<table>
<thead>
<tr>
<th>Title</th>
<th>Univalence and starlikeness of a function defined by convolution of analytic function and hypergeometric function (_3F_2) (Some inequalities concerned with the geometric function theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shimoda, Yutaka; Nakamura, Yayoi; Owa, Shigeyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2014, 1878: 85-93</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/195599</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Univalence and starlikeness of a function defined by convolution of analytic function and hypergeometric function $\text{}_{3}F_{2}$

Yutaka Shimoda, Yayoi Nakamura, and Shigeyoshi Owa

Abstract

We consider functions defined by a condition of functions in the subclass $\mathcal{U}(\lambda)$ of analytic functions with generalized Gauss hypergeometric functions. In this paper, we give a condition of the parameter λ for which the function to be univalent and starlike.

1 Introduction

Let \mathcal{A} denote the class of functions $f(z)$ of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

that are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$, and let \mathcal{S} be the subclass of \mathcal{A} consisting of $f(z)$ that are univalent in \mathbb{U}.

Obradović and Ponnusamy define in [4] the class $\mathcal{U}(\lambda)$ of $f(z) \in \mathcal{A}$ satisfying the condition

$$\left| \left(\frac{z}{f(z)} \right)^2 f'(z) - 1 \right| \leq \lambda \quad (z \in \mathbb{U})$$

for some real $\lambda > 0$, where f' denotes the derivative of f with respect to the variable z. We set $\mathcal{U}(1) = \mathcal{U}$. It is easy to see that the condition (1.2) is equivalent to

$$z^2 \left(\frac{1}{f(z)} - \frac{1}{z} \right)' \leq \lambda \quad (z \in \mathbb{U}).$$

If $f(z) \in \mathcal{S}$ maps \mathbb{U} onto a starlike domain (with respect to the origin), i.e. if $tw \in f(\mathbb{U})$ whenever $t \in [0,1]$ and $w \in f(\mathbb{U})$, then we say that f is a starlike function. The class of all starlike functions is denoted by \mathcal{S}^*. A necessary and sufficient condition for $f(z) \in \mathcal{A}$ to be starlike is that the inequality

$\text{2010 Mathematics Subject Classification:}$ Primary 30C45.

$\text{Key Words and Phrases:}$ Analytic, starlike, Convolution(Hadamard Product)
\[\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > 0 \quad (z \in U) \]

holds.

For these facts, the following lemmas hold.

Lemma 1 ([3]) If \(f(z) \in \mathcal{U}(\lambda), \) \(a := \frac{|f''(0)|}{2} \leq 1 \) and \(0 \leq \lambda \leq \frac{\sqrt{2-a^2}-a}{2}, \) then \(f(z) \in \mathcal{S}^*. \)

Lemma 2 ([7]) If \(f(z) = z + a_{n+1}z^{n+1} + \cdots (n \geq 2) \) belongs to \(\mathcal{U}(\lambda) \) and

\[0 \leq \lambda \leq \frac{n-1}{\sqrt{(n-1)^2 +1}}, \]

then \(f(z) \in \mathcal{S}^*. \)

For analytic functions \(f(z) \) and \(g(z) \) on \(U \) with \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) and \(g(z) = \sum_{n=0}^{\infty} b_n z^n \), the power series \(\sum_{n=0}^{\infty} a_n b_n z^n \) is said the convolution of \(f(z) \) and \(g(z) \), denoted by \(f * g \) (cf ([5])).

For \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) in \(\mathcal{A} \), we have a natural convolution operator defined by

\[zF(a, b; c; z) * f(z) := \sum_{n=1}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} a_{n} z^n, \quad c \in \{-1, -2, -3, \cdots\}, z \in \mathbb{U}, \]

where \((a)_n \) denotes the Pochhammer symbol \((a)_0 = 1, (a)_n = a(a+1)\cdots(a+n-1) \) for \(n \in \mathbb{N} \). Here \(F(a, b; c; z) \) denotes the Gauss hypergeometric function which is analytic in \(U \).

As a special case of the Euler integral representation for the hypergeometric function, one has

\[F(1, b; c; z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} \frac{1}{1-tz} (1-t)^{c-b-1} dt, \quad z \in U, \quad \text{Re} \ c > \text{Re} \ b > 0. \]

Using this representation, we have, for \(f(z) \in \mathcal{A}, \)

\[zF(1, c; c+1; z) * f(z) = z \left(F(1, c; c+1; z) * \frac{f(z)}{z} \right) = z c \int_{0}^{1} \frac{f(tz)}{tz} t^{c-1} dt, z \in U, \quad \text{Re} \ c > 0. \]

Obradović and Ponnusamy have shown the following result.

Theorem A ([5])

Let \(f \in \mathcal{U}(\lambda) \) and \(c \in \mathbb{C} \) with \(\text{Re} \ c > 0 \) such that

\[\left(\frac{z}{f(z)} \right) * F(1, c; c+1; z) \neq 0 \quad \text{in} \quad z \in U, \]
and \(G(z) = G_f^c(z) \) be the transformed function defined by

\[
G(z) = \frac{z}{f(z)} * F(1, c; c + 1; z) \quad (z \in U).
\]

Then we have the following:
(1) \(G \in \mathcal{U} \left(\frac{\lambda |c|}{|c + 2|} \right) \). The result is sharp especially when \(\left| \frac{f''(0)}{2} \right| \leq 1 - \lambda \). In particular, \(G \in \mathcal{U} \) whenever \(0 < \lambda \leq \left| \frac{c + 2}{c} \right| \).
(2) \(G \in S^* \) whenever \(0 < \lambda \leq \frac{|c + 2|}{2|c|} (\sqrt{2 - A^2} - A) \) with \(A = \left| \frac{c + 2}{c + 1} \right| \leq 1 \).

2 Main Result

For the generalized hypergeometric function \({}_3F_2(1, \alpha, \beta; \alpha + 1, \beta + 1; z) \), we obtain

Theorem 1

Let \(f(z) \in \mathcal{U}(\lambda) \). Let \(\alpha, \beta \in \mathbb{C} \) satisfying

\[
\text{Re} \alpha \geq 0, \quad \text{Re} \beta \geq 0, \quad \frac{1}{|\alpha + \beta|} \left(\frac{|\alpha| |\beta|}{|\beta + 2|} + \frac{|\beta| |\alpha|}{|\alpha + 2|} \right) < 1 \quad \text{and} \quad |\alpha + \beta| > |\alpha \beta|
\]

and

\[
\frac{z}{f(z)} * {}_3F_2(1, \alpha, \beta; \alpha + 1, \beta + 1; z) \neq 0, \quad z \in U.
\]

Denote by \(G(z) = G_f^{\alpha, \beta}(z) \) the function defined by

\[
(2.1) \quad G(z) = \frac{z}{f(z)} * {}_3F_2(1, \alpha, \beta; \alpha + 1, \beta + 1; z), \quad z \in U,
\]

where \({}_3F_2(1, \alpha, \beta; \alpha + 1, \beta + 1; z) \) is the generalized hypergeometric function. Then we have the following:
(1) \(G(z) \in \mathcal{U} \left(\frac{\lambda |\alpha + \beta|}{|\alpha + \beta + 4|} \right) \). The result is sharp especially when \(\left| \frac{f''(0)}{2} \right| \leq 1 - \lambda \). In particular, \(G(z) \in \mathcal{U} \) whenever \(0 < \lambda \leq \frac{|\alpha + \beta + 4|}{|\alpha + \beta|} \).
(2) \(G(z) \in S^* \) whenever \(0 < \lambda \leq \frac{|\alpha + \beta + 4|}{2|\alpha + \beta|} (\sqrt{2 - A^2} - A) \) with \(A = \left| \frac{\alpha \beta}{(\alpha + 1)(\beta + 1)} \right| \leq 1 \).

Proof.

Since

\[
(2.2) \quad {}_3F_2(1, \alpha, \beta; \alpha + 1, \beta + 1; z) = \sum_{n=0}^{\infty} \frac{\alpha \beta}{(\alpha + n)(\beta + n)} z^n = 1 + \sum_{n=1}^{\infty} \frac{\alpha \beta}{(\alpha + n)(\beta + n)} z^n,
\]
we have
\[
\frac{z}{f(z)} * {}_3F_2(1, \alpha, \beta; \alpha + 1, \beta + 1; z) = 1 - \frac{\alpha \beta a_2}{(\alpha + 1)(\beta + 1)} z + \frac{\alpha \beta (a_2^2 - a_3)}{(\alpha + 2)(\beta + 2)} z^2 + \cdots
\]

\[
= \left\{ 1 - \frac{\alpha a_2}{\alpha + 1} z + \frac{\alpha(a_2^2 - a_3)}{\alpha + 2} z^2 + \cdots \right\} \cdot \left\{ 1 - \frac{\beta a_2}{\beta + 1} z + \frac{\beta(a_2^2 - a_3)}{\beta + 2} z^2 + \cdots \right\}
\]

\[
= \left\{ \frac{z}{f(z)} * F(1, \alpha; \alpha + 1; z) \right\} * F(1, \beta; \beta + 1; z).
\]

Thus \(G(z) \) can be written as
\[
G(z) = \frac{z}{\left\{ \frac{z}{f(z)} * F(1, \alpha; \alpha + 1; z) \right\} * F(1, \beta; \beta + 1; z)}.
\]

In the same manner, \(G(z) \) can be also written as
\[
G(z) = \frac{z}{\left\{ \frac{z}{f(z)} * F(1, \beta; \beta + 1; z) \right\} * F(1, \alpha; \alpha + 1; z)}.
\]

Put
\[
h_1(z) = \frac{z}{f(z)} * F(1, \alpha; \alpha + 1; z), \quad h_2(z) = \frac{z}{f(z)} * F(1, \beta; \beta + 1; z).
\]

then
\[
\frac{z}{f(z)} * F(1, \alpha; \alpha + 1; z) = \frac{z}{h_1(z)}, \quad \frac{z}{f(z)} * F(1, \beta; \beta + 1; z) = \frac{z}{h_2(z)}.
\]

By the Theorem A in the introduction, we have
\[
h_1(z) \in \mathcal{U} \left(\frac{\lambda |\alpha|}{|\alpha + 2|} \right) \quad \text{i.e.} \quad \left| \left(\frac{z}{h_1(z)} \right)^2 h_1'(z) - 1 \right| < \frac{\lambda |\alpha|}{|\alpha + 2|}
\]

and
\[
h_2(z) \in \mathcal{U} \left(\frac{\lambda |\beta|}{|\beta + 2|} \right) \quad \text{i.e.} \quad \left| \left(\frac{z}{h_2(z)} \right)^2 h_2'(z) - 1 \right| < \frac{\lambda |\beta|}{|\beta + 2|}.
\]

Since
\[
\frac{z}{G(z)} = \frac{z}{h_1(z)} * F(1, \beta; \beta + 1; z) \quad (z \in \mathbb{U}),
\]

we have
\[
(\beta + 1) \frac{z}{G(z)} - \left(\frac{z}{G(z)} \right)^2 G'(z) = \beta \frac{z}{G(z)} + z \left(\frac{z}{G(z)} \right)'.
\]

On the other hand, \(\frac{z}{G(z)} \) can be also written as
\[
\frac{z}{G(z)} = \frac{z}{h_2(z)} * F(1, \alpha; \alpha + 1; z) \quad (z \in \mathbb{U}),
\]
we have

\[(2.4) \quad (\beta + 1) \frac{z}{G(z)} - \left(\frac{z}{G(z)} \right)^2 G'(z) = \beta \frac{z}{G(z)} + z \left(\frac{z}{G(z)} \right)'. \]

Then we have

\[(2.5) \quad (\alpha + 1) \frac{z}{G(z)} - \left(\frac{z}{G(z)} \right)^2 G'(z) = \alpha \frac{z}{h_2(z)} \quad (z \in \mathbb{U}) \]

and

\[(2.6) \quad (\beta + 1) \frac{z}{G(z)} - \left(\frac{z}{G(z)} \right)^2 G'(z) = \beta \frac{z}{h_1(z)} \quad (z \in \mathbb{U}). \]

Set

\[p(z) = \left(\frac{z}{G(z)} \right)^2 G'(z). \]

Then \(p(z)\) is analytic on \(\mathbb{U}\) with \(p(0) = 1\) and \(p'(0) = 0\), and

\[(2.7) \quad p(z) = (\alpha + 1) \frac{z}{G(z)} - \alpha \frac{z}{h_2(z)} \]

and

\[(2.8) \quad p(z) = (\beta + 1) \frac{z}{G(z)} - \beta \frac{z}{h_1(z)}. \]

From (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8) one then obtain that

\[\alpha p(z) + z p'(z) = (\alpha + 1) \alpha \frac{z}{G(z)} + (\alpha + 1)z \left(\frac{z}{G(z)} \right)' - \alpha^2 \frac{z}{h_2(z)} - \alpha z \left(\frac{z}{h_2(z)} \right)' \]

\[= \alpha \left[(\alpha + 1) \frac{z}{h_2(z)} - \alpha \frac{z}{h_2(z)} - z \left(\frac{z}{h_2(z)} \right) \right] \]

\[= \alpha \left[\frac{z}{h_2(z)} - z \left(\frac{z}{h_2(z)} \right) \right] \]

\[= \alpha \left(\frac{z}{h_2(z)} \right)^2 h_2'(z) \]

and

\[\beta p(z) + z p'(z) = (\beta + 1) \beta \frac{z}{G(z)} + (\beta + 1)z \left(\frac{z}{G(z)} \right)' - \beta^2 \frac{z}{h_1(z)} - \beta z \left(\frac{z}{h_1(z)} \right)' \]

\[= \beta \left[(\beta + 1) \frac{z}{h_1(z)} - \beta \frac{z}{h_1(z)} - z \left(\frac{z}{h_1(z)} \right) \right] \]

\[= \beta \left[\frac{z}{h_1(z)} - z \left(\frac{z}{h_1(z)} \right) \right] \]

\[= \beta \left(\frac{z}{h_1(z)} \right)^2 h_1'(z). \]
Since
\[(\alpha + \beta)p(z) + 2zp'(z) = \alpha \left(\frac{z}{h_2(z)} \right)^2 h_2'(z) + \beta \left(\frac{z}{h_1(z)} \right)^2 h_1'(z), \]
we have
\[p(z) + \frac{2}{\alpha + \beta}zp'(z) = \frac{\alpha}{\alpha + \beta} \left(\frac{z}{h_2(z)} \right)^2 h_2'(z) + \frac{\beta}{\alpha + \beta} \left(\frac{z}{h_1(z)} \right)^2 h_1'(z). \]

Now, as \(h_1(z) \in \mathcal{U}\left(\frac{\lambda|\alpha|}{|\alpha + 2|} \right)\) and \(h_2(z) \in \mathcal{U}\left(\frac{\lambda|\beta|}{|\beta + 2|} \right)\), it follows that
\[
\left| p(z) + \frac{2}{\alpha + \beta}zp'(z) - 1 \right| = \left| \frac{\alpha}{\alpha + \beta} \left(\frac{z}{h_2(z)} \right)^2 h_2'(z) - 1 \right| + \left| \frac{\beta}{\alpha + \beta} \left(\frac{z}{h_1(z)} \right)^2 h_1'(z) - 1 \right|
\leq \left| \frac{\alpha}{\alpha + \beta} \right| \left(\frac{z}{h_2(z)} \right)^2 \left| h_2'(z) - 1 \right| + \left| \frac{\beta}{\alpha + \beta} \right| \left(\frac{z}{h_1(z)} \right)^2 \left| h_1'(z) - 1 \right|
\leq \frac{\lambda|\alpha + \beta|}{|\alpha + \beta| |\beta + 2|} + \frac{\lambda|\alpha|}{|\alpha + \beta| |\alpha + 2|}
= \lambda \left\{ \frac{1}{|\alpha + \beta|} \left(\frac{|\alpha||\beta|}{|\beta + 2|} + \frac{|\beta||\alpha|}{|\alpha + 2|} \right) \right\}.
\]

By the assumption, we have
\[(2.9) \quad \left| p(z) + \frac{2}{\alpha + \beta}zp'(z) - 1 \right| < \lambda. \]

From the work of Hallenbeck and Rusheweyh ([2], [6]), we deduce that
\[(2.10) \quad |p(z) - 1| \leq \frac{\lambda|\alpha + \beta|}{|\alpha + \beta + 4|} \quad (z \in \mathbb{U}). \]

Thus we have \(G(z) \in \mathcal{U}\left(\frac{\lambda|\alpha + \beta|}{|\alpha + \beta + 4|} \right)\).

To prove the sharpness, we consider functions \(f(z) \in \mathcal{U}(\lambda)\) of the form
\[f(z) = \frac{z}{1 - a_2 z + \lambda z^2}, \]
where \(a_2 = \frac{f''(0)}{2}\) and \(|a_2| \leq 1 - \lambda\), so that \(1 - a_2 z + \lambda z^2 \neq 0\) for all \(z \in \mathbb{U}\). Since Re \(\alpha \geq 0\) and Re \(\beta \geq 0\), it follows that \(|\alpha + 2| > |\alpha + 1| > |\alpha|\) and \(|\beta + 2| > |\beta + 1| > |\beta|\) and, therefore
\[\left| 1 - a_2 \frac{\alpha\beta}{(\alpha + 1)(\beta + 1)} z + \lambda \frac{\alpha\beta}{(\alpha + 2)(\beta + 2)} z^2 \right| \neq 0 \]
for all \(z \in \mathbb{U}\), provided \(|a_2| \leq 1 - \lambda\). By the series expansion (2.2) of \(3F_2(1, \alpha, \beta; \alpha + 1, \beta + 1; z)\), we have
\[G(z) = \frac{z}{1 - \frac{a_2 \alpha\beta}{(\alpha + 1)(\beta + 1)} z + \frac{\lambda (\alpha\beta)}{(\alpha + 2)(\beta + 2)} z^2}. \]
Obviously, $G(z)$ is analytic on U and $\frac{z}{G(z)} \neq 0$ on U. Since
\[
\left(\frac{z}{G(z)} \right)^2 G'(z) - 1 = -\frac{\lambda \beta}{(\alpha + 2)(\beta + 2)} z^2,
\]
we have that
\[
(2.11) \quad \left| \left(\frac{z}{G(z)} \right)^2 G'(z) - 1 \right| \leq \frac{\lambda |\alpha \beta|}{|\alpha + 2)(\beta + 2)|}.
\]
Now, let us compare the right hand sides of (2.10) and (2.11). Firstly, since $|\alpha + \beta + 4| < |(\alpha + 2)(\beta + 2)|$, then $\frac{1}{1} < \frac{1}{|\alpha + \beta + 4|}$. From the assumption, we see
\[
\frac{|\alpha \beta|}{|\alpha + 2)(\beta + 2)|} < \frac{|\alpha + \beta|}{|\alpha + 2)(\beta + 2)|} < \frac{|\alpha + \beta|}{|\alpha + \beta + 4|}.
\]
Then, we have that
\[
\left| \left(\frac{z}{G(z)} \right)^2 G'(z) - 1 \right| \leq \frac{\lambda |\alpha \beta|}{|\alpha + 2)(\beta + 2)|} < \frac{|\alpha + \beta|}{|\alpha + \beta + 4|}.
\]
Thus, we have that the bound $\frac{|\alpha + \beta|}{|\alpha + \beta + 4|}$ is sharp. We conclude that the first assertion of
Theorem 1.

The second assertion is a direct consequence of Lemma 1. In fact, obviously
\[
A = \frac{G''(0)}{2} = \frac{\alpha \beta}{(\alpha + 1)(\beta + 1)} \frac{f''(0)}{2}
\]
is smaller than or equal to 1.

Theorem 2

For a fixed $n \geq 2$, let $f(z) = z + a_{n+1}z^{n+1} + \cdots$ belong to $\mathcal{U}(\lambda)$. Let $\alpha, \beta \geq 0$ and
\[
\Re \alpha \geq 0, \Re \beta \geq 0, \frac{1}{|\alpha + \beta|} \left(\frac{|\alpha||\beta|}{|\beta+n|} + \frac{|\alpha||\beta|}{|\alpha+n|} \right) < 1,
\]
and
\[
\frac{z}{f(z)} \ast_3 F_2(1, \alpha, \beta; \alpha + 1, \beta + 1; z) \neq 0, \quad z \in U.
\]
and $G(z) = G_{f \alpha \beta}^\alpha(z)$ be the transform function defined by (2.1). Then we have the following:

1. $G(z) \in \mathcal{U} \left(\frac{\lambda |\alpha + \beta|}{|\alpha + \beta + 2n|} \right)$. In particular, $G(z) \in \mathcal{U}$ whenever $0 < \lambda \leq \frac{|\alpha + \beta + 2n|}{|\alpha + \beta|}$.

2. $G(z) \in S^*$ whenever $0 < \lambda \leq \frac{(n-1)|\alpha + \beta + 2n|}{|\alpha + \beta|\sqrt{(n-1)^2 + 1}}$.

Proof. Using the Gaussian hypergeometric function, $G(z)$ can be written as
\[G(z) = \frac{z}{\left\{ \frac{z}{f(z)} \ast F(1, \alpha; \alpha + 1; z) \right\} \ast F(1, \beta; \beta + 1; z)} \]

and

\[G(z) = \frac{z}{\left\{ \frac{z}{f(z)} \ast F(1, \beta; \beta + 1; z) \right\} \ast F(1, \alpha; \alpha + 1; z)} \]

Put

\[h_3(z) = \frac{z}{\frac{z}{f(z)} \ast F(1, \alpha; \alpha + 1; z)}, \quad h_4(z) = \frac{z}{\frac{z}{f(z)} \ast F(1, \beta; \beta + 1; z)} \]

Then

\[\frac{z}{f(z)} \ast F(1, \alpha; \alpha + 1; z) = \frac{z}{h_3(z)}, \quad \frac{z}{f(z)} \ast F(1, \beta; \beta + 1; z) = \frac{z}{h_4(z)} \]

We see

\[h_3(z) \in U \left(\frac{\lambda|\alpha|}{|\alpha+n|} \right) \]

i.e. \(\left(\frac{z}{h_3(z)} \right)^2 h_3'(z) - 1 < \frac{\lambda|\alpha|}{|\alpha+n|} \)

and

\[h_4(z) \in U \left(\frac{\lambda|\beta|}{|\beta+n|} \right) \]

i.e. \(\left(\frac{z}{h_4(z)} \right)^2 h_4'(z) - 1 < \frac{\lambda|\beta|}{|\beta+n|} \)

Since

\[\frac{z}{f(z)} = \frac{1}{1 + a_{n+1}z^n + \cdots} = 1 - a_{n+1}z^n + \cdots, \]

so that

\[\frac{z}{f(z)} \ast {}_3F_2(1, \alpha, \beta; \alpha + 1, \beta + 1; z) = 1 - a_{n+1} \left\{ \frac{\alpha\beta}{(\alpha+n)(\beta+n)} \right\} z^n + \cdots \]

Thus, \(G(z) \) can be written in the form

\[G(z) = z + a_{n+1} \left\{ \frac{\alpha\beta}{(\alpha+n)(\beta+n)} \right\} z^{n+1} + \cdots. \]

Therefore, as in the proof of Theorem 1, the function \(p(z) \) defined by

\[p(z) = \left(\frac{z}{G(z)} \right)^2 G'(z) = 1 + (n-1)a_{n+1} \left\{ \frac{\alpha\beta}{(\alpha+n)(\beta+n)} \right\} z^n + \cdots \]

is analytic in \(U \) and \(p(0) = 1, \ p'(0) = \cdots = p^{(n-1)}(0) = 0. \ p(z) \) can be written as

\[p(z) = (\alpha + 1) \frac{z}{G(z)} - a \frac{z}{h_3(z)} \]

and

\[p(z) = (\beta + 1) \frac{z}{G(z)} - b \frac{z}{h_4(z)} \]

By the same argument of proof of Theorem 1 using \(h_3(z) \) and \(h_4(z) \) instead of \(h_1(z) \) and \(h_2(z) \), \(p(z) \) satisfies (2.9). Consequentry, we obtain that

\[|p(z) - 1| \leq \frac{\lambda|\alpha + \beta||z|^n}{|\alpha + \beta + 2n|} \quad (z \in U), \]

and the proof of part(1) is complete. The second part is a direct consequence of Lemma 2.
References

Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
E-Mail: yutakashimoda119@gmail.com
yayoi@math.kindai.ac.jp
shige21@ican.zaq.ne.jp