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Abstract

This thesis addresses a Japanese-to-English statistical machine translation (SMT) system

for technical documents. Machine translation (MT) is a promising solution for growing

translation needs. Japanese-to-English MT is one of the most difficult language pairs due to

their large lexical and syntactic differences. This thesis work focuses on patents as the most

demanded technical documents that have different attributes from other general documents:

technical terms and long complex sentences. This thesis tackles three important research

problems in the target task: word segmentation on technical terms, unknown katakana word

transliteration, and long-distance reordering. Novel techniques are proposed to overcome

these problems: domain adaptation of word segmentation using very large-scale patent

data, noise-aware translation fragment extraction for accurate machine transliteration, and

syntax-based post-ordering for efficient and accurate long-distance reordering.

Chapter 2 gives a brief introduction of SMT techniques on which the proposed methods

are based. They are established and widely used in various language pairs but not sufficient

for the Japanese-to-English patent SMT.

Chapter 3 presents a novel domain adaptation method for the Japanese word segmenta-

tion, using very large-scale Japanese monolingual unlabeled corpora. The proposed method

utilizes word boundary clues called Branching Entropy and pseudo-dictionary features

obtained from the Japanese monolingual corpora. The probabilistic characteristic of the

Branching Entropy mitigates the stability issue of the baseline method using Accessor Vari-

ety. The method achieved word segmentation F-measure of 98.36% and out-of-vocabulary

word recall of 92.61% in word segmentation experiments, which were significantly higher

than the performance of the baseline methods.

Chapter 4 presents a novel noise-aware character alignment method which extracts
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meaningful transliteration fragments. Although more than a half of unknown words in

Japanese-to-English patent SMT are katakana words, they can be translated into the original

English words. However, the transliteration is not straightforward because of the ambigu-

ous and inconsistent mapping between katakana and English phonemes. This work focuses

on partial noise in transliteration candidates extracted from the bilingual corpora to learn

the mapping, which has not been addressed by previous studies that model sample-wise

noise only. The proposed method achieved transliteration accuracy of 66% for unknown

katakana words, which is 10% error reduction from the method addressing sample-wise

noise only.

Chapter 5 presents a novel efficient SMT method called post-ordering that divides the

SMT problem explicitly into two steps: monotone lexical translation by the phrase-based

SMT and reordering by the syntax-based SMT. The post-ordering approximates the accu-

rate but computationally expensive syntax-based SMT by using an intermediate language

with English words in the Japanese word order. The post-ordering achieved accurate trans-

lation comparable to the syntax-based SMT with more than six-time faster decoding speed.

Chapter 6 presents a patent SMT system integrating the techniques presented above.

This system has two major advantages other than the advantages of the individual tech-

niques. First, domain adaptation of Japanese pre-processing is needed only on word seg-

mentation, not on more difficult Japanese parsing. Second, katakana unknown words are

translated prior to reordering and expected to be reordered correctly without special treat-

ment of unknown word reordering. The system achieved the BLEU scores of 34.77% and

35.75% for the NTCIR-9 and NTCIR-10 PatentMT test sets, which were consistently higher

than the performance of the baseline systems using the standard techniques.

Chapter 7 concludes the thesis. The proposed SMT framework realizes a practical

Japanese-to-English SMT system adapted to technical documents, where many technical

terms and long sentences cause serious translation errors. The propsoed methods do not

rely on additional human annotations on in-domain corpora, and can be trained with exist-

ing bilingual and monolingual corpora. Finally, some further prospects are discussed.
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Chapter 1

Introduction

There are a large number of languages all over the world, which have evolved differently

according to their historical and cultural backgrounds. Translation has been the most fun-

damental tool for human communication between those using different languages. Transla-

tion is a very difficult problem in general, due to language differences and large ambiguity

of linguistic expressions. For that reason, translation requires expert language skills in both

languages to be translated from (called source language) and into (called target language).

Nowadays there are strong needs of the translation not only in international business and

diplomacy but also in daily life — for travel, social network, education, and so on. These

needs will grow more rapidly than before along with globalization of the society. Machine

translation (MT) is a highly demanded technology for these growing needs that cannot be

satisfied only by the human-intensive translation by expert translators in terms of the cost

and quickness.

MT is a very challenging problem because of the difficulty of translation even by hu-

mans. The history of MT research and development for more than sixty years has suffered

from the difficulty, but it has also driven various studies in computational linguistics and

natural language processing and development of many language resources including tree-

banks, bilingual dictionaries, and corpora. Thanks to these long-time efforts, MT is now

used in practice for some relatively easy translation tasks: translation between similar lan-

guages such as English-French and Japanese-Korean, and translation of simple or typical

sentences in limited situations. For more difficult translation tasks with other language

1



CHAPTER 1. INTRODUCTION

pairs and broader domains, MT is still a difficult problem and needs more improvement for

a practical use.

This thesis work is to tackle problems in Japanese-to-English statistical MT (SMT) for

technical documents.

1.1 Target Task of Machine Translation

The translation tasks can be characterized roughly by following aspects:

• language pairs (source and target languages),

• purposes,

• types of documents to be translated, and

• translation (MT in this work) approaches.

This section discusses the target task, Japanese-to-English SMT for technical documents,

in terms of these aspects.

1.1.1 Language Pair of Machine Translation

The language pair is a fundamental aspect of the problem of translation not only MT. In

human translation, translators should have sufficient language skills both on source and

target languages. Considering large differences among languages, translation of different

language pairs requires different skills and experiences for translators. This is also the

case for MT; MT must be set up and tuned differently for different language pairs, such as

dictionaries, syntactic parsers, and various kinds of system parameters.

The problem on the language pair depends on the extent of language differences. There

are a variety of languages; some of them are very similar, and some of them are very dif-

ferent even if they are used in geographically close areas. Translation for such different

language pairs is obviously difficult for both human translation and MT. There are roughly

two different kinds of language differences: lexical and syntactic gaps. The lexical gap can

be bridged by dictionary information, but lexicons of different languages do not match one-

to-one in general and their complete mappings cannot be obtained easily. The syntactic gap
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can be bridged by transformation of syntactic structures, such as from Subject-Verb-Object

to Subject-Object-Verb, and from modifier-modifee to modifee-modifier. These transfor-

mations are usually complex and not trivial.

For the Japanese people, MT between Japanese and English is one of the most important

language pairs. It is also important for non-Japanese speakers to understand Japanese docu-

ments and speeches. However, the performance of Japanese-English MT is poor except for

some easy situations, because of their large lexical and syntactic gaps. Japanese and English

lexicons are very different; meanings of Japanese words in English cannot be predicted from

their surface forms, different from other Western languages that share many Latin-origin

words with English. In a syntactic view, Japanese is a head-final, Subject-Object-Verb lan-

guage, different from English structure of basically head-initial, Subject-Verb-Object lan-

guage. This thesis discusses how to bridge these gaps in Japanese-to-English MT. There are

also important needs for MT in the opposite direction — English-to-Japanese. English-to-

Japanese MT has evolved largely in recent several years based on the Japanese head-final

syntax. On the other hand, Japanese-to-English MT is still difficult and worse than the

English-to-Japanese MT due to asymmetry between translation directions.

1.1.2 Purpose of Machine Translation

One typical and important purpose of translation is to read foreign language documents such

as books, newspapers, and webpages. There are various purposes of translation, which can

be classified roughly into the followings:

Assimilation Translating foreign language documents into a language demanded by users

for understanding their content.

Dissemination Translating documents into different languages for users to provide trans-

lated documents.

Communication Translating conversations in different languages for users to understand

each other.

These have different requirements according to their use cases. In the communication

translation, these are two important attributes, bi-directionality and translation speed, for
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real-time cross-lingual communication. The assimilation and dissemination MT do not

always require bi-directionality, because they are motivated for providing translations for

written and spoken documents. The speed issue also does not matter so strictly except for

some on-line translation tasks such as simultaneous interpretation. One important problem

in the assimilation and dissemination MT is the amount of documents to be translated, which

does not matter in the communication MT. Translation of stable documents can easily be

parallelized in MT, so MT is suitable for translating a large amount of stable documents.

The target task in this thesis work is for the assimilation and dissemination to pro-

vide English translations of Japanese technical documents. Remarkable growth of publicly

available language information in these years increases the importance of this task for ob-

taining and distributing information in different languages. There are a large number of

Japanese documents in Japan, in which a very limited portions have been translated so far.

1.1.3 Document Type of Machine Translation

There are various types of documents to be translated, written and spoken, descriptive and

rhetorical, short and long, and so on. These documents have different attributes with re-

spect to translation difficulties. This thesis work focuses on two attributes: syntactic and

semantic complexities. The syntactic complexity is roughly proportional to the sentence

length, and the semantic complexity is affected by the use of rhetorical and non-literal lin-

guistic expressions. Figure 1.1 shows a brief mapping for several types of documents in

terms of the semantic complexity (X-axis) and the syntactic complexity (Y-axis). News-

paper articles often have long and complex sentences but usually use literal expressions

because newspapers are to present specific facts. Technical documents such as scientific

papers, manuals, and patents contain long sentences but focus on presenting facts in rigid

expressions. Daily conversations are more casual and shorter than written documents but

often include well-known non-literal expressions such as idioms. On the other hand, poetry

and novels include many rhetorical expressions that cannot be literally translated into other

languages. The semantic complexity largely affects the difficulty of translation, even for

human translators. Casual languages used in informal conversations and social networks

are also difficult to translate because they have little literal correspondences across differ-
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Daily conversation
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Figure 1.1: Relation between semantic and syntactic complexities for different document

types

ent languages. Such documents need deep semantic understanding and insightful language

generation that are too difficult even by recent natural language technologies.

MT is expected to work well in literal translation without rhetorical techniques, because

MT generates translations by composing partial translations for various language expres-

sions based on the principle of compositionality. From this viewpoint, technical documents

can be translated literally in general and are suitable for MT. The technical documents have

large difficulty in translating their syntactically complex sentences while they can be trans-

lated literally. There is an important technical challenge to translate long and complex

sentences accurately and efficiently, because there are severe problems both in modeling

and search in MT.

This thesis work focuses on patents among various kinds of technical documents, which

are one of the most important MT tasks for the following reasons. First, patents contain

novel technical information about inventions that can be used widely in the world. Second,

they are open to public but basically domestic documents written in official languages of

the countries to which they are filed, so they have to be translated into other languages.

Finally, they are typical well-organized, descriptive written documents suitable for MT.
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1.1.4 Machine Translation Approach

In the long history of the research and development of MT, several approaches has evolved

by various technologies and language resources. An early approach to MT was the rule-

based (or knowledge-based) MT (RBMT) by using bilingual dictionaries and hand-crafted

translation pattern rules. These bilingual resources are carefully developed by experts with

sufficient knowledge of the source and target languages. The performance of the RBMT

depends on the quality of the bilingual resources, and is practically good in some language

pairs and domains as used in some commercial products. The RBMT is reasonable and

straightforward but needs efforts by expert developers with high proficiency to cover nu-

merous language expressions without rule conflicts. It becomes further problematic in the

development of the RBMT for different languages and domains, which often requires very

different pattern rules that should be hand-crafted from scratch.

In later years, the corpus-based approach was proposed and has been investigated up

to the present time, together with continuous effort for developing multilingual corpora of

various languages and domains. One of the approaches is the example-based MT (EBMT),

which composes translations using existing translation examples in the corpus. One im-

portant advantage of the EBMT is that it works effectively for source language sentences

that are very similar to examples in the corpus. Such sentences can be translated easily by

small edits on matched examples, even if the sentences are very long and complex. The

actual performance of the EBMT is highly dependent on the corpus size but the large cor-

pus also raises problems of large-scale example retrieval and conflict resolution. Another

corpus-based approach is the statistical MT (SMT) that represents the translation process by

statistical transductions of sentence components (words and phrases) using statistical mod-

els learned from the bilingual corpus. It gives a reasonable solution for the conflict problem

in the RBMT and EBMT by probabilistic evidences. It has rapidly evolved with the growth

of statistical natural language processing and machine learning techniques, from its early

establishment on the late 1980s. The most important advantage of the corpus-based MT

is its rapid deployment for given corpora, basically independent from its source and target

languages and domains. This is a practically beneficial advantage against the hand-crafted

RBMT.
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Among many kinds of technical documents, there are a large number of patents filed so

far and many of them have been translated and also filed in other countries. These translated

patents can be used as bilingual corpora for training SMT models. The target task is a good

practical use case of the SMT that can be trained using large-scale documents for translating

not-yet-translated and future documents.

1.2 Problems

The focus of this thesis work is Japanese-to-English SMT for patents. Patents are often

translated into different languages to be filed to several countries and they are associated

each other (a patent family), so that we can obtain large-scale multilingual patent corpora for

the use in the patent SMT (Utiyama and Isahara, 2007). There are patent translation shared

tasks for research on the patent MT between Japanese and English (Fujii et al., 2008; Fujii

et al., 2010; Goto et al., 2011; Goto et al., 2013), and many MT methods had been studied

and applied to them.

One important problem is a lexical (or morphological) problem, appearance of many

technical terms in patents of various technical fields. These technical terms are often un-

known words in two different components in the patent SMT: Japanese word segmentation

and the SMT itself. Since Japanese orthography does not have explicit word boundaries,

word segmentation is a fundamental pre-processing in the Japanese-to-English SMT. Not

a few technical terms cannot be segmented correctly by existing word segmenters trained

with general documents such as newspapers. The incorrectly segmented words will be

translated incorrectly by the SMT. Even if technical terms are segmented correctly, they

may be unknown for the SMT and cannot be translated, due to the lack of bilingual corre-

spondence in the training corpora. The technical terms usually hold important information

in patents, and should be dealt carefully in the patent MT. Typically technical terms writ-

ten in katakana phonograms are often unknown in the Japanese-to-English SMT, because

many different English names and concepts are imported into Japanese by transliterating

them into katakana. Since many katakana words are not translated as unknown words in a

Japanese-to-English patent SMT, translation of the katakana unknown words is important.

These katakana words can be back-transliterated into English by using some phonetical
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mappings even if their actual word-based translations cannot be obtained from existing

bilingual corpora. In summary, the following two research problems arise:

(1) word segmentation of Japanese unknown technical terms, and

(2) back-transliteration of unknown katakana words.

Another major problem is a syntactic problem. The large difference in the word order

between Japanese and English becomes very severe in long sentences in patents. Since

the SMT tries to find translation hypotheses as a search problem over numerous num-

ber of different word translations and word order, its computational complexity increases

very rapidly with the lengths of the input sentence. The search in the word order, usu-

ally called reordering, has the complexity of O (n!) for the input length n in theory by a

naive permutation-based search. It can be reduced by limiting reordering distance, but it is

not suitable for the patent SMT between Japanese and English that requires long distance

reordering. Thus, the following reseach problem arises:

(3) long-distance reordering for long patent sentences with acceptable computation time.

The three research problems above are important especially in the Japanese-to-English

patent SMT. The goal of this thesis work is to improve Japanese-to-English patent SMT

by solving these problems. Here is an underlying issue in the SMT for documents in spe-

cific domains. Most of sophisticated language resources such as bilingual dictionaries and

treebanks are usually developed on general-domain data, typically newspaper articles. Al-

though the problems above may be mitigated by using term dictionaries and other patent-

oriented language resources, the development of such resources requires careful human-

intensive work and is very costly. This thesis work takes this issue into account.

1.3 Approach

The approach of this thesis work to these problems is based on semi-supervised or unsu-

pervised learning techniques without any specially developed dictionaries, treebanks, and

other annotated language resources for the patent documents, in order to be applied with

minimal human-intensive efforts.
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For the word segmentation problem, this thesis work uses very large-scale Japanese

patent corpora to adapt Japanese word segmenter to the patent domain by a semi-supervised

learning framework. Although some technical terms do not appear in general-domain word-

segmented corpora that are commonly used for training word segmenters, they are expected

to appear many times in the patent documents. Very large-scale unlabeled corpora with-

out correct word segmentation information is used for the domain adaptation, based on

an intuition that reliable word segmentation clues can be derived even from such unla-

beled corpora. This approach has been investigated previously, but this work extends the

approach with more stable word segmentation clues for the use with the very large-scale

patent corpora.

For the transliteration problem, this thesis work uses a statistical transliteration tech-

nique for the katakana unknown words. The transliteration is regarded as a character-based

SMT, whose models are trained using a character-based parallel corpus. This thesis work

obtains a character-based training corpus from the sentence-based patent bilingual corpora

to learn transliterations used in the patent domain by an unsupervised method without hand-

crafted transliteration dictionaries. A novel noise-aware alignment method for extracting

noise-free transliteration fragments is proposed to tackle a partial noise problem in this

character-based training corpus.

For the long distance reordering problem, this thesis work proposes a novel SMT method

called post-ordering. In this approach, Japanese sentences are translated into Japanese-

ordered English by monotone lexical SMT and then the Japanese-ordered English sentences

are reordered into correct-ordered English by syntax-based SMT. This two-stage transla-

tion largely reduces the computational complexity of the original joint problem of lexical

translation and reordering. The method enables efficient long distance reordering without

performance degradation in translation accuracy. Since the intermediate Japanese-ordered

English are generated easily from English sentences based on the Japanese head-final syn-

tax, translation models for the two translation tasks are trained from Japanese-English bilin-

gual corpora.

Finally, a Japanese-to-English patent SMT system is built by integrating these tech-

niques, whose architecture is shown in Figure 1.2.
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1.4 Organization of This Thesis

The organization of this thesis is as follows. Chapter 2 gives a brief review of the SMT: fun-

damental formulation, models, decoding, and evaluation. It covers basic techniques used in

this thesis work. Chapter 3 presents the patent-adapted Japanese word segmentation. The

word segmentation is an important preprocessing for most of Japanese language process-

ing, not only for the Japanese-to-English SMT. This work focuses on its domain adaptation

to the patent domain. Chapter 4 presents the statistical transliteration for translating un-

known technical terms written in katakana. Its model is trained using a sentence-level par-

allel corpus, not using a word-level dictionary of transliterated words. Chapter 5 presents

an efficient syntax-based translation with the post-ordering framework. It divides lexical

translation and reordering explicitly to reduce the large computational complexity of accu-

rate syntax-based reordering. Chapter 6 presents an overall Japanese-to-English patent MT

system using the proposed techniques with the architecture shown in Figure 1.2. Chapter 7

concludes this thesis and gives some future directions of the Japanese-to-English SMT.
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Ja-ordered En
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Figure 1.2: Architecture of the system presented in this thesis



CHAPTER 1. INTRODUCTION



Chapter 2

Statistical Machine Translation

2.1 Fundamentals

2.1.1 SMT Based on Noisy Channel Model

The fundamental idea of the SMT was established by Brown et al. (1993), based on a

noisy channel model. Suppose a French sentence f is translated into a English e. French

and English are called source and target languages of this translation process. Here this

translation process can be modeled by a noisy channel model in which a English sentence

e is encoded into a French sentence f . The translation problem can be seen as a decoding

problem from f to e, in which it aims to find the best English sentence ê that maximizes

the posterior probability of the English sentence given a French sentence f :

ê = arg max
e∈E(f)

p(e|f) , (2.1)

where E (f) is a set of all possible English translations from f . The posterior probability

p(e|f) can be converted as follows by the Bayes’ theorem:

ê = arg max
e∈E(f)

p(f |e) p(e)
p(f)

= arg max
e∈E(f)

p(f |e) p(e) , (2.2)

because the probability of the given French sentence f is a constant. The original posterior

probability p(e|f) is decomposed into two different probabilities:

• Language model for computing probability p(e): A model of English sentences that

gives high probability to fluent ones, and

13
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• Translation model for computing probability p(f |e): A model of French sentences

according to given English sentences that gives high probability to French sentences

corresponding well with the given English sentences.

2.1.2 SMT Based on Log-Linear Models

Och and Ney (2002) proposed the use of a discriminative framework instead of the Bayes

decision rule in Equation (2.2), as represented by the following decision rule:

ê = arg max
e∈E(f)

exp (
∑

m λmhm (f , e))∑
e′∈E(f) exp (

∑
m λmhm (f , e′))

= arg max
e∈E(f)

∑
m

λmhm (f , e) , (2.3)

where hm (f , e) ism-th feature function defined on the given French sentencef and a trans-

lation hypothesis e. This discriminative framework enables more flexible use of various

features such as the length of e, a reverse-direction translation model p(e|f), the number

of French and English words included in a bilingual dictionary, in addition to the language

and translation models used in the noisy channel framework. The Bayes decision rule in

Equation (2.2) is a special case in this framework with two equal-weight feature functions

of translation and language model probabilities.

Recent advances in the field of SMT were derived from this discriminative approach.

One important progress in this approach is the use of automatic evaluation metrics (de-

scribed later in section 2.4) for optimizing parameters λm. Och (2003) proposed a minimum

error rate training (MERT) method to optimize the parameters according to an evaluation

metric. This enables direct optimization of the SMT towards better translation quality in a

certain evaluation metric, while a maximum likelihood optimization (Och and Ney, 2002)

does not guarantee the improvement in translation quality.

2.2 Models

2.2.1 Word-based Translation Model

An early attempt for the translation model is a word-based model (Brown et al., 1993).

The probability of generating f = f1, ..., fJ given e = e1, ..., eI is defined as the sum of
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probabilities of generating f with different alignments a:

p(f |e) =
∑
a

p(f ,a|e) . (2.4)

Here, the alignment is a set of correspondences between f and e, represented by pairs of

word indices like {(1, 1), (2, 3), (3, 2)}. Some source and target language words may not

have their counterparts, so NULL alignments are introduced to represent them. Since the

correspondences are theoretically many-to-many, the calculation of the probability in Equa-

tion (2.4) has a very large computational complexity. Brown et al. (1993) approximated it

by considering only one-to-many correspondences from the target language to the source

language, in which a source language word is aligned with only one target language word.

This approximation largely reduces the computational complexity and helps the model in-

ference to be tractable.

Brown et al. (1993) proposed five different models: Model 1 to 5, which are now called

IBM Models. Each of them models p(f ,a|e) in a different complexity focusing on re-

ordering, change of word order in translation. Vogel et al. (1996) proposed a different

model based on Hidden Markov Models (HMMs) that constrains alignments from adjacent

source language words. Parameters of these models can be trained using a parallel corpus,

a set of corresponding source and target language sentences. Details of these models and

their inference are beyond the scope of this thesis. Refer to chapter 4.1 to 4.4 in the book

(Koehn, 2010) for their further details.

The original purpose of these models is the inference of the translation model p(f |e)
in Equation (2.1). However, they can also be used to find most plausible alignments â

between source and target language sentences as follows:

â = arg max
a

p(f ,a|e) . (2.5)

This is a Viterbi approximation of Equation (2.4). This process is called word alignment

and its results are used as basic bilingual correspondences for sophisticated SMT methods

described next.
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2.2.2 Phrase-based Translation Model

The word-based models reduce many-to-many correspondences into one-to-many ones, so

some phrasal correspondences cannot be represented. Och et al. (1999) proposed align-

ment templates induced from the results of the word alignment, and Koehn et al. (2003)

extended it to phrase-based MT (PBMT). The key idea of the PBMT is the use of bilingual

phrase pairs defined by many-to-many word alignments. Since the word alignment only

gives one-to-many correspondences, Koehn et al. (2003) induced phrase pairs as many-to-

many correspondences that do not violate both bidirectional word alignment for p(f |e) and

p(e|f), with some heuristics.

The PBMT can be formulated by a noisy channel model similarly to Equation (2.2):

ê = arg max
e∈E(f)

p(f |e) p(e)

= arg max
e∈E(f)

∑
ϕ,α

p(f ,ϕ,α|e) p(e) , (2.6)

where ϕ is a sequence of phrase pairs corresponding to the target language sentence e, and

α is a phrasal alignment. This is an extended reformulation of the word-based translation

in Equation (2.4), considering different segmentations into phrases. The phrase pairs in

ϕ is ordered according to their target language order, and the phrasal alignment α is a

set of one-to-one correspondences of the phrase pairs. Suppose f and α is independent

from e because the phrase pairs in ϕ include the information of e, Equation (2.6) can be

approximated as follows:

ê ≈ arg max
e∈E(f)

∑
ϕ,α

p(f ,α|ϕ) p(ϕ|e) p(e) . (2.7)

The translation probability is decomposed into three parts:

• Language model p(e): A model of target language sentences,

• Phrase translation model p(ϕ|e): A model of phrase pair sequences according to

given target language sentences, which segments a target language sentence into a

sequence of target language phrases and gives their translation into corresponding

source language phrases, and
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• Phrase reordering model p(f ,α|ϕ): A model of source language sentences consid-

ering reordering of phrases.

This PBMT model can also be extended with the log-linear framework described in section

2.1.2, which is the current standard SMT method implemented in the widely-used open

source SMT toolkit Moses1 (Koehn et al., 2007).

2.2.3 Syntax-based Translation Model

The PBMT enables to capture phrasal correspondence between the source and target lan-

guages, but it segments a sentence into a sequence of continuous non-overlapping phrases.

This formulation cannot represent a gappy correspondence between “not” in English and

“ne ... pas” in French. Furthermore, the phrase reordering model of the PBMT is based on

linear ordering and cannot capture hierarchical structures of languages.

Yamada and Knight (2001) proposed a translation model with the target language syn-

tax based on several simple rewriting operations on syntax trees in a noisy channel model.

Such an syntax-based approach has been extended to tree-based SMT using syntax of either

or both languages (Eisner, 2003; Galley et al., 2004; Liu et al., 2006), based on synchronous

tree substitution grammars (STSGs). These methods utilize syntactic structures and labels

obtained by syntactic parsers for the source and/or target languages. In contrast, Wu (1997)

introduced a formal syntax for bilingual synchronous parsing called inversion transduction

grammars (ITGs). This method induces synchronous binary trees with reordering informa-

tion from a parallel sentence, without using syntactic labels. Chiang (2007) extended this

formal syntax-based approach to hierarchical phrase-based MT (HPBMT), based on syn-

chronous context-free grammars (SCFGs) only with two non-terminal symbols “S” (sen-

tence) and “X” (other subtrees). Zollmann and Venugopal (2006) proposed a method that

augments the HPBMT approach by using syntactic labels, called syntax-augmented MT

(SAMT).

1http://www.statmt.org/moses/
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The syntax-based MT is formulated as follows:

ê = arg max
e∈E(f)

p(f |e) p(e)

= arg max
e∈E(f)

∑
d∈D(G,f ,e)

p(d|e) p(e) , (2.8)

where D(G,f , e) is a set of derivations of the synchronous grammar G whose source and

target language strings are f and e, respectively. If the source language syntax on f is avail-

able in forms of a parse tree or forest, the derivations are constrained by the tree or forest.

Most of the current state-of-the-art SMT systems employ the syntax-based approach in the

log-linear framework. One of its important advantage against the PBMT is its structural

attribute. The syntax-based approach can model gappy phrase pairs and reordering of large

syntactic structure naturally using hierarchical tree structures. They are known to work

well for some language pairs requiring long distance reordering, such as German-English,

Chinese-English, and Japanese-English.

2.2.4 Language Model

The language model used in the SMT, p(e), is a model of generating target language sen-

tences. The most common way to realize the language model is a word n-gram language

model. The word n-gram language model assumes that a word is generated according to

(n−1) th-order Markov process, in other words, the word generation is conditioned by the

preceding n− 1 words as follows:

p(e) =
∏
i

p(ei|ei−1, ..., ei−n+1) (2.9)

This is very simple but works effectively, so it has been used also in automatic speech

recognition for a long time. Since its naive inference by maximum likelihood estimation

faces a serious zero-frequency problem, there are various smoothing methods to give a

small probability for unobserved words in a given context. Modified Kneser-Ney smooth-

ing (Chen and Goodman, 1998) is a state-of-the-art method that is commonly used in the

field of the SMT. Refer to the literature (e.g., chapter 7 in the book (Koehn, 2010)) for

further details.
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2.3 Decoding

Decoding is an actual translation process from input source language sentences to target

language sentences, using the models described in section 2.2. This section reviews com-

mon decoding approaches for the PBMT and SBMT.

2.3.1 Decoding in Phrase-Based MT

One major decoding approach for the PBMT is a left-to-right decoding with beam search

over multiple stacks (Koehn et al., 2003). It generates translation hypotheses in the left-to-

right order, by choosing and translating source language phrases iteratively within the score

range and the stack size constraints of its search space. It usesm stacks for an input sentence

with m words, corresponding to the number of words that have been used in the current

hypotheses (e.g., the fourth stack holds translation hypotheses generated from four source

language words). This stack-based decoding is motivated by the score-based beam search,

because the translation hypotheses from the same number of source language words are

expected to be in the similar score ranges. Low-scored hypotheses under a some threshold

or low-rank hypotheses exceeding its stack size are pruned.

The computational time complexity of this stack-based decoding is O (m× |f |2) with

the stack size m. This is still far from efficient for long input sentences. Koehn et al. (2005)

introduced a reordering limit to constrain the distance between two source language phrases

translated into adjacent target language phrases. This reordering limit reduces the time

complexity into O (m× |f |), because choices of next phrases at each translation step are

limited to a fixed range in the source language sentence and therefore a linear dependency

on the sentence length is removed. Although there have been many further improvements

in the PBMT decoding, they are beyond the scope of this thesis. Refer to the literature

(Koehn, 2010).

2.3.2 Decoding in Syntax-Based MT

Decoding in the SBMT can be regarded as a bilingual parsing problem using the syn-

chronous grammars as discussed in section 2.2.3. There are two different formulations
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of the syntax-based MT: the SCFG-based formulation of the HPBMT and SAMT, and the

STSG-based formulation of the tree-based MT.

The decoding algorithm is basically similar to well-known chart parsing algotihms, but

must consider the target language counterparts as the translation results. The computational

time complexity of this parsing-based decoding with beam search is O (|f |3), which is still

large for long sentences. The typical approach to mitigate this complexity problem is to

limit the chart span in the bilingual parsing, which can reduce the complexity but also

results in limited range of reordering.

2.4 Evaluation

Evaluation of MT plays a very important role in the development of MT systems. Although

subjective (human) evaluation is desirable for meaningful evaluation, it is not easy to eval-

uate MT results accurately, consistently, and rapidly. Automatic evaluation provides rapid

and consistent evaluation, which is suitable for sustainable MT development with frequent

system evaluations.

The automatic evaluation basically compares MT results with reference translations.

Since there is not a unique correct translation for a sentence, the use of several reference

translations is desirable for reliable evaluation without dependence on specific expressions.

Many automatic evaluation metrics have been proposed with different evaluation strategies.

Here several common metrics including those used later in this thesis are reviewed.

2.4.1 Word Error Rate (WER)

Word error rate (WER) is a typical evaluation metric between two sequences of symbols,

based on a Levenshtein distance (one of the most common edit distance variants). The WER

of a translation hypothesis e for a corresponding reference translation r is the Levenshtein

distance from r to e averaged by the length of r:

WER =
Lev (r, e)

|r|
=

Sub (r, e) + Ins (r, e) + Del (r, e)

|r|
, (2.10)

where Lev means the Levenshtein distance, Sub, Ins, Del represent the numbers of editing

steps of substitutions, insertions, and deletions. The Levenshtein distance is the minimum
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number of these steps that can be found efficiently by a dynamic programming method.

The WER is a common evaluation metric especially in automatic speech recognition,

but its requirement of matching words in order is too rigid for machine translation because

of the translation ambiguity. Och et al. (2001) introduced position-independent word error

rate (PER) ignoring this word order problem. The PER is based on simple word matches

between two sets of words from the translation hypothesis and the reference translation:

PER =
SubPI (r, e) + InsPI (r, e) + DelPI (r, e)

|r|
, (2.11)

where the subscripts PI mean position independent edits. The PER only gives accuracy

in lexical choice and is not suitable for evaluating translations between languages with

different word order.

2.4.2 Translation Edit Rate (TER)

Both the WER and PER is not suitable for evaluation of translations considering word order

variants. Snover et al. (2006) proposed the use of shift operation for their metric called

translation edit rate (TER). The shift operation moves a word sequence in one operation so

that the TER gives a small cost on the move of phrasal structures. The TER is an extension

of the WER considering the shift edits as follows:

TER =
Shift (r, e) + Sub (r, e) + Ins (r, e) + Del (r, e)

|r|
, (2.12)

where Shift means the number of shift edits.

2.4.3 BLEU

BLEU (Papineni et al., 2002) is a de facto standard metric in the field of SMT that focuses

on the precision of local contexts by n-gram precisions. BLEU uses a geometric mean of

n-gram precisions of the translation hypothesis at the document level as follows:

BLEU−n = min

(
1, exp

(
1− |r|
|e|

))
× n

√√√√ n∏
m=1

wm pm, (2.13)

where pm is the precision of the word m-grams in the translation hypothesis, and wm is a

weight for the m-gram precision whose sum over all m is one. The first term of the right
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side is a penalty term called brevity penalty (BP), which penalizes too short translations

with only a limited number of correct n-grams. Most of SMT studies have used BLEU-4

with n = 4 and uniform weights wm = 1
n

as a standard evaluation metric, referred simply

as BLEU. BLEU captures phrasal accuracy of translations in contrast to the word-based

evaluation by the WER, PER, and TER. It is known to correlate well with subjective eval-

uation for not a few language pairs. However, it has very poor correlation with subjective

evaluation in patent translation between Japanese and English (Goto et al., 2011), because

it overlooks errors in word order.

2.4.4 RIBES

RIBES (Isozaki et al., 2010a; Hirao et al., 2014) is another translation evaluation metric

that focuses on the word order problem. RIBES evaluates the correctness of the word order

by a rank correlation between the two symbol sequences, the translation hypothesis and the

corresponding reference translation as follows:

RIBES =
τ + 1

2
× pα1 × BPβ, (2.14)

where α and β are hyperparameters for p1 (1-gram precision) and BP (brevity penalty)

that should be tuned using a small number of tuning data (translation results with reference

translations and subjective evaluation results), and τ is a rank correlation coefficient called

Kendall’s tau. To obtain the rank correlation τ between the translation hypothesis and the

reference translation, all their words are aligned one-to-one by a simple heuristic2 to form

two symbol sequences with the same length. Then τ is calculated using the number of word

pairs in the translation hypothesis appearing in a concordant and discordant order with the

reference translation as follows:

τ =
#concordant pairs− #discordant pairs

1
2
n(n− 1)

, (2.15)

where n is the length of the symbol sequence, that is, the denominator is equal to the number

of all possible word pairs chosen from the symbol sequence. τ ranges [−1, 1] and is used

with a normalization into [0, 1] for RIBES as Equation (2.14).

2Refer to the original papers (Isozaki et al., 2010a; Hirao et al., 2014) for details.
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RIBES shows very high correlation with subjective evaluation in patent translation be-

tween Japanese and English (Goto et al., 2011), with α = 0.25 and β = 0.1.
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Chapter 3

Word Segmentation of Domain-Specific

Words

Word segmentation is a fundamental problem on natural language applications for lan-

guages without explicit word boundaries in their orthography, such as Chinese and Japanese.

A word segmenter is usually trained using labeled (word-segmented) corpora in general do-

mains such as newspapers. It does not work well in a different domain such as patents in

general, due to many domain-dependent terms that are not covered by the general domain

corpora. This causes error propagation into following processes such as the SMT.

Although labeled corpora in the target domain are preferable for accurate domain-

dependent word segmentation, they are usually not available in most domains because of

the corpus development difficulty. One possible approach to the lack of labeled corpora is

an unsupervised method that does not require labeled corpora but uses unlabeled (not word-

segmented) corpora. The word segmentation on the unlabeled corpora can be predicted by

statistical word boundary clues (Kempe, 1999; Ando and Lee, 2003; Feng et al., 2004) or

a model-based inference (Goldwater et al., 2006; Mochihashi et al., 2009). These methods

gives good segmentation results in spite of the lack of labeled corpora, but their accuracies

are not so high as supervised word segmenters.

Another approach is domain adaptation of the general-domain word segmenter using

large-scale unlabeled corpora in the target domain, because the unlabeled corpora gives

us distributional information of words as proved by the unsupervised methods. This can

25
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be seen as a semi-supervised learning problem for word segmentation with a small-scale

labeled corpus in the general domain and large-scale unlabeled corpora in the target domain.

Sun and Xu (2011) proposed a semi-supervised Chinese word segmentation method using

labeled and unlabeled corpora in the same domain (newspapers). Guo et al. (2012) adapted

it to domain adaptation of Chinese word segmentation, from the newspaper domain to the

patent domain. Since a very large number of patents filed so far are publicly available, this

semi-supervised approach is promising for the improvement of word segmentation in the

patent domain.

Previous studies (Sun and Xu, 2011; Guo et al., 2012) used accessor variety (AV) (Feng

et al., 2004) as a feature of their discriminative word segmenter. The AV is the number

of distinct predecessor and successor characters of a certain string in a given (unlabeled)

corpus, which implies word boundaries that have large uncertainty in accessor characters. It

is expected to work better with larger corpora by the broader coverage of words. However,

it is proportional to the corpus size due to its count-based attribute and not consistent with an

intuition of the uncertainty. The previous studies use frequency-based uncertainty classes

to normalize the AV values, but it is not straightforward to determine an appropriate setting

of classes and threshold values.

To address this problem, this work proposes the use of branching entropy (BE) (Jin and

Tanaka-Ishii, 2006), the entropy of accessor characters of a certain string. Such a entropy-

based metric has been used for unsupervised word segmentation with heuristic thresholds

(Kempe, 1999). This work uses the BE as a feature of a discriminative word segmenter

instead of the AV. One important advantage of the BE against the AV is its probabilistic

attribute; the BE represents the uncertainty in a probabilistic sense regardless of the corpus

size. This work further enhances the features by pseudo-dictionary (PD) features derived

from the large-scale unlabeled corpus, based on continuous kanji and katakana sequences

appearing in the corpus. The proposed method worked effectively in word segmentation

experiments for Japanese patent sentences, increasing word segmentation F-measures from

96.87% by a baseline method to 98.36% (47.6% error reduction) without any labeled cor-

pora in the patent domain.



27

3.1 Conventional Methods

This section firstly describes a character-based word segmentation method based on condi-

tional random fields (CRFs) as the baseline, and then reviews the conventional methods of

the domain adaptation.

3.1.1 Baseline Word Segmentation based on Conditional Random Fields

There is a different approach called word-based, which identifies words directly from char-

acter sequences by deciding sequentially whether a local character sequence is a word or

not. This word-based approach is commonly used in popular Japanese morphological an-

alyzers (JUMAN, ChaSen, MeCab) with their dictionaries to identify in-dictionary words.

It has an advantage on the consistency in the segmentation of known words included in the

dictionary or training data, but usually works less effective for unknown words than the

character-based approach (Sun, 2010; Wang et al., 2014).

This work uses a character-based word segmenter based on CRFs (Peng et al., 2004;

Tseng et al., 2005). It solves a character-based sequential labeling problem. In this work

four classes B, M, E (beginning/middle/end of a word), and S (single-character word)1 are

used, as Sun and Xu (2011).

The baseline features follow the work of Japanese word segmentation by Neubig et al.

(2011): label bigrams, character n-grams (n=1, 2), and character type n-grams (n=1, 2, 3),

within [i-2, i+2] for classifying the word at the position i. The character types are kanji,

katakana, hiragana, digits, roman characters, and others.

3.1.2 Word Segmentation Adaptation using Accessor Variety

Sun and Xu (2011) and Guo et al. (2012) used Accessor Variety (AV) (Feng et al., 2004)

derived from unlabeled corpora as word segmentation features. AV is a word extraction cri-

terion from un-segmented corpora, focusing on the number of distinct characters appearing

1Guo et al. (2012) used six classes including B2, B3 (second and third character in a word) proposed by

Zhao et al. (2006) for Chinese word segmentation. This work uses the four classes, because the six classes

did not improve the word segmentation accuracy in my pilot test.
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Figure 3.1: Example of accessor variety (AV) and branching entropy (BE) for a character

“前”.

ボ タ ン 用 の キ ー ス テ ム 開 口 部

character to be classified
xi xi+1 xi+2 xi+3xi�3 xi�2 xi�1

AVL

AVL

AVR

AVR

(ステム)

(テム開)
(のキー)

(キース)

Figure 3.2: Accessor variety features on the character xi.

around a string. The AV of a string xn is defined as

AV (xn) = min {AVL(xn), AVR(xn)} , (3.1)

where AVL(xn) is the left AV (the number of distinct predecessor characters) and AVR(xn)

is the right AV (the number of distinct successor characters). The AV-based word extraction

is based on an intuitive assumption; a word appears in many different context so that there

is a large variation of its accessor characters. Intuitively this assumption seems true.

Figure 3.1 shows an example of the AV calculation for a character “前”. If the character

is a word by itself, it is expected to appear in many different context so that the AV values

become large by different accessor characters. Note that the AV values are frequency-

based and proportional to the corpus size in general. Previous studies use several frequency

classes with corresponding threshold values tuned according to the corpus, but it is not

straightforward to determine appropriate classes and threshold values.

Sun and Xu (2011) used the following features based on the left and right AVs of char-

acter n-grams for classifying xi, which imply word boundaries around xi, as illustrated in



29

Figure 3.2:

• Left AV of n-gram starting from xi: AVL(xi, ..., xi+n−1),

• Right AV of n-gram ending with xi−1: AVR(xi−n, ..., xi−1),

• Left AV of n-gram starting from xi+1: AVL(xi+1, ..., xi+n), and

• Right AV of n-gram ending with xi: AVR(xi−n+1, ..., xi),

in addition to their baseline features such as character n-grams.

The AV values are calculated on the labeled and unlabeled corpora and classified into

several frequency classes for AV features. Sun and Xu (2011) used absolute frequency

thresholds, “> 50” (if the AV exceeds 50), “30 - 50” (if the AV is between 30 and 50), and

the actual values (if the AV is not greater than 30), and used them as binary bucket features.

Guo et al. (2012) used different relative frequency classes: H, M, L for top 5%, between top

5% and 20%, below top 20%. This kind of frequency-based grouping quantizes the AV

values. The thresholds and the number of the classes are tuned using some held-out data

(Sun and Xu, 2011) or chosen empirically (Guo et al., 2012). Such a tuning is not easy in

general, especially with a large number of the classes. The relative frequency classes of

Guo et al. (2012) are used in the following experiments.

These AV features give word boundary clues to the CRF-based word segmenter. In its

training, the AV features are associated with classes in the labeled data. Intuitively, a high

left AV value suggests word boundary at the left of the target character and is associated

with B and S, and a low left AV value is associated with M and E in contrast. In the test phase,

the AV features help predict classes even in contexts that are not found in the labeled data,

while the baseline surface-based features are not effective in such unseen contexts. The AV-

based word boundary clues are expected to be reliable for many different domain-specific

words when large-scale unlabeled corpora in the target domain are available.

3.2 Proposed Word Segmentation Adaptation Method

This work proposes a word segmentation adaptation method using two additional novel

types of features: branching entropy (BE) features and pseudo-dictionary (PD) features.
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Its semi-supervised learning framework is the same as Sun and Xu (2011) and Guo et al.

(2012). The BE features are practically useful because of the probabilistic attribute of the

BE, and the PD features reflect characteristics of Japanese compound words.

3.2.1 Branching Entropy Features

The BE (Jin and Tanaka-Ishii, 2006) is a different word boundary clue based on probabilistic

uncertainty of accessor characters. Jin and Tanaka-Ishii (2006) used the BE for unsuper-

vised Chinese word segmentation. Their approach is based on an intuitive assumption; the

uncertainty of successive characters is large at a word boundary. The uncertainty of the

successive character X after a given string xn = x1...xn of the length n can be measured

by the BE as the local conditional entropy of X with Xn instantiated:

H(X|Xn = xn) = −
∑
x∈Vx

P (x|xn) logP (x|xn), (3.2)

where Xn is the context of the length n, and Vx is a set of characters. Jin and Tanaka-Ishii

(2006) used the BE around character n-grams: left BE HL(xn) for predecessor charac-

ters and right BE HR(xn) for successor characters. Figure 3.1 also shows an example of

the BE calculation. The left and right BE values are slightly different due to the different

distributions of predecessor and successor characters. Even if the number of distinct ac-

cessor characters is large, the probabilistic certainty varies with their variance and is not

necessarily large. Another important advantage of the BE is its probabilistic attribute. The

uncertainty of accessor characters represented by a certain BE value is basically the same

even for different corpus sizes, while the AV values increase with the corpus size in general.

The BE features are binary bucket features based on rounded integer values of the left

and right BEs of character n-grams, similarly defined as the AV features illustrated in Fig-

ure 3.2. This simple quantization is motivated by the probabilistic attribute of the BE.

• Left BE of n-gram starting from xi: HL(xi, ..., xi+n−1)

• Right BE of n-gram ending with xi−1: HR(xi−n, ..., xi−1)

• Left BE of n-gram starting from xi+1: HL(xi+1, ..., xi+n)

• Right BE of n-gram ending with xi: HR(xi−n+1, ..., xi)
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3.2.2 Pseudo-dictionary Features

This work also uses Japanese-oriented heuristic word boundary clues, based on charac-

teristics of Japanese compound words. Compound words in Japanese patents are usually

written in kanji (for Japanese- or Chinese-origin words) or katakana (for imported words

from Western languages). Most of their component words are also used individually and in

different compound words. For example, a katakana word “ステム” (stem) is used in many

compound words such as “キーステム” (key stem) and “ステムセル” (stem cell). Appear-

ance of a distinct katakana sequence “ステム” implies word boundaries between “キー”

and “ステム” and between “ステム” and “セル”. Such a word boundary clue may help to

identify component words appearing in different contexts. The motivation of these intu-

itive word boundary clues based on the character type is similar to the use of punctuations

as reliable word boundaries by Sun and Xu (2011).

To include such information, distinct kanji and katakana sequences are used as pseudo-

dictionary entries. The definition of the pseudo-dictionary features follows the dictionary

word features used in Japanese morphological analyzer KyTea2: whether or not the char-

acter is in the beginning/middle/end of one of the dictionary words of a certain length. An

example of the pseudo-dictionary features is shown in Figure 3.3. The character “ス” in the

example has a feature “L3_katakana”, representing the character is located at the leftmost

position of a matched katakana pseudo-dictionary word of the length of three characters

“ステム”. Two distinguished pseudo-dictionaries for kanji and katakana are used for the

PD features. Short sequences whose length is shorter than 2 characters for kanji and 3

characters for katakana are excluded from the pseudo-dictionaries. The length of the long

pseudo-dictionary words exceeding five characters is labeled as “5+” to mitigate feature

sparseness.

3.3 Experiments

Experiments were conducted using the NTCIR PatentMT data to evaluate the word seg-

mentation accuracy by the proposed word segmentation adaptation and compared it with

2http://www.phontron.com/kytea/method.html
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ボ タ ン 用 の キ ー ス テ ム 開 口 部
character to be classified

pseudo-dictionary word

L3_katakana

Figure 3.3: Example of pseudo-dictionary features.

Table 3.1: Corpus statistics for word segmentation experiments.

Dataset Type #sentences #Ja characters #words

BCCWJ Labeled (Training) 53,899 1,810,675 1,242,137

BCCWJUL Unlabeled 6,017,627 185,289,168 n/a

NTCIR Unlabeled 3,191,228 214,963,715 n/a

PatentJP Unlabeled 537,494,485 42,175,165,488 n/a

TestPatent Labeled (Test) 2,000 127,825 81,481

TestBCCWJ Labeled (Test) 6,406 201,080 135,664

those by other methods.

3.3.1 Setup

The word segmenters were implemented using the features described in the previous sec-

tion, with CRFsuite3 and its default hyperparameters. The CORE data of Balanced Corpus

of Comtemporary Written Japanese (Maekawa, 2007) were used as the labeled general

domain corpus for training the word segmentation model4, split by about 9:1 for train-

ing (BCCWJ) and test (TestBCCWJ ) sets. For unlabeled corpus, its non-CORE portion

(BCCWJUL), the Japanese portion of NTCIR-9 PatentMT (Goto et al., 2011) Japanese-

English bitext (NTCIR), and Japanese monolingual patent corpus provided for NTCIR-9

PatentMT (PatentJP), are used. The test set in the patent domain (TestPatent) was in-house

2,000 sentences in which the word segmentation was manually annotated by the same word

segmentation standards as the other labeled data. Corpus statistics are shown in Table 3.1.

3http://www.chokkan.org/software/crfsuite/
4Kanji numbers were replaced with digits for consistency with the patent corpus.
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3.3.2 Compared Methods

The following word segmentation features were compared in the word segmentation ex-

periments.

• Baseline: only the baseline features described in 4.1

• +AV: the AV (n=2,3,4,5) and baseline features

• +BE: the BE (n=1,2,3,4,5) and baseline features

• +PD: the PD and baseline features

• +BE +PD: the BE (n=1,2,3,4,5), PD, and baseline features

To investigate the impact of the unlabeled corpus size in the semi-supervised approach,

Two different conditions, mid-scale and large-scale, were compared; BCCWJUL and NT-

CIR were used in the mid-scale condition, and BCCWJUL and PatentJP5 in the large-scale

condition. Here, the pseudo-dictionaries of kanji and katakana sequences were composed

by kanji and katakana sequences found in the unlabeled data. The word segmenters with

a publicly available word segmenter were also compared with the CRF-based segmenters

for reference: MeCab6 with a model based on a Japanese dictionary UniDic7, and KyTea8

with its attached model.

3.3.3 Results

Table 3.2 shows word segmentation results in F-measures in the patent and general (BC-

CWJ) domains, and recalls of out-of-vocabulary words (OOV recall) in the patent domain

focusing on domain-specific words not included in the general domain corpus. All the ad-

ditional features showed better results in the patent domain than the baseline features and

MeCab, which were statistically significant (p=0.05) by bootstrap resampling tests.

The AV and BE features helped to outperform MeCab in the patent domain especially in

the OOV recall while the baseline performance was much worse. The BE features worked

5The patent sentences in NTCIR is also included in PatentJP.
6https://code.google.com/p/mecab/
7http://sourceforge.jp/projects/unidic/
8http://www.phontron.com/kytea/
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Table 3.2: Word segmentation F-measures (%) for the patent and original domains and

OOV recalls (%) in the patent domain. A, B, and P indicate significantly better results than

+AV, +BE, +PD (in the same group), M and L indicate significantly better results than mid-

and large-scale. PDm means the PD features derived from the mid-scale unlabeled corpora.

Condition Feature Patent BCCWJ

F-measure (%) OOV Recall (%) F-measure (%)

Labeled Baseline 96.87 87.94 97.85

Unlabeled +AV L98.08 91.25 98.27

(Mid-scale) +BE A98.25 91.58 98.38

+PD L97.85 91.18 98.08

+BE +PD A,B98.32 92.09 98.39

Unlabeled +AV P97.80 90.79 98.26

(Large-scale) +BE A,P,M98.34 91.62 98.33

+PD 97.12 89.32 98.36

+BE +PD A,P98.32 92.33 98.37

+BE +PDm
A,P,M98.36 92.61 98.37

MeCab 97.73 86.94 98.35

KyTea 96.32 83.99 97.94

consistently with the different corpus sizes. The AV features with the large-scale data

showed obviously worse results than with the mid-scale data; this indicates instability of

the AV features with different corpus sizes. The PD features showed good performance

especially in OOV recall, but those from the large-scale corpora did not work so well. This

is possibly due to inappropriate pseudo-dictionary entries extracted around typographical

errors, which sometimes occur between characters with similar type faces. Thus I addition-

ally tested the combination of the PD features in the mid-scale condition and the large-scale

BE features, and that showed the best results. This indicates my domain adaptation is very

effective for domain-specific words.
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Figure 3.4: Word boundary rate by quantized accessor variety and branching entropy values

in patent domain.
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Figure 3.5: Word segmentation examples. Vertical bars (“|”) represent word boundaries,

underbars (“_”) represents non-boundaries. Black and white triangles indicates character

boundaries with positive and negative branching entropy differences, respectively.
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3.3.4 Detailed Analysis

For detailed analysis of the difference between the AV and BE, their correlation with word

boundaries was investigated. If the BE had good correlation, it supports the results above.

The correlation between their values and word boundary rate were analyzed for each en-

tropy value. The word boundary rate was defined as follows using the number of character

and word boundaries whose quantized BE or AV value is m:

Word boundary rate(m) =
#word boundaries(m)

#character boundaries(m)
. (3.3)

Figure 3.4 shows the word boundary rate for corresponding AV and BE values in the

large-scale condition. The AV values were normalized with the maximum value of each

n-gram AV. The x-axis labels represent the quantized values.

Different characteristics by the accessor variety values and the entropy values can be

observed from the figures. The AV in Figure 3.4(a) showed poor correlation with word

boundaries in general. The AV of higher n-gram order seem to correlate with the word

boundary rate to some extent, but they are not enough to determine word boundaries. The

BE itself shown in Figure 3.4(b) seemed to correlate with word boundaries. It worked dif-

ferently according to its context length; higher branching entropy values were needed to

predict word boundaries with a shorter context. This implies some relativity of the branch-

ing entropy. The branching entropy with a shorter context would be relatively high in

average, compared to that with a longer context.

3.3.5 Segmentation Examples

Figure 3.5 shows word segmentation examples. by the baseline and patent-adapted seg-

menters with the branching entropy difference features. Figure 3.5(a) shows a typical error

correction example, in which wrong segmentation of a kanji compound word was corrected.

Many compound words appear in patent documents as technical terms and are often seg-

mented incorrectly, so this kind of error correction helps to improve the word segmentation

performance. Others are negative examples. In Figure 3.5(b), the compound word逆相 (op-

posite phase) was not segmented. This kind of under-segmentation errors may occur when

the component words do not appear frequently in different contexts. Figure 3.5(c) shows an
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over-segmentation error on compound words. The word フィードバック (feedback) was

recognized incorrectly as a compound word of フィード (feed) and バック (back). The

number of this kind of errors were not so large in our experiments, but they are important

problems for further studies.

3.4 Related Work

There are two major approaches for domain adaptation of word segmentation: active learn-

ing using additional labeled data, and semi-supervised learning using unlabeled data as this

work.

The active learning approach learns correct word segmentations from a small number

of additional human annotations. Tsuboi et al. (2008) presented an extended training al-

gorithm for Conditional Random Fields using partially labeled data. Neubig et al. (2011)

proposed an efficient pointwise prediction approach suitable for iterative active learning.

This approach is effective but requires additional human efforts.

On the other hand, the semi-supervised approach utilizes unlabeled data. Wang et al.

(2011) used an existing segmenter to extract n-gram frequency features on large-scale un-

labeled data. Sun and Xu (2011) compared substring-wise mutual information and the AV.

These studies did not focus on the problem of domain adaptation, but their techniques can be

directly applied to domain adaptation. Guo et al. (2012) used the AV for domain adaptation

of Chinese word segmentation on patent documents by a method similar to (Sun and Xu,

2011). The semi-supervised approach has an advantage of automatic adaptation without

human efforts.

The semi-supervised approach also relates to unsupervised methods with respect to

word boundary clues. Ando and Lee (2003) proposed mostly unsupervised Japanese com-

pound word segmentation using character n-gram statistics. The AV and BE were originally

proposed for unsupervised word segmentation (Feng et al., 2004; Jin and Tanaka-Ishii,

2006). Zhikov et al. (2010) extended the BE-based method using Minimum Description

Length. These studies used different clues of word and its boundary, but they are not suf-

ficiently accurate (about 80% in F-measure). Mochihashi et al. (2009) proposed Bayesian

word segmentation, which is fully model-based method — not based on intuitive word seg-
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mentation clues. Word segmentation obtained by such unsupervised methods may not be

consistent with human annotation standards used in existing natural language processing

components, so the semi-supervised approach is expected to be suitable for practical use.

3.5 Conclusion

This chapter presented an effective domain adaptation technique for discriminative word

segmentation in the patent domain. The BE features worked much better and were more

stable than the AV features in the experiments, thanks to the probabilistic attribute of the BE.

The word segmenter further improved by the PD features especially in terms of the OOV

recall, which is important for practically useful word segmentation in the patent domain; its

performance in word segmentation F-measure was fairly high exceeding 98%, even without

labeled corpus in the patent domain.
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Transliteration of Technical Terms

Transliteration is used for providing translations for source language words that have no

appropriate counterparts in a target language, such as certain technical terms and named

entities. Statistical machine transliteration (Knight and Graehl, 1998) is a technology de-

signed to solve this problem in a statistical manner. Bilingual dictionaries can be used to

train its model, but many of their entries are actually translations but not transliterations.

Such non-transliteration pairs hurt the transliteration model and should be eliminated in

advance.

Sajjad et al. (2012) proposed a method for identifying such non-transliteration pairs,

and applied it successfully to noisy word pairs obtained from automatic word alignment

using bilingual corpora. It enables a statistical machine transliteration to be bootstrapped

from bilingual corpora. This approach is beneficial because it does not require carefully

developed bilingual transliteration dictionaries and it can learn domain-specific transliter-

ation patterns from bilingual corpora in the target domain. However, their transliteration

mining approach is sample-wise; that is, it decides whether or not a bilingual phrase pair

is transliteration. There can be cases where a part of the phrase is the transliteration of the

other. For example, suppose a Japanese transliterated compound word キーステム (key

stem) is aligned only to an English word “stem”. This word pair consists a transliteration

fragment ⟨ステム(stem), stem⟩ and a non-transliteration partキー (key) in the Japanese side

as partial noise. The sample-wise method cannot extract the transliteration fragment, but

it can only accept or reject the whole word pair. Such a sample-wise decision is difficult

39
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due to the trade-off between the transliteration fragment and partial noise, and often accepts

partially noisy pairs incorrectly, which introduce noise into the training data for statistical

machine transliteration.

This work proposes a novel method for extracting such transliteration fragments. The

method uses a noise-aware character alignment model that distinguishes non-transliteration

(noise) parts from transliteration (signal) parts. The model is an extension of a Bayesian

alignment model (Finch and Sumita, 2010) and can be trained by using a sampling algo-

rithm extended for a constraint on noise. In experiments involving Japanese-to-English

transliteration bootstrapping using patent data, the proposed method showed much better

partial noise identification performance than an IBM-model-based baseline using NULL

alignments, and achieved better transliteration accuracy than the sample-wise translitera-

tion mining method (Sajjad et al., 2012).

4.1 Bayesian Many-to-many Alignment

First the Bayesian many-to-many character alignment technique proposed by (Finch and

Sumita, 2010) is reviewed briefly.

4.1.1 Model

Their model is a bilingual extension of the unigram Dirichlet Process (DP) for unsupervised

word segmentation (Goldwater et al., 2006; Xu et al., 2008), based on a generative process

of bilingual string pairs. The probability of a bilingual string pair ⟨s, t⟩= ⟨s1...s|s|, t1...t|t|⟩
is the sum of the probabilities of its all possible co-segmentations:

p(⟨s, t⟩) =
∑

γ∈Γ(⟨s,t⟩)

p(⟨s̄1, t̄1⟩, ..., ⟨s̄Kγ , t̄Kγ⟩) =
∑

γ∈Γ(⟨s,t⟩)

∏
1≤k≤Kγ

p(⟨s̄k, t̄k⟩) (4.1)

where γ is a co-segmentation over ⟨s, t⟩, a sequence ofKγ bilingual substring pairs ⟨s̄1, t̄1⟩, ..., ⟨s̄Kγ , t̄Kγ⟩,
and Γ(⟨s, t⟩) is the set of all possible co-segmentations. ⟨s̄k, t̄k⟩ (1 ≤ k ≤ Kγ) is a sub-

string pair in the co-segmentation that can be regarded as many-to-many aligned characters.

These substring pairs are considered to be generated from the DP in this model. The DP
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for ⟨s̄k, t̄k⟩ in a bilingual string pair can be denoted as follows:

G|α,G0 ∼ DP(α,G0)

⟨s̄k, t̄k⟩|G ∼ G, (4.2)

where G is a probability distribution over substring pairs according to a DP prior with base

measure G0 and hyperparameter α. G0 is modeled as a joint spelling model relying only

on the lengths of s̄k and t̄k (denoted as |s̄k| and |t̄k|) as follows:

G0 (⟨s̄k, t̄k⟩) =
λ
|s̄k|
s

|s̄k|!
e−λsv−|s̄k|

s × λ
|t̄k|
t

|t̄k|!
e−λtv

−|t̄k|
t . (4.3)

This is a simple joint probability of two spelling models. In each spelling model, each

alphabet appears based on a uniform distribution over the vocabulary (of size vs or vt),

and each substring length follows a Poisson distribution (with the average length λs or λt)

(Brown et al., 1992). The model handles an infinite number of substring pairs according to

the Chinese Restaurant Process (CRP). The probability of a substring pair ⟨s̄k, t̄k⟩ drawn

from the DP is based on the counts of all other substring pairs as follows:

p
(
⟨s̄k, t̄k⟩ | {⟨s̄i, t̄i⟩}−k

)
=

N (⟨s̄k, t̄k⟩) + αG0 (⟨s̄k, t̄k⟩)∑
iN (⟨s̄i, t̄i⟩) + α

. (4.4)

Here {⟨s̄i, t̄i⟩}−k means a set of substring pairs observed so far (not including ⟨s̄k, t̄k⟩), and

N (⟨s̄k, t̄k⟩) is the number of appearance of ⟨s̄k, t̄k⟩ in the substring pair set. This model is

suitable for representing a very sparse distribution over arbitrary substring pairs, thanks to

reasonable CRP-based smoothing for unseen pairs based on the spelling model.

Note that two different kinds of probabilities are maintained: the DP-based probability

of a substring pair p
(
⟨s̄k, t̄k⟩ | {⟨s̄i, t̄i⟩}−k

)
in Equation (4.4), and the marginal probability

of a string pair p(⟨s, t⟩) in Equation (4.1) considering all possible co-segmentations.

4.1.2 Sampling-based Inference

The goal of this method is to find the best co-segmentation for each bilingual string pair in

training data D = {⟨s, t⟩m | 1 ≤ m ≤M}:

γ̂ = arg max
γ̌

p (γ̌ | D) = arg max
γ̌

M∏
m=1

p (γm | D) = arg max
γ

M∏
m=1

Kγm∏
k=1

p (⟨s̄k, t̄k⟩m | D) .

(4.5)
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where γ̌ = {γm = ⟨s̄1, t̄1⟩m, ..., ⟨s̄Kγm
, t̄Kγm

⟩m | 1 ≤ m ≤M}1 is a set of co-segmentations

for D. To approximate the true posterior distribution for p (γm | D), (Finch and Sumita,

2010) used an efficient forward-backward inference with a blocked Gibbs sampling al-

gorithm, called forward filtering backward sampling (FFBS) (Scott, 2002; Mochihashi et

al., 2009). It enables efficient block-wise sampling over true posterior distributions, by

employing an efficient dynamic programming-based calculation similar to the well-known

forward-backward algorithm. The blocked Gibbs sampler samples a co-segmentation γm =

⟨s̄1, t̄1⟩m, ..., ⟨s̄Kγm
, t̄Kγm

⟩m at the same time, using the posterior distributions conditioned

by the sample space of co-segmentations on the other training data S−m = {⟨s̄k, t̄k⟩m′ |
1 ≤ m′ ≤ M, m′ ̸= m, 1 ≤ k ≤ Kγm′}, where Kγm′ is the number of substring pairs in

the co-segmentation on m′-th data. I denote the DP-based probability of a substring pair in

Equations (4.4) and (4.5) conditioned by S−m as:

p−m (⟨s̄k, t̄k⟩) ≡ p (⟨s̄k, t̄k⟩m | S−m) . (4.6)

Algorithm 1 shows the algorithm for the blocked Gibbs sampling. It starts the training

from random co-segmentations over the training data, and samples and updates the co-

segmentation of each bilingual string pair iteratively by the FFBS. Final co-segmentation

results are obtained as a set of sampled substring pair sequences that maximize the proba-

bility in Equation (4.5) after convergence. Here the FFBS for a bilingual string pair ⟨s, t⟩m
is explained, shown in the innermost loop in Algorithm 1 (lines 4 to 7). Hereafter, the index

m is omitted for readability except for p−m.

Forward filtering

In the forward filtering step, forward probabilities are calculated (line 6). The forward

probability α(I, J) is the probability of a bilingual substring pair with the length of I and

J (⟨s1...sI , t1...tJ⟩), defined in a recursive manner considering all possible substring pairs

⟨s̄k, t̄k⟩ ending with the indices (I, J):

α (I, J) =
∑

s̄k∈C(I,s), t̄k∈C(J,t)

p−m (⟨s̄k, t̄k⟩)× α (I − |s̄k|, J − |t̄k|) , (4.7)

1Here γ̌ is used for a set of co-segmentations to distinguish it with a co-segmentation γ.
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Algorithm 1 The blocked Gibbs sampling for Bayesian unsupervised alignment.

Require: Bilingual string pairs D = {⟨s, t⟩m | 1 ≤ m ≤M}
Ensure: Many-to-many  aligned  bilingual  string  pairs =

{⟨s̄1, t̄1⟩m, ...⟨s̄Km , t̄Km⟩m | 1 ≤ m ≤M}
1: Initialize ⟨s̄1, t̄1⟩m, ...⟨s̄Km , t̄Km⟩m randomly for all m

2: repeat

3: for m in 1, ...,M (in random order) do

4: Remove current co-segmentation ⟨s̄1, t̄1⟩m, ...⟨s̄Km , t̄Km⟩m from the sample space

5: Initialize forward probability matrix A = [α (i, j)] (0 ≤ i ≤ |s|, 0 ≤ j ≤ |t|)
with A0,0 ← 1 and undefined for others

6: Compute and store the forward probabilities in A recursively by the dynamic pro-

gramming {forward filtering}

7: Sample bilingual substring pairs from the end as ⟨s̄Km , t̄Km⟩m, ...⟨s̄1, t̄1⟩m, and

update the co-segmentation {backward sampling}

8: end for

9: until the number of iterations reaches its limit

where α(0, 0) = 1 (line 5) and C(I, s) is a set of all possible substrings from a string s

that end with sI
2. Note that the DP-based probability in Equation (4.4) is conditioned by

S−m here (line 4). This process calculates the forward probability at the end of the bilin-

gual string pair α(|s|, |t|), that is also equivalent to the probability of the whole string pair

p (⟨s, t⟩). The forward probabilities with all the other indices are calculated by its recur-

sive definition. Since the forward probability at a certain position is calculated only once

by a dynamic programming using a matrix A, these forward probabilities can be obtained

efficiently. Figure 4.1 (a) shows an example of the forward filtering, in which each arrow

represents the corresponding substring pair. At first the calculation of the forward proba-

bility of the whole bilingual string pair ⟨カバー, cover⟩ is called. It calls the calculation of

the forward probabilities at preceding positions recursively as Equation (4.7). The proba-

bilities along with the paths are accumulated when they gather into the same positions, and

2This work considers arbitrary-length substrings up to sI , {s1...sI , s2...sI , ..., sI−1sI , sI}, following

(Finch and Sumita, 2010).
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finally p (⟨カバー, cover⟩) is obtained considering its all possible co-segmentations.

Backward sampling

Next in the backward sampling step, the co-segmentation of the bilingual string pair is

determined from its end, by the sampling based on the posterior distribution of bilingual

substring pairs (line 7). The posterior probability of the bilingual substring pair at the end

of the whole string pair, ⟨s̄K , t̄K⟩, can be calculated using its DP-based probability and its

forward probability as follows:

p (⟨s̄K , t̄K⟩ | ⟨s, t⟩) =
p−m (⟨s̄K , t̄K⟩)× α (|s| − |s̄K |, |t| − |t̄K |)

p (⟨s, t⟩)
. (4.8)

Here, the backward probability is constant (1.0) because of the unigram-based formulation

of this model. The numerator of the right side of the equation is the sum of the probabilities

of all possible co-segmentations that include ⟨s̄K , t̄K⟩ at the end, and its denominator is the

probability of the whole string pair, which can be considered as a constant in comparison

of different ⟨s̄K , t̄K⟩ at the end. Thus, a substring pair ⟨s̄K , t̄K⟩ can be sampled based on

the true posterior distribution as follows:

p (⟨s̄K , t̄K⟩ | ⟨s, t⟩) ∝ p−m (⟨s̄K , t̄K⟩)× α (|s| − |s̄K |, |t| − |t̄K |) . (4.9)

Once the substring pair at the end is determined, its preceding substring pair ⟨s̄K−1, t̄K−1⟩
can be sampled in the same manner, regarding its backward probability as a constant. The

sampling can be repeated by the beginning of the bilingual string pair, and finally its co-

segmentation ⟨s̄1, t̄1⟩, ...⟨s̄K , t̄K⟩ is obtained. Figure 4.1 (b) shows an example of the back-

ward sampling. Substring pairs are sampled among all possible substring pairs ending with

the current position (starting from the end of the bilingual string pair), based on their poste-

rior probabilities in Equation (4.9). The sampling is repeated by the beginning as shown in

the figure (bold solid arrows represent sampled substring pairs and dotted arrows are those

not sampled), and a co-segmentation ⟨カ, co⟩, ⟨バ, v⟩, ⟨ー, er⟩ is obtained.
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c" o" v" e" r"

�"

�"

�"

BOS!

EOS!

(a) Forward filtering

c" o" v" e" r"

�"

�"

�"

BOS!

EOS!

(b) Backward sampling

Figure 4.1: Forward filtering backward sampling in Finch et al. (2010). (A few example

paths are shown.)

4.2 Proposed Method

This work proposes an extended many-to-many alignment model that can handle partial

noise. The model described in the previous section is extended by introducing a noise

symbol and state-based probability calculation.

4.2.1 Partial Noise in Transliteration Data

Figure 4.2 shows transliteration examples with “no noise,” “sample-wise noise,” and “par-

tial noise.” The solid lines in the figure show correct many-to-many alignment links. Exam-

ples (a) and (b) are distinguished effectively by (Sajjad et al., 2012). The proposed method

aims to realize alignment as in examples (c) and (d) by distinguishing its non-transliteration

(noise) part, which cannot be achieved with the existing methods. Here, it additionally use

NULL symbols in Figure 4.2(e) that are expected to be aligned to white spaces and silent

letters (such as “b” in “doubt”) in signal parts. Characters aligned to the NULL symbols

are needed to learn phrasal transliteration (at the character level), while characters aligned

to the noise symbols can be eliminated. This work defines noise and NULL as follows3:

Noise Substrings whose pronunciations do not appear in the transliterated strings, and

3There are often common but non-equivalent transliteration examples such as “McDonald’s” and its

transliteration to Japanese, マクドナルド (MA KU DO NA RU DO). “’s” is regarded as partial noise in

this work and the correct (back-)transliteration ofマクドナルド as “McDonald.”
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(a) no noise
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(b) sample-wise noise
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(c) partial noise: English should be “give up”
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(d) partial noise: Japanese should be “リカバー”
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s" i" n"

�" �"noise �"

g" l" e" n"

LE N ZU 

s"sp"

NULL$

(e) partial noise: Japanese should be “フォーカシングレンズ”

Figure 4.2: Three types of noise in transliteration examples. Solid lines are correct many-

to-many alignment links.

NULL Substrings that do not need to be transliterated, typically white spaces and silent

letters.

This work decides their distinction from the data; the choice of noise or NULL is learned

from the bilingual string pairs4.

4.2.2 Noise-aware Alignment with a Noise Assumption

This work introduces a noise symbol to handle partial noise in the many-to-many alignment

model. (Htun et al., 2012) extended many-to-many alignment to sample-wise translitera-

tion mining, but its noise model can only handle sample-wise noise and cannot distinguish

partial noise. The partial noise is modeled in the CRP-based joint substring model.

Partial noise in transliteration data typically appears in compound words as mentioned

earlier, because their counterparts consisting of two or more words may not be fully covered

4Most of the silent letters were included in many-to-many alignments and not aligned to NULL individ-

ually, in the experiments described later.
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t" h" e"

�" �"noise �"

sp" e" t" c"

E C CHI 

h" i" n" g" sp" m" a" s" k" s"

�" �"noise NULL$
N GU 

�" �" noise �"
MA SU KU 

Figure 4.3: Example of many-to-many alignment with partial noise at the beginning and

end. “noise” stands for the noise symbol, “NULL” stands for the zero-length substring, and

“sp” indicates a white space.

in automatically extracted word and phrase pairs as shown in Figure 4.2(c). Another type of

partial noise is derived from morphological differences caused by inflection, which usually

appear at the sub-word level as prefixes and suffixes as shown in Figure 4.2(d) and 4.2(e).

According to this intuition, I assume that partial noise appears in the beginning and/or end

of transliteration data (I assume that noise appears at the beginning for sample-wise noise).

This assumption derives a constraint between signal and noise parts that helps to avoid a

welter of transliteration and non-transliteration parts. It also has a shortcoming in that it

cannot handle noise in the middle (e.g., Figure 4.2(e)), but handling an arbitrary number

of noise parts increases computational complexity and sparseness5. This paper is based on

this simple assumption and reserves a more complex mid-noise problem as future work.

Figure 4.3 shows a partial noise example at both the beginning and end. This example

is actually a correct translation but it includes noise in the sense of transliteration; the article

“the” is wrongly included in the phrase pair (no articles are used in Japanese) and a plural

noun “masks” is transliterated into “マスク”(mask). The noise symbols are treated as zero-

length substrings in the model, which can be aligned to substrings same as other characters.

The non-transliteration parts are aligned with noise symbols in the proposed model.

5Explicit modeling of the fixed number of noise parts (n) requires 2n+1 different states in this paper’s

approach. Partial noise can be modeled by only signal and noise states but it may cause unexpected alignments

with a welter of transliteration and non-transliteration parts.
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(b) Backward sampling

Figure 4.4: State-based FFBS for proposed model. (A few example paths are shown.)

4.2.3 State-based FFBS Extension

This work extends Finch’s algorithm to the noise-aware model using a state-based calcula-

tion over the three states: the non-transliteration part at the beginning (noiseB), the translit-

eration part (signal), and the non-transliteration part at the end (noiseE). Substrings are

aligned in either noiseB, signal, or noiseE state. In the noise states noiseB and noiseE, sub-

strings are always aligned to the noise symbols. In the example of Figure 4.3, ⟨noise, the⟩
and ⟨noise, sp⟩ are aligned in noiseB, ⟨エッチ, etchi⟩, ⟨ング, ng⟩, ⟨NULL, sp⟩, ⟨マ,ma⟩,
⟨ス, s⟩, and ⟨ク, k⟩ are aligned in signal, ⟨noise, s⟩ is aligned in noiseE. Here this work as-

sumes that source-side noise is aligned first and target-side noise is aligned later in the noise

states to avoid the repetitive counts of the same noise sequence, because co-segmentations

⟨ab, noise⟩⟨noise, xy⟩ and ⟨noise, xy⟩⟨ab, noise⟩ are equivalent.

The training framework of the proposed method is basically the same as Finch’s one

described in 4.1 and Algorithm 1, except for considering the partial noise and the three

different states as shown in Figure 4.4. There are state transitions from noiseB to signal and

signal to noiseE. Note that this work does not regard the state transitions as probabilistic

events. This work introduces the noise states to constrain the appearance of the partial

noise in the beginning and the end of bilingual string pairs as an extension of the Finch’s
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method.

Forward filtering

The state-based FFBS algorithm maintains three different forward probability matrices

AnoiseB, Asignal, and AnoiseE, and corresponding forward probabilities αnoiseB, αsignal, and

αnoiseE. αX(I, J) represents the marginal probability of a bilingual string pair ⟨s1...sI , t1...tJ⟩
whose final substring pair is aligned in state X. The forward probabilities at the beginning in

these states are initialized as αnoiseB(0, 0) = 1, αsignal(0, 0) = 0, and αnoiseE(0, 0) = 0, be-

cause the beginning state is noiseB. The forward probabilities can be calculated efficiently

by a dynamic programming using the matrices, same as the FFBS in Section 3. I explain

the calculation of the forward probabilities in each state in the following.

The forward probabilities in state noiseB (αnoiseB) can be considered separately with two

parts corresponding to source- and target-side noise. Here recall that the source-side partial

noise is aligned first.

• For source-side noise as the downward arrows in noiseB state in Figure 4.4(a), the

forward probability is the sum of the probabilities with different length of s̄k as fol-

lows:

αnoiseB (I, 0) =
∑

s̄k∈C(I,s)

p−m (⟨s̄k, noise⟩)× αnoiseB (I − |s̄k|, 0) . (4.10)

• For target-side noise as the rightward arrows in noiseB state in Figure 4.4(a), the for-

ward probability is the sum of the probabilities with different length of t̄k as follows:

αnoiseB (I, J) =
∑

t̄k∈C(J,t)

p−m (⟨noise, t̄k⟩)× αnoiseB (I, J − |t̄k|) . (4.11)

The forward probabilities in state signal (αsignal) are almost the same as those of the

original FFBS in Equation (4.7) but has two differences:

• state transitions from noiseB have to be considered (as illustrated by arrows from

noiseB to signal in Figure 4.4(a)), and

• NULL is allowed in the many-to-many alignment, so either s̄k or t̄k can be a zero-

length substring.
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Thus, the calculation ofαsignal is extended by two different previous states noiseB and signal,
and by the NULL-aligned substrings as follows:

αsignal (I, J) = ∑
s̄k∈CN (I,s), t̄k∈CN (J,t), |s̄k|+|t̄k|>0

p−m (⟨s̄k, t̄k⟩)× αnoiseB (|s| − |s̄k|, |t| − |t̄k|)

+
∑

s̄k∈CN (I,s), t̄k∈CN (J,t), |s̄k|+|t̄k|>0

p−m (⟨s̄k, t̄k⟩)× αsignal (|s| − |s̄k|, |t| − |t̄k|) .(4.12)

where CN(I, s) is a set of substrings same as C(I, s) but includes a zero-length substring

for NULL.

Finally, the forward probabilities in state noiseE (αnoiseE) have to consider the source-

side noise and the target side noise, and further need to handle state transitions from signal.

• If the source-side does not reach its end (I < |s|), the final substring must be the

source-side noise. So only the source-side noise is considered as follows:

αnoiseE (I, J) =∑
s̄k∈C(I,s)

p−m (⟨s̄k, noise⟩)× αsignal (I − |s̄k|, J)

+
∑

s̄k∈C(I,s)

p−m (⟨s̄k, noise⟩)× αnoiseE (I − |s̄k|, J) . (4.13)

• Otherwise, the probabilities have to be summed up from the source-side noise towards

the end of the source-side string (as illustrated by a downward arrow) in state noiseE,

and the target-side noise along with the end of the source-side string (as illustrated

by rightward arrows) in state noiseE:

αnoiseE (I = |s|, j) =∑
s̄k∈C(I,s)

p−m (⟨s̄k, noise⟩)× αsignal (|s| − |s̄k|, J)

+
∑

s̄k∈C(I,s)

p−m (⟨s̄k, noise⟩)× αnoiseE (|s| − |s̄k|, J)

+
∑

t̄k∈C(J,t)

p−m (⟨noise, t̄k⟩)× αsignal (|s|, J − |t̄k|)

+
∑

t̄k∈C(J,t)

p−m (⟨noise, t̄k⟩)× αnoiseE (|s|, J − |t̄k|) . (4.14)
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Backward sampling

The backward sampling is also extended to handle the three states. It firstly samples the end-

ing state based on the forward probabilities at the end of the bilingual string pair: αnoiseB (|s|, |t|),
αsignal (|s|, |t|), and αnoiseE (|s|, |t|). Then it sets index (I, J) as (|s|, |t|) and repeat the

sampling of the bilingual substring pair ⟨s̄k, t̄k⟩ towards the beginning represented by the

indices (0, 0), based on the posterior distributions of the substring pairs ending with the po-

sition represented by the indices (I, J). The indices are updated according to the sampled

substrings. Here, the current state has to be maintained in the sampling. The backward sam-

pling process samples a substring pair and its previous state at the same time to distinguish

paths from different states, and update the current state to the sampled state.

Figure 4.4(b) shows an example of the backward sampling. This is basically similar

to the original ones shown in Figure 4.1(b); the difference is that the proposed method

handles three forward probability tables for the three states. At first, signal state is sampled

as the ending state. Then substring pairs ⟨ー, ey⟩ and ⟨キ, k⟩ are sampled from signal state.

When ⟨キ, k⟩ is sampled, there are two possibility of its previous state, noiseB and signal, as

shown in the figure. Here ⟨キ, k⟩ is sampled from noiseB, so the current state have changed

to noiseB. Finally, ⟨noise, sp⟩ and ⟨noise, a⟩ are sampled from noiseB state. I explain the

calculation of the posterior probabilities of substring pairs to be sampled in the following.

If the current state is noiseB, the previous state is also noiseB so state transitions are

not needed. The cases of source- and target-side noise are distinguished in the forward

probability calculation.

• If J is equal to zero, preceding source-side noise s̄k is sampled among C(I, s) using

p
(
⟨s̄k, noisenoiseB⟩ | ⟨s, t⟩

)
∝ p−m (⟨s̄k, noise⟩)× αnoiseB (I − |s̄k|, 0) . (4.15)

• Otherwise, target-side noise t̄k is sampled among C(J, t) using

p
(
⟨noise, t̄k⟩noiseB | ⟨s, t⟩

)
∝ p−m (⟨noise, t̄k⟩)× αnoiseB (I, J − |t̄k|) . (4.16)

Here, the notation p
(
⟨s̄k, t̄k⟩X | ⟨s, t⟩

)
means the posterior probability of the substring pair

⟨s̄k, t̄k⟩ whose previous state is X.



CHAPTER 4. TRANSLITERATION OF TECHNICAL TERMS

If the current state is signal, the previous state is either noiseB or signal. The substring

pairs are distinguished based on their previous states, and sample a substring pair ⟨s̄k, t̄k⟩
among CN(I, s) and CN(J, t) based on the following posterior probabilities:

p
(
⟨s̄k, t̄k⟩noiseB | ⟨s, t⟩

)
∝ p−m (⟨s̄k, t̄k⟩)× αnoiseB (I − |s̄k|, J − |t̄k|) , and (4.17)

p
(
⟨s̄k, t̄k⟩signal | ⟨s, t⟩

)
∝ p−m (⟨s̄k, t̄k⟩)× αsignal (I − |s̄k|, J − |t̄k|) . (4.18)

If a substring pair is sampled from the distribution of Equation (4.17), the current state is

changed to noiseB.

Finally, if the current state is noiseE, its preceding state is either signal or noiseE. The

cases of source- and target-side noise, and two different previous states are distinguished.

• If the current source-side index I is smaller than the length of the source-side string

|s|, there must be no preceding target-side noise. Source-side noise is sampled con-

sidering its previous state between signal or noiseE based on the following distribu-

tions:

p
(
⟨s̄k, noisesignal⟩ | ⟨s, t⟩

)
∝ p−m (⟨s̄k, noise⟩)× αsignal (I − |s̄k|, J) , and (4.19)

p
(
⟨s̄k, noise⟩noiseE | ⟨s, t⟩

)
∝ p−m (⟨s̄k, noise⟩)× αnoiseE (I − |s̄k|, J) . (4.20)

• Otherwise, the source- or target-side noise can be sampled using the following prob-

abilities together with the source-side noise probabilities of Equations (4.19) and

(4.20), considering its previous state signal and noiseE:

p
(
⟨noise, t̄k⟩signal | ⟨s, t⟩

)
∝ p−m (⟨noise, t̄k⟩)× αsignal (I, J − |t̄k|) , and (4.21)

p
(
⟨noise, t̄k⟩noiseE | ⟨s, t⟩

)
∝ p−m (⟨noise, t̄k⟩)× αnoiseE (I, J − |t̄k|) . (4.22)

If a substring pair is sampled from the distribution of Equation (4.19) or (4.21), the current

state is changed to signal.
The computational cost with this algorithm is increased almost three-fold compared

with that of Finch and Sumita (2010), because it handles three different states.
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Figure 4.5: Workflow of the transliteration bootstrapping experiments.

4.3 Experiments

Japanese-to-English transliteration experiments were conducted, in which the proposed

method was compared with the conventional sample-wise method in bootstrapping statisti-

cal machine transliteration employing a Japanese-to-English patent translation dataset. The

experiments focused on katakana words in Japanese that are usually used for the transliter-

ation of foreign words, and these katakana words were back-transliterated into the original

English words. Note that the problem of back-transliteration generally has unique answers

because most transliterated katakana words have unique corresponding foreign words ex-

cept for some homonyms, while transliteration is basically ambiguous due to non-unique

sound-to-character mappings.

The workflow of the experiments is illustrated in Figure 4.5, and the following sections

give its detailed explanation.

4.3.1 Setup

For the transliteration bootstrapping, bilingual phrase pairs with a maximum length of seven

words were extracted from 3.2M parallel sentences in NTCIR-10 PatentMT dataset (Goto et
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al., 2013)6, by a standard training procedure for phrase-based SMT (Koehn et al., 2003) with

GIZA++7 and Moses8. Japanese and English sentences were tokenized using MeCab9 and

tokenizer.perl (included in Moses), respectively. 591,840 unique phrase pairs whose

Japanese side was written in katakana only10 were obtained. Here, some bilingual phrases

include words without appropriate counterparts (called NULL-aligned words). The bilin-

gual phrases were extracted from bilingual corpora with automatic word alignment; but in

the Japanese-English case, English articles and prepositions are sometimes not aligned with

any Japanese words because they lack Japanese counterparts. These unaligned words are

needed for actual translation and typical phrase-based machine translation uses extended

phrases in which such unaligned words are included11. These extended phrases can extract

complete phrasal correspondences of compound words but also incorporate more noise in

the phrase pairs. Thus, in the experiments, two conditions were compared to take this prob-

lem into account:

• Recall-oriented condition (All): all the bilingual phrases (591,840) are used to extract

more transliteration substring pairs; and

• Precision-oriented condition (FullyAligned): only fully aligned phrases without un-

aligned words (177,610) to exclude more word-level noise.

The method proposed by Sajjad et al. (2012) was first used iteratively on these bilin-

gual phrases and sample-wise non-transliteration pairs were eliminated, until the number

of pairs converged. Finally 104,563 katakana-English pairs were obtained from All after

10 iterations, and 49,252 pairs from FullyAligned after 8 iterations. They were the baseline

transliteration training set mined by the sample-wise method. Sajjad et al.’s method was

used as a preprocessing technique for filtering sample-wise noise. The proposed method is

also capable of this, but it takes much more training time for all phrase table entries. This

6http://research.nii.ac.jp/ntcir/data/data-en.html
7https://code.google.com/p/giza-pp/
8http://www.statmt.org/moses/
9http://code.google.com/p/mecab/

10This katakana-based filtering is a language dependent heuristic for choosing potential transliteration can-

didates, because transliterations in Japanese are usually written in katakana.
11For more details, please refer to the book of SMT (Koehn, 2010).
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work focuses on the partial noise problem in the experiments that was not addressed by

Sajjad et al.’s method.

Then the proposed method was applied to the baseline transliteration training set with 30

sampling iterations (empirically chosen for the convergence of the likelihood) and obtained

character alignment results with partial noise identification. Here, the hyperparameters, α,

λs, and λt, were optimized using a held-out set of 2,000 katakana-English pairs that were

randomly chosen from a general-domain bilingual dictionary12. The hyperparameter opti-

mization was based on transliteration F-score values on the held-out set with the following

α values 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and the following λs values 1, 2, 3,

4, 5. Finally α = 0.1 and λ = 3 were used for All condition, and α = 0.02 and λ = 2 were

used for FullyAligned condition.

4.3.2 Evaluation of Partial Noise Identification

First the extent to which the proposed method identified partial noise was evaluated using

4,000 katakana-English pairs randomly chosen from the baseline transliteration training set

of All. The partial noise of the 4,000 pairs was manually annotated by an annotator. 251 of

34,547 (0.73%) katakana characters and 3,462 of 52,872 (6.5%) English characters were

annotated as noise, including three sample-wise noise pairs that were not identified by Saj-

jad et al.’s method. In the evaluation in the FullyAligned condition, 1,524 pairs were used,

which were also included in the baseline transliteration training set of FullyAligned, out

of the 4,000 annotated pairs. In the evaluation, the proposed method (Proposed) was com-

pared with a baseline (GIZA++/GDFA) where unaligned characters using bilingual phrase

extraction heuristics called grow-diag-final-and over bidirectional GIZA++ alignment13

were regarded as noise.

12the parameters of the spelling model λs, and λt can be learned from co-segmentation samples (because

they are equals to expectations of substring lengths according to a Poisson distribution), but constant values

were used same as (Finch and Sumita, 2010).
13Word alignments based on IBM models (Brown et al., 1993) and HMM alignment model (Vogel et al.,

1996) used in GIZA++ are many-to-one, so recent phrase-based statistical machine translation combines

these many-to-one alignments with one-to-many alignments in the reverse direction to obtain many-to-many

alignments for bilingual phrases. grow-diag-final-and is a commonly-used heuristic alignment combination

method. For more details, please see (Koehn, 2010).
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Table 4.1: Precision(%), recall(%), and F-measure(%) of noise identification by the pro-

posed method (Proposed) and IBM-model-based baseline (GIZA++/GDFA) using 4,000

(All) and 1,524 (FullyAligned) noise annotated phrase pairs.

Phrases Language Method Precision(%) Recall(%) F-measure(%)

All Japanese GIZA++/GDFA 56.4 8.09 14.2

Proposed 83.6 23.7 37.0

English GIZA++/GDFA 42.3 2.28 4.32

Proposed 85.8 5.24 65.1

FullyAligned Japanese GIZA++/GDFA 51.0 6.89 12.1

Proposed 72.2 19.3 30.4

English GIZA++/GDFA 7.14 0.122 0.241

Proposed 58.0 22.3 32.2

Table 4.1 shows precision, recall, and F-measure values for noise identification both

in Japanese and English for different phrase extraction conditions. GIZA++/GDFA was

clearly worse than Proposed. This suggests that NULL alignments in IBM models are not

appropriate for identifying partial noise. With respect to the difference between All and

FullyAligned, the performance of Proposed for FullyAligned was much worse than that for

All. One possible reason for this is the noise on the English side in the All phrases, which

appeared as articles and prepositions and that can be easily eliminated as word-level noise.

Figure 4.6 shows examples of the alignment results in the training data. As expected,

partial noise both in Japanese and English was identified correctly in (a), (b), and (c). There

were some alignment errors in the signal part in (b), in which characters in boundary po-

sitions were aligned incorrectly with adjacent substrings. These alignment errors did not

directly degrade the partial noise identification but they may have a negative effect the over-

all alignment performance in the sampling-based optimization. (d) is a negative example

in which partial noise was incorrectly aligned. (c) and (d) have similar partial noise in their

English word endings, but it could not be identified in (d).
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(b) Some alignment errors in transliteration part
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(d) Errors in partial noise

Figure 4.6: Examples of noise-aware many-to-many alignment in the training data. ϕ indi-

cates a zero-length substring. Bold gray lines show incorrect alignments, and dashed lines

mean their corrections.

4.3.3 Evaluation of Transliteration Accuracy

Next the transliteration accuracy by the use of the mined transliteration pairs was evalu-

ated. Statistical machine transliteration was implemented as character-based statistical ma-

chine translation with Moses, using a character-based 7-gram language model trained on

300M English patent sentences. The test set was the top 1000 unknown (in the Japanese-to-

English translation model) katakana words appearing in 400M Japanese patent sentences.

They covered 15.5% of all unknown katakana words and 8.8% of all unknown words (ex-

cluding numbers); that is, more than half of the unknown words were katakana words. The

problem itself was Japanese-to-English back-transliteration as described above.

Three different training data of the transliteration were compared: Sajjad et al’s method

(Sajjad; namely the baseline transliteration training set), GIZA++/GDFA and Proposed.

Table 4.2 shows the data statistics obtained after eliminating noise with them. Recall that
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Table 4.2: Statistics of the transliteration training sets after eliminating sample-wise and

partial noise. The sample-wise noise was eliminated by Sajjad et al’s method (baseline

transliteration training set), and partial noise was further eliminated by GIZA++ and grow-

diag-final-and heuristics (GIZA++/GDFA) and the proposed method (Proposed).

Phrases Method #pairs #Ja chars. #En chars.

All Sajjad 104,563 899,080 1,372,993

+GIZA++/GDFA 104,563 894,985 1,323,365

+Proposed 104,561 893,366 1,317,256

FullyAligned Sajjad 49,252 378,280 610,831

+GIZA++/GDFA 49,252 376,552 590,409

+Proposed 49,245 372,970 587,514

GIZA++/GDFA and Proposed were applied to Sajjad results as described above and the

number of phrase pairs and characters by GIZA++/GDFA and Proposed were lower than

those of Sajjad. The training procedure of statistical machine transliteration was a standard

Moses approach: GIZA++-based alignment, grow-diag-final-and alignment symmetriza-

tion and phrase extraction with a maximum phrase length of seven characters. Note that the

Bayesian many-to-many alignment was ignored in bilingual phrase extraction and phrases

were re-aligned with GIZA++ and grow-diag-final-and heuristic, because the effect of par-

tial noise elimination on statistical machine transliteration was investigated in the same

training condition. The use of the many-to-many alignment as bilingual phrases as Finch

and Sumita (2010), called Proposed-Joint, was also tested following their agglomeration

heuristic to include longer substring pairs by:

1. generating many-to-many word alignment, in which all possible word alignments

link in many-to-many correspondences (e.g., 0-0 0-1 0-2 1-0 1-1 1-2 for ⟨コ ン, com⟩),

2. running phrase extraction and scoring the same as with standard Moses training.

This procedure extracts longer phrases that satisfy the many-to-many alignment constraints

than the simple use of extracted joint substring pairs as phrases.

ACC (sample-wise accuracy) was used as the main evaluation metric, the sample-
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wise accuracy in the back-transliteration of katakana words compared with original En-

glish words. Two additional metrics were used for character-wise evaluation: F-score, and

BLEUc. F-score is a character-wise F-measure-like score (Li et al., 2010). BLEUc is BLEU

(Papineni et al., 2002) at the character level with n=4. Table 4.3 shows the transliteration

evaluation results.

Proposed achieved ACC of 63% (16% relative error reduction compared with Saj-

jad) using All phrases and 65% (8% relative error reduction compared with Sajjad) using

FullyAligned phrases. It also showed better character-wise performance in F-score and

BLEUc. These improvements clearly exhibited the advantage of the proposed method over

sample-wise mining. Recall that Sajjad and Proposed had a small difference in their training

data size as shown in Table 4.2. In contrast, GIZA++/GDFA was based on a similar-sized

training set but produced much worse ACC results than Sajjad. Proposed further eliminated

partial noise from the sample-wise mined results and achieved the best back-transliteration

performance. These results suggest that the partial noise can hurt transliteration models and

the proposed approach actually worked in transliteration bootstrapping.

Proposed-Joint performed similarly to Proposed, although many-to-many substring align-

ment was expected to improve transliteration as reported by (Finch and Sumita, 2010). The

difference may be due to the difference in coverage of the phrase tables; Proposed-Joint re-

tained relatively long substrings caused by the many-to-many alignment constraints in con-

trast to the less-constrained grow-diag-final-and alignments in Proposed. Since the training

data in the bootstrapping experiments contained many similar phrases unlike the dictionary-

based data in Finch and Sumita (2010), the Proposed-Joint phrase table may have limited

coverage owing to its long and sparse substring pairs with large probabilities even if the

many-to-many alignment was good. This sparseness problem is beyond the scope of this

paper and worth further study.

Some transliteration examples are shown in Table 4.4. The first two examples show

a typical advantage of Proposed. Sajjad generated noise (ester“s” and “an” armonk) due

to partial noise in the training data. In the next example, both methods generated wrong

transliterations. The transliteration results for the word “protoplast” include unnecessary

suffixes “-ing” that should be aligned to the noise symbol by the proposed method. This is

mainly due to the low recall in noise identification, as shown in Table 4.1. In the last three
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Table 4.3: Japanese-to-English transliteration results for the top 1000 unknown katakana

words. ACC and F-score stand for those used in NEWS workshop, BLEUc is character-

wise BLEU. Values shown in bold represent the best values for the same phrase extraction

condition.

Phrases Method ACC F-score BLEUc

All Sajjad 0.56 0.929 0.864

+GIZA++/GDFA 0.47 0.929 0.850

+Proposed 0.63 0.946 0.897

Proposed-Joint 0.63 0.943 0.888

FullyAligned Sajjad 0.62 0.943 0.887

+GIZA++/GDFA 0.49 0.932 0.851

+Proposed 0.65 0.949 0.901

+Proposed-Joint 0.66 0.947 0.899

Table 4.4: Transliteration examples by Sajjad and Proposed in FullyAligned condition.

Katakana Reference Sajjad Proposed

ロジンエステル (RO JI N E SU TE RU) rosin ester rosin esters rosin ester

アーモンク (A A MO N KU) armonk an armonk armonk

プロトプラスト (PU RO TO PU RA SU TO) protoplast protoplasting protoplasting

サラダ (SA RA DA) salad salader salader

ローヤル (RO O YA RU) royal low ear r low al

ローダニン (RO O DA NI N) rhodanine loadenine loader nin

examples, the transliteration results are not appropriate as English words, although they may

have similar pronunciations to their reference words. Longer bilingual phrases and n-gram

language models are expected to choose more consistent hypotheses, but they sometimes

fail to keep word-level consistency and then generate inappropriate character sequences

especially for rare words. This consistency problem in statistical machine transliteration

warrants further study, not only in segmental alignment but also in context-rich modeling

and decoding.
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4.4 Related Work

Machine transliteration is often treated as a sub-problem of machine translation and cross-

lingual information retrieval for handling unknown names and terms. There have been

many previous studies on machine transliteration between various languages, as described

in a previous survey (Karimi et al., 2011).

This work relates to a technology in the field of machine transliteration called translit-

eration mining or transliteration extraction, which aims to find transliteration pairs from

parallel, comparable, or even independent bilingual resources. A typical task in transliter-

ation mining involves finding transliteration pairs at the word level from Wikipedia Inter-

Language Link data, as in a shared task in the 2010 Named Entity Workshop (Kumaran

et al., 2010). The problem in such a task is classifying transliteration pair hypotheses into

transliteration and non-transliteration. Fukunishi et al. (2013) applied Finch et al.’s many-

to-many alignment model to this classification task, using forced-aligned substring pairs as

features for support vector machine-based classification. This work aims to find segmental

transliteration pairs excluding partial noise, not sample-wise pairs as in previous studies,

as the first work on this kind of problem.

Technically this work is based on transliteration bootstrapping (Sajjad et al., 2012) and

many-to-many character alignment (Finch and Sumita, 2010), and extends them to this

problem. But the proposed approach is not limited to the current implementation; translit-

eration candidates can be explored from comparable or independent bilingual resources

by other transliteration mining technologies (Al-Onaizan and Knight, 2002; Lam et al.,

2004); other transliteration alignment methods (such as the EM-based approach (Kubo et

al., 2011)) can be extended to partial noise.

4.5 Conclusion

This work proposed a noise-aware many-to-many alignment model that can distinguish

partial noise in transliteration pairs for bootstrapping a statistical machine transliteration

model from automatically extracted phrase pairs. The model and training algorithm are

straightforward extensions of those described by Finch and Sumita (2010). The proposed
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method was proved effective in partial noise identification and transliteration bootstrapping

in experiments with Japanese-to-English patent documents.



Chapter 5

Syntax-based Post-ordering for Efficient

Reordering

There are two main problems in SMT: lexical (word and phrasal) translation and reordering.

The standard SMT approach solves these problems jointly in an integrated search with a

limited reordering distance to reduce search complexity. However, this limit must be set

at a large value for languages requiring extremely long distance reordering (e.g., Japanese-

English), thereby restricting its usefulness as a method for increasing decoding speed. This

work tackles the difficulty of long distance reordering in Japanese-to-English translation.

One promising approach is to employ a two-step framework in which lexical transla-

tion and reordering are isolated explicitly, in contrast to the integrated search. In a sense,

this two-step framework provides another alternative besides the distortion limit for sim-

plifying the search space. Most previous two-step technologies use pre-ordering to reorder

source language words in the target language word order before lexical translation (Xia

and McCord, 2004; Collins et al., 2005; Costa-jussà and Fonollosa, 2006; Li et al., 2007;

Tromble and Eisner, 2009; Xu et al., 2009; Hong et al., 2009; Genzel, 2010). Currently

pre-ordering works very effectively in English-to-Japanese translation utilizing syntactic

parsing in English (Isozaki et al., 2010b; Isozaki et al., 2012), while that in Japanese-to-

English translation (Katz-Brown and Collins, 2008)(Kondo et al., 2011; Hoshino et al.,

2013b) is much less effective, possibly due to an asymmetry in reordering.

There is another two-step method that employs reordering after lexical translation using
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Source language

Target-ordered source

Vocabulary: source
Word order: source

Vocabulary: source
Word order: target

Vocabulary: target
Word order: target

Vocabulary: target
Word order: source

Target language

Source-ordered target

Pre-ordering
Standard SMT

integrated reordering &
lexical translation

Post-ordering

lexical
translation

lexical
translation

Figure 5.1: Translation directions of standard, pre-ordering and post-ordering SMT ap-

proaches.

an intermediate source-ordered target language (Bangalore and Riccardi, 2000; Matusov et

al., 2005; Na et al., 2009). This approach is called post-ordering as opposed to pre-ordering

(as illustrated in Figure 5.1) . Previous post-ordering methods employ simple reordering

models that are insufficient for Japanese-to-English translation with long distance reorder-

ing. This work proposes a novel syntactic post-ordering method focusing on two problems:

• how to generate the intermediate language, and

• how to solve the post-ordering with long distance reordering.

For the first problem, there is an important advantage that Japanese-ordered English can

be induced from English using the existing accurate English-to-Japanese syntactic pre-

ordering method (Isozaki et al., 2010b; Isozaki et al., 2012). This work tackle the second

problem as another SMT problem by accurate syntax-based SMT with target language syn-

tax. The two-step SMT with the proposed method provides a viable alternative to one-step

syntax-based SMT, which is generally very accurate even with long distance reordering

but very slow in practice. In Japanese-to-English patent translation experiments the pro-

posed method achieves six times faster decoding speed than a baseline, with comparable

translation accuracy.
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5.1 Two-step Statistical Machine Translation with Post-

ordering

As illustrated in Figure 5.1, a standard SMT approach provides a combined solution to the

lexical translation and reordering problems. Syntax-based SMT (Galley et al., 2004; Chi-

ang, 2007; Zollmann and Venugopal, 2006) solves them jointly using synchronous gram-

mar rules. Phrase-based SMT (Koehn et al., 2003; Tillmann, 2004) also solves them jointly

although it is implicitly split by using isolated phrasal translation and reordering models.

In contrast, two-step approaches explicitly split them using intermediate languages. This

work focuses on the two-step approach with post-ordering using a source-ordered target

language as its intermediate language.

The use of an intermediate “source-ordered target” language was proposed by Banga-

lore and Riccardi (2000), for tightly integrated spoken language translation with weighted

finite state transducers (WFSTs). Their method determines dependency-based reordering in

source-ordered target sentences using a finite-state parsing model, which can be trained us-

ing bilingual corpora with automatic word alignment. Its finite-state model only uses word

surfaces as constraints and is not sufficient to capture syntactic structure and reordering for

long sentences. Matusov et al. (2005) and Bangalore et al. (2007) employed simple permu-

tation models with reordering limits; they focused more on lexical translation problems and

were less concerned about long distance reordering. Recently Goto et al. (2012) followed

our work by extending parsing-based post-ordering (Bangalore and Riccardi, 2000), using

tree-to-tree correspondence between English and Japanese-ordered English.

5.2 Proposed Method

This work propose a novel post-ordering method that works efficiently even with long dis-

tance reordering in Japanese-to-English translation, by employing reordering rules used for

English-to-Japanese translation. Its key ideas are:

• the Japanese-ordered English can be induced from English with reordering for “the

reverse direction”, English-to-Japanese
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(Head-Final English
                       to English)

Syntactic parsing

Figure 5.2: Japanese-to-English SMT workflow with proposed method.

• the post-ordering from the source-ordered target language to the target language can

be regarded as an SMT problem

The proposed method uses Head-Final English (HFE) (Isozaki et al., 2010b) as the Japanese-

ordered English, which is very effective in English-to-Japanese translation with pre-ordering.

Figure 5.2 shows an overall SMT workflow with the proposed method. The two-step

SMT can be realized by employing two isolated SMT processes: Japanese-to-HFE lexical

translation and HFE-to-English post-ordering. Models for these problems are trained using

a trilingual corpus: the original bilingual corpus of Japanese and English, and HFE induced

from English by Head Finalization. The first step is undertaken using a standard monotone

phrase-based SMT and the second step is undertaken using a syntax-based SMT.

5.2.1 First Step: Lexical Translation from Japanese to Head-Final En-

glish

The proposed method solves the lexical translation problem as a monotone phrase-based

SMT problem from Japanese to HFE. HFE was proposed in an English-to-Japanese pre-

ordering study based on the head-final characteristics of Japanese; syntactic head words are

almost always located after their modifier words in Japanese. Figure 5.3 shows an example

of HFE together with a parse tree, for an English sentence:
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Figure 5.3: An example parse tree and corresponding HFE sentence. Nodes with a bold out-

line represent syntactic heads for each tree node. The articles “the” and “a” are eliminated

by the rules, and a pseudo-particle “_va0” is inserted after the subject “The oil pressure

control unit 30”.

The oil pressure control unit 30 operates based on a command from the CVT

controller 20.

HFE is different from English as follows (see (Isozaki et al., 2010b; Isozaki et al., 2012)

for details).

(1) Syntactic head words (represented with bold ovals in Figure 5.3) are located at the

end of their siblings (except for coordination).

(2) Plural nouns (POS: NNS) are replaced with singular nouns.

(3) Articles “a”, “an”, and “the” are eliminated.

(4) Pseudo-particles are inserted immediately after verb arguments1:

– _va0 for subjects of the sentence head verb

– _va1 for subjects of other verbs

– _va2 for objects of verbs

1A syntactic perspective is adopted for the subject-object relation, although it should be semantically

swapped for passive voice verbs.
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controller  20  from  command  on  based  operates

(oil pressure) (control) (unit) topic
marker

(control) (unit) (from) (command) (operation)(based)

oil  pressure  control  unit  30  _va0  CVT

Figure 5.4: Word alignments between HFE and Japanese.

[Input Japanese sentence]

[Intermediate head-final English sentence]

[Output English sentence]

[Reference]

first f e lens 17 _va0 first lens 22 and second lens 23 of composed is .

the first f e lens 17 is composed of a first lens 22 and the second lens 23 .

the first f e lens 17 is composed of a first lens 22 and a second lens 23 .

Monotone lexical translation (Japanese-to-HFE)

Syntax-based post-ordering with long distance reordering (HFE-to-English)

Figure 5.5: Example of two-stage translation in post-ordering approach.

Point (1) above relates to the head-final word order, and the others are intended to

achieve better word-level alignment between Japanese and HFE by bridging morpho-syntactic

gaps (extends Korean-English heuristics (Hong et al., 2009) to Japanese-English). As

shown in Figure 5.4, the HFE words have monotonic word correspondences with the Japanese

words. This monotonicity makes Japanese-to-HFE lexical translation monotonic, as shown

in the upper part of Figure 5.5.

5.2.2 Second Step: Syntax-based Post-ordering from Head-Final En-

glish to English

The proposed method tackles the post-ordering problem as another SMT problem from

HFE to English. In the proposed approach, this problem can be regarded as the inverse of

the problem of Head Finalization from English to HFE. The syntax-based SMT is applied
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to this problem for the following reasons:

• The order of words in English depends strongly on their syntactic roles and syntactic

information in English is expected to help the post-ordering.

• Many accurate English syntactic parsers have been developed.

• Syntax-based SMT works well in long distance reordering, although it requires long

decoding time (as presented later in Section 5.3).

Since English syntactic parsing is used to obtain HFE, a parallel corpus of HFE strings

and English parse trees can be obtained from English sentences. Here, when training trans-

lation rules, word alignments between HFE and English are obvious and their phrasal cor-

respondence can easily be identified2. It is also worth noting that HFE and English have

certain differences as regards plural nouns and articles of English, and pseudo-particles of

HFE. These differences are included in the translation rule table and the post-ordering step

corrects them.

In the intermediate lexical translation result in Figure 5.5, the English verb phrase “is

composed of” is reversed and located at the end of the sentence as in Japanese. There

are also no articles “a” and “the”, but there is a pseudo-particle _va0. The word order is

corrected by the post-ordering as an HFE-to-English translation. Here articles are inserted

and the pseudo-particle is eliminated.

5.2.3 Time Complexity

The time complexity of syntax-based SMT by a CKY-based decoding with binarized gram-

mars is O(n3), where n is the number of input words (Chiang, 2007). This can be reduced

by introducing a reordering limit (maximum word span in the CKY-based decoding) but it

is not suitable for long distance reordering. On the other hand, the time complexity of the

monotone lexical translation step with Moses-like stack decoding is O(n) (Koehn, 2010)

and the syntax-based post-ordering also has the time complexity of O(n3). Thus the time

complexity of the proposed method is theoretically equivalent to that of the original syntax-

based SMT.

2This is a similar methodology to the “reordering tuples” presented by Costa-jussà and Fonollosa (2006).
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Here, there is an important difference between Japanese-to-English translation and HFE-

to-English post-ordering as regards their translation ambiguity. Japanese-to-English trans-

lation has to explore many competing hypotheses in lexical translation with a large number

of translation rules. As a result, the actual computational cost of the standard syntax-based

SMT is large to handle large lexical translation ambiguity. In contrast, HFE-to-English

translation only tackles the reordering problem and has very small lexical translation am-

biguity (only with plural nouns, articles, and pseudo-particles). Thus, the number of trans-

lation rules is expected to be small and the proposed method runs efficiently with a small

translation ambiguities.

5.2.4 Asymmetry in Pre-ordering between English-to-Japanese and

Japanese-to-English

Here it is worth noting the asymmetry that exists in pre-ordering between English-to-Japanese

and Japanese-to-English translation.

As shown in the example in Figure 5.4, HFE aligns almost monotonically with English.

Japanese is a typical head-final language, so that English syntactic head words can be re-

ordered after their modifiers regardless of their syntactic roles. This pre-ordering process

has little uncertainty and can determine Japanese word order systematically by using only

English-side information. However, English is primarily a head-initial language but also

allows a head-final order such as subject-verb and adjective-noun. This uncertainty makes

it difficult to reorder Japanese words in English word order. In the example sentence in

Figure 5.4, Subject-verb and adjective-noun relations have to be distinguished to induce

the English-ordered Japanese as shown in Figure 5.6, based on a chunk-based dependency

structure (commonly used in Japanese). Distinguishing head-final from head-initial rela-

tions is difficult even with state-of-the-art Japanese parsers, and therefore it is difficult to

realize Japanese-to-English pre-ordering as in English-to-Japanese. In contrast, the pro-

posed method provides one solution for this asymmetry issue by utilizing “pre-ordering in

easier direction”.



71

head-final (subject-verb)

head-final (adjective-noun)

head-initial

head-initial head-initial head-initial head-initial

head-initial head-initial

head-final (adjective-noun)

head-initial

[Inter-chunk order]

[Intra-chunk order]

Figure 5.6: Mixture of head-final (solid lines) and head-initial (dashed lines) order in

English-ordered Japanese (artificial reordering example).

5.3 Experiments

The efficiency of the two-step SMT approach with the proposed method was investigated

by undertaking the following Japanese-to-English translation experiment.

5.3.1 Setup

The NTCIR-9 PatentMT (Goto et al., 2011) English and Japanese dataset were used for this

experiment, with its development set of 2,000 sentence pairs as the development and test

sets of 1,000 sentences each dividing the original development set by the former and latter

halves. Table 5.1 shows some statistics related to this dataset. The dataset was preprocessed

using the following software:

• English syntactic (HPSG) parser: Enju3(Miyao and Tsujii, 2008)

• English tokenizer: stepp (included in Enju)

• Japanese tokenizer: Mecab4 (with ipadic-2.7.0)

The followeing approaches were compared in the experiments:

• Baseline: baseline one-step SAMT without pre-/post-ordering

• Preorder: two-step SMT with pre-ordering (Katz-Brown and Collins, 2008) and SAMT

• Postorder: two-step SMT with the proposed method

3http://www.nactem.ac.uk/tsujii/enju/index.html
4http://mecab.sourceforge.net/
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Table 5.1: Data statistics. HFE stands for Head Final English.

Training Dev. Test

#sentence 3,189,025 1,000 1,000

#Japanese word 115,877,483 37,066 35,921

#English word 105,966,236 33,096 33,376

#HFE word 100,169,813 31,228 31,331

SAMT has a large advantage as regards long distance reordering because of its hierarchical

approach and it also works much better (˜2% or more in BLEU, TER, and RIBES) than

phrase-based (PBMT) (Koehn et al., 2003) and hierarchical phrase-based (HPBMT) (Chi-

ang, 2007) methods (The results with PBMT and HPBMT will be presented later in this

section for reference.).

SAMT rule tables for Baseline and Preorder were trained using a standard Moses work-

flow with automatic word alignment by MGIZA++5, grow-diag-final bidirectional

alignment heuristics, and rule extraction considering unlimited word span. The PBMT

phrase table for lexical translation in Postorder was trained with MGIZA++, grow-diag-

final-and heuristics, and phrase extraction up to 7 words. Here, sentence pairs with

a source or target side longer than 64 words were eliminated before word alignment by

MGIZA++, to avoid any problematic underflow. The SAMT rule table for Postorder was

trained with obvious word alignments between HFE and English and rule extraction taking

account of the unlimited word span. The language models were word 5-gram language

models of English and HFE, trained by SRILM6.

The following four evaluation metrics were used in this experiments:

• BLEU (Papineni et al., 2002) by mteval-v13a.pl

• TER (Snover et al., 2006) by tercom-7.25.jar

• RIBES (Isozaki et al., 2010a) by RIBES-1.02.37

• PER (Tillmann et al., 1997)

5http://sourceforge.net/projects/mgizapp/
6http://www-speech.sri.com/projects/srilm/
7http://www.kecl.ntt.co.jp/icl/lirg/ribes/
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5.3.2 Results

First, the efficiency of two-step SMT with the proposed method was investigated. Two pa-

rameter values in moses_chart were varied to determine the relationship between accuracy

and efficiency: the maximum chart span (-max-chart-span) and the stack size for cube

pruning (-cbp). To realize long distance reordering, the maximum chart span was basi-

cally set to 999. With the proposed method, Japanese-to-HFE translation was a monotonic

PBMT with a very small stack size (-dl 0 -s 5 in moses). Table 5.2 compares decoding

times with similar translation accuracies. The two-step SMT with the proposed method ran

about six times faster than the baseline one-step SAMT with comparable translation accu-

racy. This shows the empirical efficiency of the two-step SMT with the proposed method

compared with the one-step SAMT. The two-step SMT with pre-ordering was much worse

than the other two methods and was not improved by employing a longer reordering limit

or larger stack size.

Next, the results obtained with similar decoding time were compared. Table 5.3 shows

scores obtained with a decoding time similar to that of the two-step SMT with the proposed

method (1.48 seconds per sentence). The baseline one-step SAMT was much worse than

that in Table 5.2, although its decoding time became as fast as that of the two-step SMT

with the proposed method. This clearly shows that a standard SAMT does not work in a

short decoding time due to severe search errors in its too restricted search space.

Finally, the results obtained with larger search spaces using unlimited chart spans with

larger stack sizes were compared. Table 5.4 shows scores for baseline one-step SMT and

two-step SMT obtained with the proposed method with larger stack sizes. The baseline

achieved its best performance, which is even better than that of the proposed method, with

a stack size 500 for TER, and 1000 for RIBES. This suggests that the SAMT was poten-

tially the most accurate, although it was very slow in practice. The two-step SMT with the

proposed method did not improve with larger search spaces and seemed to reach its upper

bound with a stack size of 100.
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Table 5.2: Decoding times (second per sentence and time ratio to Postorder) with similar

translation accuracies in BLEU, TER, RIBES, and PER. Lr stands for reordering limit (-

max-chart-span) and Lc stands for stack size in cube pruning (-cbp).

Method Lr Lc BLEU TER RIBES PER time (sec.)

Baseline 999 50 0.307 0.625 0.733 0.398 9.48 (6.4x)

Preorder 20 100 0.290 0.641 0.714 0.394 1.43 (1.0x)

Postorder 999 100 0.311 0.625 0.734 0.393 1.48

Table 5.3: BLEU, TER, RIBES, and PER scores with similar decoding time.

Method Lr Lc BLEU TER RIBES PER time (sec.)

Baseline 20 5 0.284 0.645 0.719 0.408 1.42 (1.0x)

Postorder 999 100 0.311 0.625 0.734 0.393 1.48

Table 5.4: BLEU, TER, RIBES, and PER scores with larger search space.

Method Lr Lc BLEU TER RIBES PER time (sec.)

Baseline 999 100 0.311 0.622 0.736 0.396 12.2 (8.2x)

500 0.313 0.617 0.741 0.395 17.9 (12x)

1000 0.313 0.620 0.743 0.395 23.5 (16x)

Postorder 999 500 0.313 0.624 0.734 0.392 3.19 (2.2x)

1000 0.312 0.624 0.735 0.392 5.19 (3.5x)

Table 5.5: Number of rules in rule tables for baseline one-step SAMT and proposed post-

ordering.

Method # rules (filtered with test set)

Baseline 25,073,976

Postorder 3,225,339
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Table 5.6: Translation Examples.

(a) Example 1

Source 図5は、冷却フィン34に流れるコモンモード電流の振動成分をfft解析した
ものである。

Reference fig. 5 is a view showing the fft analysis results of the vibration component

of the common mode current flowing into the cooling fin 34.

Baseline fig. 5 is a vibration component of the common mode current flowing through

the cooling fins 34 fft analyzed.

HFE fig. 5 _va0 cooling fin 34 through common mode current of vibration com-

ponent of fft analysis is.

Postorder fig. 5 is a fft analysis of the vibration component of the common mode

current through the cooling fins 34.

(b) Example 2

Source 本実施形態は、本発明を限定するものではない。

Reference the embodiments are not intended to limit the present invention.

Baseline the present embodiment is not limited to those of the present invention.

HFE present embodiment _va0 present invention _va1 limited not is.

Postorder the present embodiment the present invention is not limited.

(c) Example 3

Source ステップs11において、プライマリプーリ11への入力トルクを計算する。

Reference in a step s11, an input torque to the primary pulley 11 is calculated.

Baseline in step s11, the input torque to the primary pulley 11 is calculated.

HFE s11 step in, primary pulley 11 to input torque _va2 calculates.

Postorder in step s11, the input to the primary pulley 11 calculates the torque.

5.3.3 Discussion

Trade-off between Accuracy and Efficiency in Post-ordering Approach

There is generally a trade-off between accuracy and efficiency with the search approxi-

mation. Simple approximations by narrowing rule size, stack size and reordering limit
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certainly increase efficiency but often cause severe degradation in accuracy, as shown in

the baseline results in Tables 5.2 and 5.3. Table 5.5 compares the number of SAMT rules

used for decoding of the test set8 by the baseline SAMT and the proposed post-ordering.

The baseline SAMT has about eight times more rules than the proposed method. The func-

tion of these rules was to handle much larger lexical translation ambiguities in the baseline

SAMT but they also caused a significant increase in the decoding time. Contrary, the pro-

posed post-ordering ran efficiently using much smaller number of rules by excluding lexical

translation ambiguities. Although the proposed method limits lexical translation to 1-best

hypotheses only, these hypotheses are constrained by the intermediate source-ordered tar-

get language. The constrained approximation enables us to realize a more effective lexical

translation than simply narrowing the search space in the integrated search. In Table 5.6(a),

the baseline one-step SAMT failed to reorder “fft” and “analysis” while the two-step SMT

with the proposed method successfully moved them toward the top of the complement.

The baseline tries to solve word translation and reordering jointly and so sometimes fails

to search long distance reordering due to its limited search space.

The proposed approach has possible problems that may degrade its accuracy; inter-

mediate lexical translation results may differ from the ideal source-ordered target language

due to lexical translation errors. The problem was not very severe in the above experiments

but may become serious especially when there are insufficient training data and when many

unknown words appear. Table 5.6(b) shows an example of this kind of error. The HFE sen-

tence in Example 2 had two pseudo-particles for subjects, _va0 and _va1. As a result, the

preceding noun phrases “present embodiment” and “present invention” were both moved

incorrectly toward the beginning of the sentence. This kind of error may occur owing to

the ambiguity of Japanese particles in their syntactic roles. Since the baseline SAMT could

translate this sentence successfully, it can be seen as a side effect of the proposed method.

Example 3 presents another type of error caused by a passive construction in the source

Japanese sentence. The HFE sentence should be “s11 step in, primary pulley 11 to input

torque _va2 calculated is” in the passive voice. However, the active-voice verb “calculates”

was used without its corresponding subject, which meant the post-ordering could not gener-

ate a syntactically correct sentence. The passive voice is very commonly used in Japanese

8We filtered rules to eliminate unnecessary ones for decoding the test set using filter-rule-table.py.
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and sometimes causes serious translation errors especially with SMT. The baseline SAMT

could translate it using appropriate SAMT rules, but the proposed post-ordering did not

rewrite “calculates” in HFE as “is calculated”. These two problems relate to shortcomings

with the two-step SMT as regards post-ordering. The post-ordering depends strongly on

syntactic clues in HFE such as pseudo-particles and prepositions to determine syntactic

constraints for hierarchical reordering. However, if these clues are not correct, the post-

ordering has to explore hypotheses satisfying those wrong constraints and tends to generate

syntactically incorrect English sentences.

Difficulty of Isolated Lexical Translation and Post-ordering

The above experimental results suggest that separating the lexical and post-ordering prob-

lems can be achieved more easily than finding a solution to the integrated problem. We

quantitatively analyzed their respective difficulties. Tables 5.7 and 5.8 show stage-wise re-

sults for Japanese-to-HFE monotone lexical translation and HFE-to-English post-ordering,

respectively.

Surprisingly, as shown in Table 5.7, the use of larger stack sizes did not help to improve

the lexical translation accuracy of all the evaluation metrics. This means that the lexical

translation with the proposed method was unambiguous and could be solved very efficiently

with a small stack size.

Table 5.8 shows the stage-wise results of the HFE-to-English post-ordering with dif-

ferent reordering limits, using the oracle HFE sentences taken from English reference sen-

tences as the input. The scores were very high, especially with a large maximum chart

span. This suggests that the HFE-to-English post-ordering can be achieved effectively and

efficiently by SAMT.

Standard phrase-based SMT (PBMT) and hierarchical phrase-based SMT (HPBMT)

were also applied to the post-ordering problem. Table 5.9 shows the results. HPBMT

was slightly better in RIBES than PBMT but worse than SAMT. HPBMT also captured a

hierarchical structure but had fewer constraints with respect to constituent types compared

with SAMT. PBMT focused more on local context so its BLEU was better than that of

HPBMT. Larger reordering limit values were also tested but showed unsuccessful results;

this clearly suggests that the phrasal reordering model used in PBMT is not sufficient for
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Table 5.7: Stage-wise evaluation results of Japanese-to-HFE monotone lexical translation

(evaluated with oracle HFE sentences HFEoracle taken from the English reference sen-

tences). Lr stands for reordering limit (always zero in this table) and Ls stands for stack

size in (-s).

Method Lr Ls BLEU TER RIBES PER time (sec.)

Lexical 0 5 0.347 0.581 0.773 0.386 0.104

Translation 20 0.347 0.581 0.773 0.386 0.162

(Ja-to-HFE) 50 0.347 0.580 0.773 0.385 0.365

100 0.347 0.581 0.773 0.386 0.555

Table 5.8: Stage-wise evaluation results of HFE-to-English translation (using oracle HFE

sentences HFEoracle as inputs). Lr stands for reordering limit (-max-chart-span) and Lc

stands for stack size in cube pruning in (-cbp, always 100 in this table).

Method Lr Lc BLEU TER RIBES PER time (sec.)

15 100 0.669 0.260 0.829 0.0750 0.471

Postorder 20 0.699 0.225 0.865 0.0703 0.568

24 0.713 0.211 0.880 0.0676 0.771

(HFE-to-En) 28 0.722 0.201 0.892 0.0677 0.809

999 0.742 0.179 0.914 0.0673 1.35

Table 5.9: Comparison of SAMT, HPBMT, and PBMT in post-ordering. Lr stands for

reordering limit (-max-chart-span for SAMT and HPBMT, -distortion-limit for

PBMT) and Lc stands for stack size (-cbp for SAMT and HPBMT, -s for PBMT).

Method Lr Lc BLEU TER RIBES PER time (sec.)

SAMT 999 100 0.311 0.625 0.734 0.393 1.48

HPBMT 999 100 0.288 0.646 0.713 0.397 1.23

PBMT 16 100 0.299 0.646 0.699 0.392 1.21

long distance reordering in Japanese-to-English translation.
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5.4 Related Work

Reordering is a theoretically and practically challenging problem in SMT. In early SMT

studies, reordering was modeled by distance-based constraints in the translation model

(Brown et al., 1993; Koehn et al., 2003). This reordering model is easy to compute and

also works with relatively similar language pairs such as French-to-English. Recent PBMT

studies have employed lexicalized phrasal reordering models (Tillmann, 2004; Nagata et

al., 2006; Galley and Manning, 2008) to constrain phrasal orientation using lexical infor-

mation. These models do not directly model long distance reordering and are insufficient

for Japanese-to-English SMT. On the other hand, the use of syntax in SMT (Yamada and

Knight, 2001; Galley et al., 2004; Graehl and Knight, 2004; Zollmann and Venugopal,

2006) are theoretically sound solutions for the reordering problem based on syntactic con-

straints. Hierarchical phrase-based MT (Chiang, 2007) employed a formally syntactic

structure between the source and target languages (Wu, 1997). Treelet translation (Quirk et

al., 2005) employed an isolated subtree reordering models. Although these tree-based mod-

els can achieve long distance reordering in their hierarchical representations, their search

involves large computational complexity.

A novel approach to reordering, called pre-ordering, has been studied in recent years.

Syntax-based methods have been applied to various language pairs (Xia and McCord, 2004;

Collins et al., 2005; Li et al., 2007; Xu et al., 2009; Hong et al., 2009; Genzel, 2010; Katz-

Brown et al., 2011). These syntax-based methods were recently extended by automatically

induced parsers (DeNero and Uszkoreit, 2011; Neubig et al., 2012).

The post-ordering framework also relates to post-editing technologies, which aim to

correct errors in a rule-based translation (Simard et al., 2007; Dugast et al., 2007; Ehara,

2007) or a different type of SMT (Aikawa and Ruopp, 2009). There is a major differ-

ence between post-ordering and post-editing; in the post-editing framework, the preceding

translation process is a complete source-to-target translation, and post-editing itself mainly

provides error correction. In contrast, the SMT framework with post-ordering divides the

entire translation problem into translation and reordering subproblems. It has an advantage

in that the subproblems can be easily and efficiently solved compared with the post-editing
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approach involved in a complete translation process9. Pivot translation (Wu and Wang,

2007) is also similar, in that it solves two translation problems sequentially. The largest

difference between pivot translation and the post-ordering approach is their intermediate

language; the pivot translation uses another language (typically English) while the post-

ordering approach uses reordered target language.

5.5 Conclusion

This work presented a novel syntax-based post-ordering method for efficient Japanese-to-

English SMT with long distance reordering, using Japanese-ordered English induced by

a reordering method for English-to-Japanese. The proposed method provides a practical

alternative to syntax-based SMT by approximately decomposing it into monotone lexical

translation and syntax-based post-ordering with the intermediate language, HFE. It em-

pirically provides a six-fold reduction in the decoding time with a comparable translation

accuracy; it could decode a sentence more than six times faster than a standard SAMT in a

Japanese-to-English patent translation.

This post-ordering is an extension of the reordering model presented by (Bangalore and

Riccardi, 2000) and also can be integrated with lexical translation as in common phrase-

based SMT methods. This increases the time complexity to some extent but is also expected

to balance accuracy and efficiency for long distance reordering.

9The implementation in this work does not exclusively isolate lexical translation and post-ordering; some

degree of word translation is also allowed in the post-ordering to recover modified and eliminated words in

the intermediate language (described in section 5.2.2).
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Japanese-to-English Translation System

for Patents

A Japanese-to-English patent SMT system is developed integrating the proposed tech-

niques: the patent-adapted Japanese word segmentation (Chapter 3), the unknown katakana

word transliteration bootstrapped from a parallel corpus (Chapter 4), and the syntax-based

post-ordering (Chapter 5).

An advantage of the post-ordering framework is that it is easy to integrate the domain-

adapted word segmentation and the unknown word transliteration in its lexical translation

step and that the following reordering step can use the improved lexical translation results.

To implement the same thing in the pre-ordering as Hoshino et al. (2013b), the system needs

domain adaptation of a Japanese syntactic parser in addition to the word segmenter, and a

tight integration of transliteration into the SMT decoding.

The syntactic parsing plays a very important role in the syntax-based SMT, but most

Japanese syntactic parser do not work well in the patent domain due to characteristics

of patents different from general domains (typically newspapers used in parsing studies).

In contrast, English syntactic parsing have been studied on technical documents such as

biomedical articles (Miyao et al., 2008). Such a parser (e.g., Enju (Miyao and Tsujii, 2008))

also works relatively well in the patent domain compared to ones trained using newspaper

data (Isozaki et al., 2012). Since domain adaptation of syntactic parsers is much more dif-

ficult than that of word segmenters, the post-ordering SMT with such a English parser is
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practically useful.

The transliteration step usually implemented as a postprocessing of the SMT to translit-

erate untranslated words, but it gives no effect on reordering in a standard one-pass SMT.

Durrani et al. (2014) proposed a back-off transliteration method to address this problem,

but it requires a special treatment of such a back-off model in the SMT decoder. The pro-

posed system use the transliteration as a postprocessing of the first-pass lexical translation

and the resulting transliterations are used in the second-pass syntax-based reordering. This

enables a simple and straightforward integration of the transliteration in the SMT.

This chapter presents the proposed system with its evaluation results. The results showed

this integrated system further improves the Japanese-to-English patent SMT with the post-

ordering in Chapter 5, by its better lexical translation derived from patent-adapted word

segmentation and term transliteration.

6.1 System Architecture

The system is based on large-scale language resources in the patent domain, a Japanese-

English parallel corpus and monolingual corpora of Japanese and English. The workflow

of the SMT system is illustrated in Figure 6.1. The translation is divided into the following

four processes by the techniques proposed in this thesis work.

1. Japanese word segmentation using a patent-adapted word segmentation model

2. Translation into an intermediate language, Head Final English (HFE), by a monotone

phrase-based SMT

3. Transliteration of untranslated Japanese katakana words (i.e. unknown words in the

previous process) into English words, by a monotone phrase-based SMT in the char-

acter level

4. Post-ordering into English by a syntax-based SMT

The models are trained as follows:

• The word segmentation model is trained using a general domain labeled (word seg-

mented) corpus and a patent unlabeled (not word segmented) corpus as described in

Chapter 3.
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Patent sentence (Ja)

Word sequence (Ja)

Intermediate result (HFE)

Translation result (En)

General-domain 
word segmented 

corpus (Ja)

Monolingual patent 
corpus (Ja)!

[not word segmented]

Patent corpus (Ja)!
[not word segmented]

Patent corpus (En)

Monolingual patent 
corpus (En)

Patent-adapted!
word segmentation

Monotone phrase-
based SMT

Post-ordering by 
syntax-based SMT

Segmentation!
model

Patent corpus (Ja)!
[word segmented]

TM!
(Ja-HFE)

LM!
(HFE)

TM!
(HFE-En)

LM!
(En)

Patent corpus (HFE)

<parallel>

Patent-adapted!
word segmentation

Head 
Finalization

Monolingual patent 
corpus (HFE)Head 

Finalization

Unknown Katakana 
Word Transliteration!!(as monotone phrase-based 
SMT in the char. level)

TM!
(Ja char.-En char.)

LM!
(En char.)

Syntactic parsing

Syntactic parsing

Figure 6.1: Training and translation workflow by the patent-oriented Japanese-to-English

SMT.

• The transliteration model is trained using transliteration pairs mined from the parallel

corpus as described in Chapter 4.

• The translation models used in the monotone phrase-based SMT and syntax-based

SMT are trained using the parallel corpora as described in Chapter 5. Since HFE can

be generated automatically by the Head Finalization rules, we can easily obtain the

parallel corpus of three languages: Japanese, English, and HFE.

• The language models are trained using the monolingual corpora. The monolingual

HFE corpus is generated similarly to the HFE portion of the parallel corpus.

The proposed system has a bit complex architecture compared to a standard SMT system

composed of an off-the-shelf word segmenter and a one-pass SMT, but it tackles common

practical problems in the patent SMT discussed in this thesis.
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Tokenizer Training Development Test9 Test10

(2,862,022 sents.) (2,000 sents.) (2,000 sents.) (2,300 sents.)

Proposed 95,465,533 75,020 75,962 101,309

Baseline 94,914,460 74,627 75,504 100,589

KyTea 101,718,532 80.025 80,842 107,405

MeCab 93,030,977 73,263 74,066 99,163

JUMAN 91,052,206 71,707 72,515 97,205

English 88,192,234 68,854 69,806 94,906

Table 6.1: Bilingual corpus statistics in the number of words for translation experiments.

6.2 Implementation

Here the implementation of the proposed system is summarized with respect to language

resources and software components.

6.2.1 Language Resources

Japanese-to-English patent translation dataset used in NTCIR-9 Goto et al. (2011) and

NTCIR-10 Goto et al. (2013) PatentMT were used for the system. The NTCIR-9 and

NTCIR-10 datasets shared the same training and development sets and used different test

sets. Its bilingual corpus statistics are shown in Table 6.1. Its monolingual corpora in

Japanese (540 million sentences) and English (370 million sentences, 11 billion words)

were also used.

The English sentences were tokenized and parsed by an English syntactic parser Enju

with its “GENIA” models for biomedical articles, and then lowercased. The HFE sen-

tences were obtained from the English sentences by Head Finalization rules. The Japanese

sentences were tokenized by the proposed patent-adapted word segmenter. Several differ-

ent word segmenters were also compared: the baseline word segmenter, and three public

available ones (KyTea, MeCab, and JUMAN), for comparison with the proposed one. Here

in the training set, long sentences exceeding 64 words in either Japanese or English were

filtered out. The segmentation results by KyTea were used for the long sentence filtering
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because it is based on a short word unit and resulted in the largest number of segmented

words. Note that the sentence set was the same for all Japanese segmenters.

6.2.2 Components

Japanese Word Segmentation

The system uses the patent-adapted word segmenter that worked best in the experiments

in section 3.3, the CRF-based segmenter with the BE features from 550 million sentences

and the PD features from 10 million sentences. The segmenter uses a CRF implementa-

tion CRFsuite1, and the n-gram-based BE values are stored in an efficient data structure of

KenLM2 for fast feature extraction from Japanese sentences to be segmented.

Japanese-to-HFE Monotone Phrase-based MT

The Japanese-to-HFE monotone PBMT is implemented with Moses (version 2.1), which

is a newer version than that used in the experiments in section 5.3. Its phrase table was

trained using the Japanese-HFE parallel sentences with MGIZA++ word alignment and

grow-diag-final-and alignment symmetrization heuristics, limiting the maximum phrase

length to seven. The reordering limit is set to zero, but a standard lexicalized reordering

model (wbe-msd-bidirectional-fe) is used to constrain adjacent phrase translations.

The language model is a word 6-gram language model with interpolated modified Kneser-

Ney smoothing trained with KenLM (with the option “-prune 0 0 1” to prune singletons

for orders three and higher) using the HFE monolingual corpus. The model weights were

optimized in BLEU Papineni et al. (2002) using Minimum Error Rate Training (MERT)

Och (2003). The best weights were chosen among ten individual runs of MERT.

Katakana Transliteration

The transliteration model is a Moses-based monotone PBMT in the character level. Its

character-based phrase table was trained using the set of extracted transliteration frag-

ments from the katakana-English phrases used in the experiments in section 4.3 (Proposed

1http://www.chokkan.org/software/crfsuite/
2https://kheafield.com/code/kenlm/
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with FullyAligned), with MGIZA++-based re-alignment and grow-diag-final-and align-

ment symmetrization heuristics, limiting the maximum phrase length to seven. The re-

ordering limit is set to zero, and no reordering model is used. The language model is a

character 9-gram with interpolated modified Kneser-Ney smoothing trained with SRILM

using the English character sequences from the English monolingual corpus. The model

weights were optimized in BLEU in the character level using MERT.

HFE-to-English Syntax-based MT

The HFE-to-English syntax-based was implemented with Moses-chart and trained using the

HFE sentences and the corresponding English parse trees. Its reordering parameter max-

chart-span was set to 200 to allow arbitrary distance reordering for accurate Japanse-to-

English translation3. The search space parameter cube-pruning-pop-limit was set to

32 for efficiency. The language model is a word 6-gram one trained similarly to that for the

preceding PBMT, using the English monolingual corpus. The model weights were the best

ones among ten individual runs of MERT to optimize BLEU.

6.3 Evaluation

The performance of the proposed system by the following experiments was evaluated. The

experiments were basically similar to the ones in Chapter 5, but used different, latest NTCIR

test sets. The main concern in the experiments were effects of the domain-adapted word

segmentation and unknown word transliteration on the post-ordering SMT in the proposed

system. Several SMT configurations were compared for the evaluation: with different word

segmenters, with and without transliteration.

6.3.1 Compared Methods

The following segmenters were compared for the translation experiments.

• Baseline: the baseline word segmenter trained only using the labeled data and the

baseline features

3It exceeded the maximum sentence length in the development and test sets.
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• Proposed: the patent-adapted segmenter using the labeled general-domain corpus and

the large-scale unlabeled patent corpus with the BE and PD features

• KyTea, MeCab, and JUMAN4: publicly available Japanese morphological analyzers

The results by the post-ordering were also compared with those by standard SAMT and

PBMT. The search space parameters of the standard SAMT were set to the same value as

the HFE-to-English SAMT, to compare the performance with similar computation time5.

6.3.2 Results and Discussion

Table 6.2 shows the translation performance in BLEU and TER with the results of statisti-

cal significance tests (p=0.05) by bootstrap resampling (Koehn, 2004), in which the overall

system resulted in the best. The table also shows the results of intermediate Japanese-to-

HFE translation. The advantage of the system can be attributed to three techniques included

in the system: domain adaption of word segmentation, katakana unknown word transliter-

ation, and post-ordering.

First, the post-ordering contributed the largest and significant improvements compared

with the standard SAMT and PBMT, by about 1-2 points in BLEU and 2-3 points in TER.

They basically followed the results by (Sudoh et al., 2013d).

Second, the proposed word segmentation showed significant improvements in most

cases, by the better intermediate translation results shown at the bottom of Table 6.2. Al-

though the absolute improvement was not so large, the domain adaptation worked con-

sistently. These results suggest that the domain adaptation of word segmentation actually

worked for the patent SMT. The advantage of the patent-adapted word segmentation was

also analyzed by the number of unknown words in translation. Table 6.3 shows the num-

bers of unknown kanji and katakana words that were not translated in the monotone PBMT,

by the five word segmenters in the experiments. These values reflect the consistency and

granularity problem in word segmentation (Chang et al., 2008). If the word segmentation

4http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN
5Actually the post-ordering needs the time for the first monotone PBMT but it ran very fast and did not

affect so much Sudoh et al. (2013d).
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System Ja word Test9 Test10

segmenter BLEU (%) TER (%) BLEU (%) TER (%)

Overall system Proposed 34.77 +51.86 35.75 50.71

(Ja-HFE monotone PBMT Baseline +*34.29 +*52.16 +*35.21 +50.90

+ transliteration KyTea +*34.42 +*52.30 *35.37 *51.38

+ HFE-En SAMT) MeCab +*34.52 +*52.21 +*35.41 +*50.92

JUMAN +34.59 +52.10 +*35.41 +*51.00

Post-ordering Proposed 34.75 51.90 35.71 50.71

(Ja-HFE monotone PBMT Baseline *34.18 *52.30 *35.14 50.96

+ HFE-En SAMT) KyTea *34.32 *52.40 *35.33 *51.41

MeCab *34.33 *52.35 *35.28 *51.03

JUMAN *34.50 52.19 *35.35 *51.07

SAMT (efficiency-oriented) MeCab *33.11 *53.26 *33.67 *52.19

PBMT (distortion limit=12) MeCab *31.96 *55.04 *33.06 *53.77

Ja-HFE monotone PBMT Proposed 35.87 49.05 37.11 48.19

Baseline *35.30 *49.46 *36.46 *48.58

KyTea *35.50 *49.77 *36.66 *48.86

MeCab *35.45 *49.57 *36.71 *48.54

JUMAN 35.70 *49.42 *36.65 *48.73

Table 6.2: Results of overall Japanese-to-English translation and intermediate Japanese-

to-HFE translation in BLEU and TER. + indicates the difference from the results without

transliteration is statistically significant. * indicates the difference from Proposed in the

same group is statistically significant.

is consistent and have relatively small granularity (choosing shorter words), the number of

the unknown words becomes small. The granularity is closely related to the problem of

compound words in this work; the translation of compound words becomes easy if they are

segmented to short and appropriate component words. MeCab and JUMAN are dictionary-

based word segmenters that have an advantage on precise segmentation of in-vocabulary

words. JUMAN used a large-scale dictionary collected from web texts covering many
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JUMAN:

Proposed:

縮小  側  共  役  面  を

縮小  側  共役  面  を
reduction

side plane
case!
markerconjugate

摺  動  自在  に

摺動  自在  に
slide free case!

marker

Figure 6.2: Examples of small granularity segmentation for out-of-vocabulary words by

JUMAN.

domain-specific words, and resulted in a smaller number of unknown words than MeCab.

KyTea and this paper’s segmenter are character-based ones that have an advantage on iden-

tifying out-of-vocabulary words (as shown in Table 3.2). KyTea worked well on kanji

words, but derived a large number of katakana unknown words. It was probably due to the

difference of embedded information between ideogram (kanji) and phonogram (katakana).

Katakana compound words are usually difficult to segment only by their poor character-

based information. The proposed method used reliable word boundary clues derived from

the large-scale corpora and achieved consistent word segmentation of katakana compound

words with more appropriate granularity than others, as suggested by the smallest number

of katakana unknown words in Table 6.3. Such an advantage was not found in kanji words

compared to KyTea and JUMAN. However, JUMAN tended to choose small granularity

segmentations for out-of-vocabulary words as shown in the examples in Figure 6.2, so these

results may not indicate directly the disadvantage of the proposed method.

Finally, the transliteration itself did not improve BLEU and TER significantly in the

system, although some significant improvements were found in the results by the other

segmenters because of their many unknown katakana words. Its effect was limited only on

the unknown katakana words and their context words (related to the word n-gram language

model and the post-ordering) and did not contribute well to BLEU and TER with a small

number of the unknown katakana words. The transliteration accuracy in the intermediate

HFE results with the transliteration was analyzed as shown in Table 6.4. About a half of

the unknown katakana words were transliterated correctly. This improvement is practically

important for the assimilation.
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Ja word test9 test10

segmenter kanji katakana kanji katakana

Proposed 18 (18) 30 (20) 29 (23) 34 (20)

Baseline 54 (43) 87 (59) 98 (71) 101 (59)

KyTea 10 (10) 108 (79) 14 (14) 132 (78)

MeCab 48 (39) 68 (50) 100 (73) 87 (55)

JUMAN 2 (2) 48 (41) 9 (9) 71 (45)

Table 6.3: Statistics of unknown kanji and katakana words (non-translated words by mono-

tone PBMT). The numbers in parentheses are the number of unique unknown words.

Test9 Test10

53.33 (16/30) 59.37 (19/32)

Table 6.4: Transliteration accuracy in sample-wise correctness (ACC) in the proposed sys-

tem.

6.4 Conclusion

This chapter presented our Japanese-to-English SMT system specialized for patent trans-

lation, including the effective word segmentation by our domain adaptation method, the

unknown katakana word transliteration, and the efficient syntax-based post-ordering. The

system achieved better translation performance than those using existing Japanese word

segmenters and standard SMT methods.
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Conclusions

This thesis addressed Japanese-to-English SMT for technical documents such as patents.

The target MT task is beneficial for practical industrial needs such as surveys and distribu-

tion of technical information written in Japanese. The translation of such technical docu-

ments can be literal and suitable for the MT but has problems on technical terms and long

sentences, which are distinguished ones from other translation tasks in different language

pairs and domains. This thesis work focused on these problems in this target task: Japanese

word segmentation, unknown word translation, and long distance reordering.

The first problem was the word segmentation of uncommon technical terms in Japanese

patents. This thesis work proposed the use of the branching entropy as word segmentation

clues in discriminative semi-supervised Japanese word segmentation with very large-scale

unlabeled Japanese patent corpora for adapting word segmentation to the patent domain.

It works better than the existing methods using the accessor variety, by probabilistic char-

acteristics of the BE independent from the corpus size. This enables effective Japanese

word segmentation with no additional human annotations using unlabeled patent corpora

together with the limited number of existing general-domain labeled corpora.

The second problem was unknown technical terms that cannot be translated due to the

lack of bilingual correspondence in the SMT training data. This thesis work focused on the

fact that more than a half of these unknown words are transliterated katakana words. Sta-

tistical transliteration was used as a character-based machine translation using the translit-

eration fragments extracted from the sentence-aligned bilingual patent corpora. This the-
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sis work proposed a novel noise-aware alignment method that can identify partial noise

in transliteration candidates, and improved transliteration accuracy for unknown katakana

words in the patent dataset.

The third problem was the long distance reordering in long patent sentences that causes

very large computational complexity in the Japanese-to-English SMT. This thesis work pro-

posed a novel SMT framework called post-ordering, as opposed to the pre-ordering that is

very effective in English-to-Japanese direction. The proposed post-ordering conducts lexi-

cal translation firstly and then conducts reordering based on a syntax-based SMT technique,

to obtain syntactically motivated translation results in English. Although the post-ordering

is an approximation of the general syntax-based SMT, it can reduce the computational cost

largely without performance drop in the translation accuracy.

Finally a patent SMT system was developed using these techniques within the Moses-

based SMT framework. The system achieved the better translation evaluation scores than

several baselines with general-purpose word segmenters and the standard SMT techniques.

7.1 Contributions of this Thesis Work

A main contribution of this thesis work is the development of practical techniques for the

Japanese-to-English SMT for technical documents. Most of previous MT and NLP stud-

ies were established on general domain data such as newspaper articles. This thesis work

focused on MT problems on technical documents that involved different essential prob-

lems from other types of documents. Although this thesis work used patent data as the

major target, the approaches can also be applied to other kinds of technical documents with

large-scale document archives such as manuals and research articles. Since translation of

such specialized documents usually requires expert knowledge for human translators, the

proposed techniques are beneficial to practical MT with less human efforts.

With respect to the individual problems, the contribution of this thesis work is two-fold.

First, most previous studies on Japanese-to-English patent SMT did not address the techni-

cal term problem but applied existing general domain word segmenters without transliter-

ating unknown words. This thesis work demonstrates the use of monolingual and bilingual

patent corpora actually helps overcome the unknown word problem without additional hu-
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man annotations. Second, the long-distance reordering is one of the most important problem

in the field of SMT. In contrast to the previous studies that use the pre-ordering based on the

source language syntax, this thesis work proposed a novel post-ordering framework based

on the target language syntax. This increased efficiency of the syntax-based MT with the

target language syntax that was computationally more expensive than that with the source

language syntax.

7.2 Future Work

There are some future prospects of further studies on SMT from this thesis work.

First, it is important to expand translation target domains of SMT. Domain adaptation

for resource-poor domains is a promising direction. There may be no sufficient document

archives nor bilingual documents in demanded domains. Although some studies tried to

realize domain adaptation by a model mixture, that is not sufficient for translating domain-

specific terms. Acquiring a domain-specific lexicon from non-parallel bilingual language

resources is very important for such a purpose.

Second, there are different translations that have to be distinguished according to con-

texts and domains. For example in patents, a word may have different standard terms in

the target language, or different meanings in different technical fields. This kind of term

consistency or ambiguity cannot be handled by the standard SMT framework and causes

serious misunderstanding. Context-awareness related to document and discourse struc-

ture, and coreference resolution is a more challenging problem. These problems motivates

document-wise MT towards high-quality MT just like expert human translators.

Finally, we need to explore better automatic evaluation methodologies reflecting actual

understandability. Since the current evaluation metrics only focuses on unweighted word-

based agreement, they cannot penalize serious translation errors, for example a negative

sentence is translated into an affirmative sentence by dropping a negation expression. This

kind of problem must be handled also in the SMT modeling for more practical MT.
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