 

The estimated Pb content in ASR displayed in Fig. 6 (a) shows that even if there is no reduction, the 

Pb concentration may decrease. This is because the weight of the vehicle tends to get heavier 

compared with the past. As a result, the relative Pb content per vehicle decreases.  

Fig. 6 (b) shows the Pb content in ASR compared to the case with no reductions. This indicates 

that it will take some time for the activities of car producers to reduce Pb content in vehicle 

components to have an effect, although both the minimum and maximum cases showed dramatic 

decreases in Pb content from FY1996 to FY2020. Approximately 5 years are needed to begin to 

reduce the Pb content in ASR. As of FY2010, a 14–23% Pb reduction in ASR was estimated to have 
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been achieved and this is expected to increase to 58–76% by FY2020. However, ASR will continue 

to contain 240–420 mg-Pb/kg in the future if the treatment system is not improved. 

Pb content in ASR has been reported in some previous studies, as shown in Table 3. Pb content 

ranged from several hundred to several thousand ppm. However, the average value was generally 

under 3,000 ppm regardless of the region or time. The average value reported in Japan ranged 

between 920 and 2,700 ppm and our estimated values in Fig. 6 (a) fall into this range. ASR consists 

of various materials with different particle diameters. The fine ASR fraction generally contains the 

highest heavy metal concentrations [22] [23]. One of the difficulties of measuring the physical 

properties of ASR is how to obtain representative samples, as the composition of ASR depends on its 

pre-treatment such as dismantling and shredding. 

 

 

Uncertainties 

There are uncertainties in the estimation of ELVs generated, such as the future data reported by 

AIRIA being used as the number of vehicles first registered after FY2011. The number of sales will 

be affected by factors such as the market, lifestyle, and personal preferences. In addition, the 

assumed lifespan distribution was based on conventional vehicles. If the proportion of 

next-generation vehicles such as hybrid vehicles increases in the future, their lifespan may show 

different distributions. 

We also have to clarify the substance flow of Pb after partitioning collected components, and 

recovering resources and ASR for the management of toxic substances. The ELV treatment stream 

was assumed to remain the same in the future. If collected components in the dismantling process 

and recovered resources in the shredding process are increased, the material flow of ELVs and 

substance flow of Pb contained in ELVs will change. For example, if more printed circuit board, 

which still contained Pb as of FY2010, could be collected separately in the dismantling or shredding 

process, the Pb content in ASR would decrease. Furthermore, we may be able to collect valuable 

substances contained in the printed circuit board. 

This study focused only on the toxic substance, Pb, contained in a vehicle. Fuse et al. [40] 

estimated that 32,000 ton of Pb flowed through the international market as imported or exported 

used passenger vehicles in 2005, while the values were 3.4 million ton for ferrous materials, 310,000 

ton for aluminium, and 75,000 ton for copper. They also estimated that 22,000 ton of manganese, 

4,300 ton of nickel, 34,000 ton of chromium, and 1200 ton of molybdenum derived from engines 

exited Japan as used vehicles, used parts, and secondary materials between 1988 and 2005 [20]. 

Therefore, ELVs include both valuable and toxic substances, and with innovations in technology, 

vehicles contain increasing amounts of valuable substances. Thus, ELV management from such a 

viewpoint is also important, and we will study this in the future. 
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Conclusion 
ELVs must be treated properly as they contain toxic substances. The purpose of this study was to 

obtain useful information for ELV management from the viewpoint of toxicity. We focused on lead 

as a representative toxic substance contained in a vehicle and investigated the dynamic substance 

flow of lead contained in ELVs and its content in ASR after estimating the number of ELVs 

generated in the past, present, and future. 

The annual number of ELVs generated was estimated to be 3.8 million as of FY2010 in Japan. 

The number decreased from FY2003 and was expected to be 2.9 million by FY2020. The effect of 

the reduction of Pb content in a vehicle and the lower number of vehicles in use could reduce the net 

amount of Pb contained in ELVs. However, the result also demonstrated that it is difficult to remove 

Pb completely. This is because 5,000–11,000 t-Pb will still remain in vehicles in use in FY2020 even 

though most components in new model vehicles could be replaced with lead-free alternatives. The 

substance flow as of FY2010 showed that Pb contained in ELVs accounted for 4,600–5,700 t-Pb. Of 

this, 13.2–14.0% or 650–749 t-Pb was estimated to be contained in ASR. Pb content in ASR could 

be dramatically decreased from FY1996 to FY2020, but ASR will continue to contain 240–420 

mg-Pb/kg in the future if the treatment system is not improved. 

   This study focused only on Pb contained in a vehicle as a toxic substance. ELVs also contain 

some valuable substances, and in our next study, we will consider an ELV management system 

considering the amounts of both toxic and valuable substances based on elemental analysis and 

substance flow analysis. 
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Figure captions 
 

Fig. 1 Image of estimation process 

Fig. 2 Estimated results and statistical data of ELV generation between FY1990 and FY2020. 

Exported vehicles were included. 

Fig. 3 Estimated amount of Pb in vehicles in Japan in FY1990–2020: (a) Minimum case, (b) 

Maximum case. Pb derived from lead-acid battery was excluded. 

Fig. 4 Estimated partitioning of Pb for ELVs generated in FY2001–2011 (Minimum case). Pb 

derived from lead-acid batteries was excluded 

Fig. 5 Substance flow of Pb for ELVs generated as of FY2010. Pb derived from lead-acid battery 

was excluded. 

Fig. 6 (a) Estimated Pb content in ASR and (b) reduction of Pb content, compared to “No reduction 

case” between FY1990 and FY2020 

 

Table 1 Pb contents in each component for every sales release year of a new model vehicle. Pb 

contents for each component as of 1996 were reported by JAMA. 

Table 2 Partition ratios of Pb for each component 

Table 3 Pb content in ASR reported in previous studies 
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Fig. 2 Estimated results and statistical data of ELV generation between FY1990 and FY2020. 

Exported vehicles were included. 
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(b) 

Fig. 3 Estimated amount of Pb in vehicles in Japan in FY1990–2020: (a) Minimum case, (b) 

Maximum case. Pb derived from lead-acid battery was excluded. 
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Fig. 4 Estimated partitioning of Pb for ELVs generated in FY2001–2011 (Minimum case). Pb 

derived from lead-acid batteries was excluded. 
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Fig. 5 Substance flow of Pb for ELVs generated as of FY2010. Pb derived from lead-acid battery 

was excluded. 
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Fig. 6 (a) Estimated Pb content in ASR and (b) reduction of Pb content, compared to “No reduction 

case” between FY1990 and FY2020 
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Table 1 Pb contents in each component for every sales release year of a new model vehicle. Pb 

contents for each component as of 1996 were reported by JAMA. 

 
 

 

  

Components 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Copper radiator 580 290 0 0 0 0 0 0 0 0 0 0 0 0 0
Battery cable terminal 290 218 145 73 0 0 0 0 0 0 0 0 0 0 0
Wheel balancer 240 240 213 187 160 133 107 80 53 27 0 0 0 0 0
Fuel tank 200 180 160 140 120 100 80 60 40 20 0 0 0 0 0
Heat core 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Harness 90 77 64 51 39 26 13 0 0 0 0 0 0 0 0
Electrodeposition 50 50 50 44 38 31 25 19 13 6 0 0 0 0 0
Printed circuit board 50 50 50 50 50 50 50 50 50 47 45 42 37 45 35
Under coating 20 15 10 5 0 0 0 0 0 0 0 0 0 0 0
Fuel hose 20 16 12 8 4 0 0 0 0 0 0 0 0 0 0
Seatbelt G sensor 20 15 10 5 0 0 0 0 0 0 0 0 0 0 0
Glass-ceramic 15 13 10 8 5 3 0 0 0 0 0 0 0 0 0
Side protection mold 10 8 5 3 0 0 0 0 0 0 0 0 0 0 0
Power steering hose 5 5 4 3 1 0 0 0 0 0 0 0 0 0 0
Other engine component 100 100 100 100 100 100 100 100 100 81 61 42 37 45 35
Other car component 50 50 50 50 50 50 45 40 34 29 24 19 16 20 16
Total 1,850 1,327 883 727 567 493 420 349 290 210 130 103 91 111 86

: No reduction : Under reduction (Unit: g-Pb/vehicle)

Sales release year of a new model vehicle



Table 2 Partition ratios of Pb for each component 

Components 

Partition ratio of Pb (Assumption) 

Dismantling Shredding ASR treatment 

Components collected Recovered resources ASR 

Copper radiator 99.6% (A) 0.4% (B) 0.0% (E) 

Battery cable terminal 69.6% (A) 30.4% (B) 0.0% (E) 

Wheel balancer 49.3% (A) 0.0% (E) 50.7% (C) 

Fuel tank 78.2% (A) 21.8% (B) 0.0% (E) 

Heat core 69.9% (A) 30.1% (B) 0.0% (E) 

Harness 77.6% (A) 11.2% (D) 11.2% (D) 

Electrodeposition 0.0% (E) 50.0% (D) 50.0% (D) 

Printed circuit board 0.0% (E) 50.0% (D) 50.0% (D) 

Under coating 0.0% (E) 50.0% (D) 50.0% (D) 

Fuel hose 21.8% (A) 0.0% (E) 78.2% (C) 

Seatbelt G sensor 0.0% (E) 50.0% (D) 50.0% (D) 

Glass-ceramic 13.8% (A) 0.0% (E) 86.2% (C) 

Side protection mold 0.0% (E) 0.0% (E) 100.0% (C) 

Power steering hose 27.5% (A) 0.0% (E) 72.5% (C) 

Other engine component 96.0% (A) 4.0% (B) 0.0% (E) 

Other car component 0.0% (E) 50.0% (D) 50.0% (D) 

A: Data from previous study [18] 

B: Assuming that all remaining component is recovered after component collection in dismantling 

process 

C: Assuming that all remaining component is disposed of after component collection in dismantling 

process 

D: Assuming a 50:50 ratio 

E: Assuming zero 

  



Table 3 Pb content in ASR reported in previous studies 

Authors NoS 
Pb content [mg/kg] 

Country Sampling 
Year Remarks Ref. 

Min-Max Average 

Granata et al. (2011) 1 1,030–5,100 2,300 Italy - 1 sample with  
4 particle diameters [24]  

Santini et al. (2011) 3 442–600 510 Italy - Car fluff (light ASR) [25]  

Mancini et al. (2010) 3 2,088–2,322 2,205 Italy 2006  [26]  

Morselli et al. (2010) 1 2,000–5,000 4,000 Italy - 1 sample with  
4 particle diameters [23]  

Kameda et al. (2009) 1 - 1,400 Japan -  [27]  
Gonzalez-Fernandez  
et al. (2009) 4 4,600–11,600 7,508 Spain 2005- 

2006 
1 sample with  
6 particle diameters [28]  

JESC (2009) 2 1,400–2,200 1,800 Japan 2009  [29]  

Osada et al. (2008) 1 - 1700 Japan -  [30]  

Matsuto et al. (2007) 4*1 532–1,850 1,338 Japan 2003  [31]  

Recycle One. Inc.(2007) 2 - 1,800 Japan -  [18]  

Zolezzi et al. (2004) 1 - 2,000 Italy -  [32]  

Gendebien et al. (2003) 1 - 2,710 EU -  [33]  
Ministry of the 
Environment, Japan 
 (2003) 

2 640–1,600 1,120 Japan 2003  [34]  

JESC (2002) 4 490–1,200 920 Japan 2002  [35]  

Börjeson et al. (2000) 7*1 4,050–12,200 6,983 Sweden - 
Plant, dismantling 
level, type of vehicle 
are different 

[36]  

Trouvé et al. (1998) 5 - 1,400 France -  [37]  

Saxena et al. (1995) 1 - 200 USA - Moisture content of 
40.2% [38]  

Sakai et al. (1991) 3 1,300–4,800 2,700 Japan -  [39]  

NoS: Number of Samples, Ref.: Reference, *1: Only ASRs were counted 
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