Order of operators determined by operator mean

Masaru Nagisa
Graduate School of Science,
Chiba University

1 Introduction

This is a joint work with Prof. M. Uchiyama.

Let J be an open interval of \mathbb{R}. We define H_n, $H_n(J)$ and H_n^+ as follows:

\[
H_n = \{A \in \mathbb{M}_n(\mathbb{C}) \mid A = A^*\}
\]

\[
H_n(J) = \{A \in H_n \mid \text{Sp}(A) \subset J\}
\]

\[
H_n^+ = H_n([0, \infty)).
\]

We call f an operator monotone function on J if we have $f(A) \leq f(B)$ for any $A, B \in H_n(J)$ with $A \leq B$. The following functions are well known as typical examples of operator monotone functions:

\[
f(t) = t^p \quad (0 \leq p < 1) \quad \text{on } J = [0, \infty),
\]

\[
f(t) = \frac{at + b}{ct + d} \quad (a, b, c, d \in \mathbb{R}, ad - bc = 1) \quad \text{on } J = (-\infty, -d/c) \text{ or } (-d/c, \infty).
\]

For the operator monotone function f on J, it does not necessarily follow that $A, B \in H_n(J)$, $f(A) \leq f(B) \Rightarrow A \leq B$.

So we consider the following condition for $C \in H_n(J)$ and $A, B \in H_n$:

\[
f(C + tA) \leq f(C + tB) \quad \text{for any } 0 < t < \epsilon,
\]

(*)

where ϵ is a sufficiently small positive number. One of our problems is to determine the condition for f or for C, which deduces $A \leq B$ from the condition(*).

By Kubo-Ando theory [5], it is known that an operator mean σ is related to the operator monotone function f on $[0, \infty)$ with $f(1) = 1$, that is, for $A, B \in H_n([0, \infty))$, the operator mean $A\sigma B$ of A and B is represented as the following form:

\[
A\sigma B = A^{1/2}f(A^{-1/2}BA^{-1/2})A^{1/2}.
\]

So we can naturally consider the following condition for $X, Y \in H_n((0, \infty))$ and $A, B \in H_n$ which is similar to above problem:

\[
Y\sigma(tA + X) \leq Y\sigma(tB + X) \quad \text{for any } 0 < t < \epsilon,
\]

(**)

where ϵ is a sufficiently small positive number. Our results is as follows:
Theorem 1. The condition (**) implies $A \leq B$ is equivalent to that X is a scalar multiple of Y or the operator monotone function f associated with σ has the form $f(t) = \frac{at+b}{ct+d}$.

2 Outline of Proof

We show the following:

Fact 1. When $X = cY$ for some positive scalar c, (**) implies $A \leq B$.

Fact 2. When the operator monotone function f has the following form:

$$f(t) = \frac{at+b}{ct+d} \quad a, b, c, d \in \mathbb{R}, \ ad-bc > 0,$$

(**) implies $A \leq B$.

Fact 3. When X is not scalar multiple of Y and f does not have the form $f(t) = \frac{at+b}{ct+d}$, then there exist positive operators A and B such that $A \not\preceq B$ and they satisfy the condition (**) for X, Y and f.

Combining these facts, we can get Theorem 1. So we will explain these facts.

Let f be an operator monotone function on J. For $A \in H_n(J)$, we denote the Fréchet derivative of f at A by $Df(A)$, that is,

$$\lim_{\|H\| \to 0} \frac{\|f(A+H) - f(A) - D(f)(A)\|}{\|H\|} = 0.$$

We remark $Df(A)$ a bounded real linear operator on H_n. We also denote the directional derivative of f at A in the direction B by $Df(A)(B)$, that is,

$$Df(A)(B) = \frac{d}{dt} f(A + tB)_{t=0}.$$

We choose some unitary U such that

$$\Lambda = U^*AU = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}.$$

Then it is known that

$$Df(A)(B) = U(f^{[1]}(\Lambda) \circ (U^*BU))U^*,$$

where $f^{[1]}(\Lambda) = (f^{[1]}(\lambda_i, \lambda_j))$,

$$f^{[1]}(\lambda_i, \lambda_j) = \begin{cases} \frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j} & \lambda_i \neq \lambda_j \\ f'(\lambda_i) & \lambda_i = \lambda_j \end{cases}.$$
and the notation \circ means Schur product of matrices.

Since f is operator monotone, $f^{[1]}(\Lambda)$ becomes positive. When $A = cI$,

$$f^{[1]}(cI) = \begin{pmatrix} f'(c) & \cdots & f'(c) \\ \vdots & \ddots & \vdots \\ f'(c) & \cdots & f'(c) \end{pmatrix}$$

is positive and of rank 1. It is also known that the operator monotone function f has the form

$$f(t) = \frac{at + b}{ct + d},$$

if $f^{[1]}(\Lambda)$ is of rank 1 for some $\Lambda \neq cI$ (see [3]).

The following proposition is a key idea of this paper:

Proposition 2. For $A = (a_{ij}) \in H_n^+$, we consider the map $S_A : H_n \ni B \mapsto A \circ B \in H_n$. Then the following are equivalent:

1. For $B \in H_n$, $S_A(B) \geq 0 \Rightarrow B \geq 0$.
2. A is of strict rank 1, that is, there exists $\gamma = (\gamma_1 \gamma_2 \cdots \gamma_n)$ such that $A = \gamma^*\gamma$ and $\gamma_1\gamma_2\cdots\gamma_n \neq 0$.
3. $S_A(H_n^+) = H_n^+$.

(4) For any k, l ($1 \leq k, l \leq n$), $a_{kk} > 0$ and $a_{kk}a_{ll} - a_{kl}a_{lk} = 0$.

We can prove $(1) \Rightarrow (4) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$. This proof has been written in [6]. Here we give only the part $(1) \Rightarrow (4) \Rightarrow (2)$, because the rest part of proof is not so difficult.

Proof. $(1) \Rightarrow (4)$ When $a_{kk} = 0$, we define $B = (b_{ij})$ as follows:

$$b_{ij} = \begin{cases} -1 & \text{if } (i, j) = (k, k) \\ 0 & \text{otherwise} \end{cases}$$

Since $B \not\simeq 0$ and $S_A(B) = A \circ B = 0 \geq 0$, this contradicts to the assumption. So $a_{kk} > 0$ for all k.

The positivity of A implies that

$$\begin{pmatrix} a_{kk} & a_{kl} \\ a_{lk} & a_{ll} \end{pmatrix} \geq 0,$$

in particular, $a_{kk}a_{ll} - a_{kl}a_{lk} \geq 0$. We assume that $a_{kk}a_{ll} - a_{kl}a_{lk} > 0$. We define $B = (b_{ij})$ as follows:

$$b_{ij} = \begin{cases} \frac{|a_{kl}|}{a_{kk}} & \text{if } (i, j) = (k, k) \\ \frac{|a_{kl}|}{a_{kk}} & \text{if } (i, j) = (l, l) \\ \frac{|a_{kl}|}{a_{ul}} & \text{if } (i, j) = (k, l) \text{ or } (l, k) \\ 1 & \text{if } (i, j) = (k, l) \text{ or } (l, k) \\ 0 & \text{otherwise} \end{cases}.$$
Since $|a_{kl}|^2 = a_{kl}a_{lk} < a_{kk}a_{ll}$, we have $B \neq 0$. But we have

$$(A \circ B)_{ij} = \begin{cases} |a_{kl}| & \text{if } (i, j) = (k, k) \text{ or } (l, l) \\ a_{kl} & \text{if } (i, j) = (k, l) \\ a_{lk} & \text{if } (i, j) = (l, k) \\ 0 & \text{otherwise} \end{cases},$$

and $A \circ B \geq 0$. This contradicts the assumption. So we can get the following:

$$a_{kk}, a_{ll} > 0, \quad a_{kk}a_{ll} = a_{kl}a_{lk} (= |a_{kl}|^2).$$

(4) \Rightarrow (2) Define $r_k > 0 \ (k = 1, 2, \ldots, n)$ by the following relation:

$$a_{kk} = r_k^2.$$

Then, for any k and l, we can choose $\theta(k, l) \in \mathbb{R}$ such that

$$a_{kl} = r_k r_l e^{i\theta(k, l)},$$

and we may assume that the following relation:

$$e^{i\theta(k,l)} = e^{-i\theta(l,k)}, \quad e^{i\theta(k,k)} = 1.$$

If we show the relation

$$e^{i\theta(k,l)}e^{i\theta(l,m)} = e^{i\theta(k,m)}$$

for any k, l and m, then we can see that A is of strict rank 1 as follows:

$$\begin{pmatrix} r_1 \\ r_2 e^{-i\theta(1,2)} \\ \vdots \\ r_n e^{-i\theta(1,n)} \end{pmatrix} (r_1 \quad r_2 e^{i\theta(1,2)} \quad \cdots \quad r_n e^{i\theta(1,n)}) = \begin{pmatrix} r_1 \\ r_2 e^{i\theta(2,1)} \\ \vdots \\ r_n e^{i\theta(n,1)} \end{pmatrix} (r_1 \quad r_2 e^{i\theta(1,2)} \quad \cdots \quad r_n e^{i\theta(1,n)}) = \begin{pmatrix} r_1 \quad r_2 e^{i\theta(1,2)} \quad \cdots \quad r_1 r_n e^{i\theta(1,n)} \\ r_2 r_1 e^{i\theta(2,1)} \quad r_2^2 e^{i\theta(2,1)} e^{i\theta(1,2)} \quad \cdots \quad r_2 r_n e^{i\theta(2,1)} e^{i\theta(1,n)} \\ \vdots \quad \vdots \quad \ddots \quad \vdots \\ r_n r_1 e^{i\theta(n,1)} \quad r_n r_2 e^{i\theta(n,1)} e^{i\theta(1,2)} \quad \cdots \quad r_n^2 e^{i\theta(n,1)} e^{i\theta(1,n)} \end{pmatrix} = A.$$
It suffices to show the relation \(e^{i\theta(k,l)}e^{i\theta(l,m)} = e^{i\theta(k,m)} \) in the case of each two of \(k, l, m \) are different. By the positivity of \(A \), we have

\[
\begin{pmatrix}
 a_{kk} & a_{kl} & a_{km} \\
 a_{lk} & a_{ll} & a_{lm} \\
 a_{mk} & a_{ml} & a_{mm}
\end{pmatrix} \geq 0.
\]

Since

\[
\begin{pmatrix}
 a_{kk} & a_{kl} & a_{km} \\
 a_{lk} & a_{ll} & a_{lm} \\
 a_{mk} & a_{ml} & a_{mm}
\end{pmatrix} = \begin{pmatrix}
 r_k^2 & r_k r_l e^{i\theta(k,l)} & r_k r_m e^{i\theta(k,m)} \\
 r_l r_k e^{i\theta(l,k)} & r_l^2 & r_l r_m e^{i\theta(l,m)} \\
 r_m r_k e^{i\theta(m,k)} & r_m r_l e^{i\theta(m,l)} & r_m^2
\end{pmatrix}
\]

and

\[
\alpha = e^{-i\theta(k,l)}e^{-i\theta(l,m)}e^{i\theta(k,m)},
\]

we have

\[
\begin{pmatrix}
 1 & 1 & \alpha \\
 1 & 1 & 1 \\
 \bar{\alpha} & 1 & 1
\end{pmatrix} \geq 0.
\]

Remarking that \(|\alpha| = 1 \) and

\[
0 \leq \langle \begin{pmatrix}
 1 & 1 & \alpha \\
 1 & 1 & 1 \\
 \bar{\alpha} & 1 & 1
\end{pmatrix}, \begin{pmatrix}
 -1 & 2 \\
 2 & -1 \\
 -1 & 2
\end{pmatrix} \rangle = \alpha + \bar{\alpha} - 2,
\]

we can get \(\alpha = 1 \). So we have the desired relation. \(\square \)

We now consider the condition, for \(C \in H_n(J) \) and \(A, B \in H_n \):

\[
f(C + tA) \leq f(C + tB) \quad \text{for any } 0 < t < \epsilon. \tag{\star}
\]

Since

\[
\frac{f(C + tA) - f(C)}{t} \leq \frac{f(C + tB) - f(C)}{t},
\]

we have \(Df(C)(A) \leq Df(C)(B) \), i.e., \(Df(C)(B-A) \geq 0 \). As stated above \(f^{[1]}(C) \) is of strict rank 1 when \(C = cI \) or \(f(t) \) has the form \((at+b)/(ct+d) \). Using the property (1) in Proposition 2, we have the following:

Fact 1': When \(C = cI \) for some scalar in \(J \), \(\star \) implies \(A \leq B \).

Fact 2': When the operator monotone function \(f \) on \(J \) has the following form:

\[
f(t) = \frac{at + b}{ct + d} \quad a, b, c, d \in \mathbb{R}, \quad ad - bc > 0,
\]

\(\star \) implies \(A \leq B \).
When \(f \) does not have the form \((at+b)/(ct+d)\), \(f^{[1]}(\Lambda) \) is not of rank 1 for
\[\Lambda = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \] (\(\lambda \neq \mu \in J \)). This means \(f'(\lambda)f'(\mu) > f^{[1]}(\lambda,\mu)^2 \). So we choose
\[H = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \in H_2 \] with \(h_{11}, h_{22} > 0 \) and
\[h_{11}h_{22} < |h_{12}|^2 < \frac{f'(\lambda)f'(\mu)}{f^{[1]}(\lambda,\mu)^2}h_{11}h_{22}. \]

Then \(H \not\simeq 0 \) and \(Df(\Lambda)(H) = f^{[1]}(\Lambda) \circ H > 0 \). Let \(A, B \geq 0 \) with \(H = B - A \). Since
\[
0 < Df(\Lambda)(H) = Df(\Lambda)(B) - Df(\Lambda)(A) \\
= \lim_{t\to 0} \left(\frac{f(tB + \Lambda) - f(\Lambda)}{t} - \frac{f(tA + \Lambda) - f(\Lambda)}{t} \right) \\
= \lim_{t\to 0} \frac{f(tB + \Lambda) - f(tA + \Lambda)}{t},
\]
there exists \(\epsilon > 0 \) such that
\[f(tB + \Lambda) - f(tA + \Lambda) \geq 0 \]
for \(0 < t < \epsilon \). In the case, \(A \not\leq B \) because \(H \not\simeq 0 \).

Using the embedding
\[
H_2 \ni \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & x_{12} & 0 & \cdots & 0 \\ x_{21} & x_{22} & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \in H_n,
\]
we can prove the following:

Fact 3'. When \(C \) is not scalar operator in \(H_n(J) \) and \(f \) does not have the form
\[f(t) = \frac{at+b}{ct+d}, \] then there exist positive operators \(A \) and \(B \) such that \(A \not\leq B \) and they satisfy the condition \((*)\).

Using the relation of an operator monotone function \(f \) on \((0, \infty)\) with \(f(1) = 1 \) and the operator mean \(\sigma \) related with \(f \), i.e.,
\[A\sigma B = B^{1/2}f(A^{-1/2}BA^{-1/2})B^{1/2}, \]
we can prove **Fact i** from **Fact i'** \((i = 1, 2, 3)\).

References

Graduate School of Science
Chiba University
Chiba 263-8522
JAPAN
E-mail address: nagisa@math.s.chiba-u.ac.jp