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This perspective emphasizes that the brain-machine interface (BMI) research has the
potential to clarify major mysteries of the brain and that such clarification of the mysteries
by neuroscience is needed to develop BMIs. I enumerate five principal mysteries. The
first is “how is information encoded in the brain?” This is the fundamental question
for understanding what our minds are and is related to the verification of Hebb’s cell
assembly theory. The second is “how is information distributed in the brain?” This is also a
reconsideration of the functional localization of the brain. The third is “what is the function
of the ongoing activity of the brain?” This is the problem of how the brain is active during
no-task periods and what meaning such spontaneous activity has. The fourth is “how does
the bodily behavior affect the brain function?” This is the problem of brain-body interaction,
and obtaining a new “body” by a BMI leads to a possibility of changes in the owner’s brain.
The last is “to what extent can the brain induce plasticity?” Most BMIs require changes
in the brain’s neuronal activity to realize higher performance, and the neuronal operant
conditioning inherent in the BMIs further enhances changes in the activity.

Keywords: brain-machine interface, neuronal coding, cell assembly, functional localization, ongoing activity,
brain-body interaction, brain plasticity

INTRODUCTION
A brain-machine interface (BMI) is used to enable the neuro-
prosthetic control of external devices by neuronal activity instead
of body parts movements (Lebedev and Nicolelis, 2006; Berger
et al., 2008; Hatsopoulos and Donoghue, 2009; Nicolelis and
Lebedev, 2009; Andersen et al., 2010; Moran, 2010; Green and
Kalaska, 2011; Lebedev, 2014). Although the development of
invasive BMIs has been making a steady progress and holds
promises for future clinical use (Lebedev and Nicolelis, 2011;
Lebedev et al., 2011; Nicolelis, 2011; Ethier et al., 2012; Hochberg
et al., 2012; Collinger et al., 2013), currently available BMIs are
limited in terms of accuracy and efficiency with which they can
be controlled. As described in the papers referenced above, it is
possible to indicate some technical factors affecting the limited
performance of current BMIs. However, as also emphasized in
some of the papers (e.g., Nicolelis and Lebedev, 2009; Andersen
et al., 2010), improvements in the technical factors alone cannot
solve all the problems preventing the realization of an ideal
BMI, i.e., a system controlling external neuroprosthetic devices
freely as intended by the brain without any special training. The
ideal BMI required rich and precise information that depends
on the activity and function of the brain. Therefore, as Nicolelis
(2003), Baranauskas (2014), and Mandonnet and Duffau (2014)
has discussed, knowledge of what the brain is and how it works,
the ultimate goals of neuroscience research, are essential for BMI
research. To achieve these goals, the present paper enumerates five
principal mysteries of the brain that must be clarified. It should
be emphasized that BMI research has the potential to clarify these

principal mysteries and, at the same time, their clarification by
neuroscience research is necessary to realize the ideal BMI.

HOW IS INFORMATION ENCODED IN THE BRAIN?
As the final goal of a BMI is to detect neuronal activity repre-
senting information in the brain, BMI research inevitably faces
the problem of how is information encoded in the working brain.
Neuronal coding (e.g., Calvin, 1996; Abbott and Sejnowski, 1999;
Nicolelis, 2001; Nicolelis and Ribeiro, 2006; Holscher and Munk,
2009) is one of the principal mysteries of the brain and may be
the ultimate problem of neuroscience, because its final goal is
to bridge the mind and brain and detect the mind from brain
activity. The early studies of BMIs (Chapin et al., 1999; Wessberg
et al., 2000; Nicolelis and Chapin, 2002) have already produced
very important and instructive findings demonstrating the nature
of the neuronal coding of information. They reported that the
activity of only a limited number of neurons randomly sampled
from the motor cortex of an animal provided sufficient informa-
tion to predict arm kinematics during reaching, as well as hand
gripping force. In addition, the accuracy of prediction increased
as the number of recorded randomly sampled neurons increased.
These results indicate that kinematic and kinetic parameters are
coded not by the activities of specific motor-related neurons but
by the activity of many neurons distributed in the motor cortex.
Subsequent BMI studies more or less supported this notion
of neuronal coding in the motor cortex (e.g., Carmena et al.,
2003). Therefore, as Nicolelis (2003) and Nicolelis and Lebedev
(2009) have suggested, a BMI both utilizes population coding
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by cell assemblies (Hebb, 1949), functionally connected neurons
acting as codes representing information in the working brain
(Eichenbaum, 1993; Sakurai, 1996b, 1999; Harris, 2005; Sakurai
and Takahashi, 2006, 2008; Buzsáki, 2010; Wallace and Kerr, 2010;
Sakurai et al., 2013), and provides new insights on this coding. In
other words, the theory of cell assembly has been further verified
by BMI studies and is approaching an answer to the mystery of
neuronal coding.

Although recent neuroscience studies have often reported
small populations of neurons related to information processing
(e.g., Takahashi and Sakurai, 2009a,b; Opris et al., 2012, 2013)
and BMI research has clearly supported the cell assembly theory,
the existence of cell assemblies as carriers of neuronal codes has
not yet been directly proven, because current BMIs have a bias
in the firing rate or amplitude of neuronal activity used as the
source signals. This bias may be a factor affecting the limited
performance of current BMIs (Sakurai et al., 2014). According to
the notion of cell assembly, synchronous and oscillatory activities
among many neurons may have the potential to be informative
signals for BMIs. It is expected to construct a BMI system which
uses ensemble and correlated firing of distributed many neurons,
in addition to their firing rates, as neuronal source signals.

HOW IS INFORMATION DISTRIBUTED IN THE BRAIN?
BMI studies have revealed the fact that the neurons whose activity
can be used as signals representing information of motor move-
ments are distributed in the motor cortex. Concerning the range
of distribution of such neurons, some BMI studies have obtained
an optimal basis for brain control of devices by recording the
activity of neurons in the precentral (motor) cortical area associ-
ated with actual limb movement (Chapin et al., 1999; Taylor et al.,
2002; Carmena et al., 2003; Hochberg et al., 2006; Koike et al.,
2006; Choi et al., 2009). However, some other studies on BMIs
demonstrated their ability to predict movements from neurons
in the postcentral (parietal) as well as the precentral cortical
areas (Wessberg et al., 2000; Carmena et al., 2003). Although
precentral motor neurons can provide accurate predictions of
force and displacement even in small numbers (Koike et al., 2006;
Choi et al., 2009), many neurons from the parietal and other
cortical areas could also have the potential to provide significant
predictions. The prediction accuracy increased with the number
of neurons included, even when the included neurons were ran-
domly selected from the non-motor area and unrelated to motor
movement in nature (Wessberg et al., 2000; Carmena et al., 2003).
This indicates that neuronal information on motor movements
and forces is widely distributed in cortical areas.

These findings by BMI studies could challenge the classi-
cal and conservative view of functional localization based on
functional divisions in the brain. Constructing functional divi-
sions is a major problem of neuroscience and many researchers
are investigating what functions are localized in what brain
areas. The results of BMI studies indicate that the functional
boundaries are not definite and fixed but obscure and dynamic.
Some BMIs do not necessarily require the selection of func-
tionally specific motor neurons (e.g., Moritz et al., 2008) or, as
described above, a specific motor area in the brain to improve
their performance in brain control of devices. This notion

may be related to the theory of multipotentiality of the brain
(John, 1980). This theory suggests that any neuron and region
may contribute to the mediation of a diversity of functions
and that many neurons and regions contribute to many func-
tions, although it does not imply that different neurons and
regions have complete equivalence of functions or that differ-
ent functions depend equally on diverse neurons and regions.
BMI research may again direct the spotlight on the theory
of multipotentiality and push back the view of too rigid and
too subdivided functional maps. On the other hand, regarding
the use of a BMI as a neuroprosthetic system, it is advanta-
geous for it to have the potential to utilize any neuron and
any brain region unrelated to the target functions replaced by
the BMI.

WHAT IS THE FUNCTION OF THE ONGOING ACTIVITY OF THE
BRAIN?
Invasive BMIs will be continuously introduced to use in daily
life and should function to voluntarily control moving and rest-
ing external devices. Therefore, a principal mystery that BMI
research requires present neuroscience to solve is, as Velliste et al.
(2014) has discussed, how the brain is active during lengthy
periods of behavioral inactivity when no specific tasks are, at
least consciously, being performed. This is the problem of the
“ongoing” or “intrinsic” activity of the brain (Vincent et al., 2007).
Most neuroscience studies have not paid any attention to this
problem and have devoted themselves to recording and analyzing
neural activity only during the performance of various behavioral
tasks. In such recording studies using behavioral tasks, most
researchers have implicitly assumed that the spontaneous neural
activity prior to the presentation of stimuli or motor responses
is an independent random process and have treated it as “base-
line activity” or “background noise” unrelated to information
processing.

However, this view of spontaneous activity was challenged as
early as the 1990s. For example, Arieli et al. (1995) reported that
collective ensembles of activity of many neurons of the visual
cortex occurred not only during stimulus-evoked periods but
also during spontaneous non-stimulus periods. They suggested
that the population activity of neurons is not an independent
random process even during baseline periods. The correlated
activity was detected among neurons comprising a population
and among separate populations of neurons. It can be consid-
ered that these temporally correlated neurons and populations
are cell assemblies, and the ongoing spontaneous activity of
cell assemblies may reflect the processing of the context, which
affects the processing of incoming sensory stimuli or motor
responses (Arieli et al., 1995). The result of Sakurai (1996a)
supports this notion, because the correlated activity of hip-
pocampal and auditory cortical neurons, recorded during non-
stimulus intertrial intervals, represented the context, i.e., the
type of tasks that the animal was currently engaged in. These
studies strongly indicate that important mechanisms underlying
the higher integrative processing of perception, cognition, atten-
tion, and memory depend on the spatiotemporal interactions
between ongoing and event-evoked activities of neurons and cell
assemblies.
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The significant role of the spontaneous activity of neuronal
populations may be related to the assumption of “default mode
network” suggested by noninvasive imaging (PET, fMRI) stud-
ies on human (Raichle, 2010) and monkey (Mantini et al.,
2011) brains. The noninvasive images, which represent the
activity of large populations of neurons, often show periodic
synchronous activation across several close and distant corti-
cal areas during periods of rest with no tasks. Raichle (2010,
2011) suggests that such periodic activation in multiple areas,
the “default mode”, has a preparatory function to process
incoming sensory stimuli or motor responses. Therefore, the
default mode and the ongoing activity have the same fea-
tures and functions and indicate the significant role of the
synchronous activity during periods with no tasks. Further
clarification of its functional role must contribute to further
development of BMIs that can be mounted continuously in daily
life.

HOW DOES THE BODILY BEHAVIOR AFFECT THE BRAIN
FUNCTION?
The brain controls behavioral functions of the body and, at
the same time, the behavior of the body affects the activity
of the brain (Chiel and Beer, 1997). In this notion of brain-
body interaction, the problem of how bodily movements con-
strain brain activity is closely related to BMIs, because BMIs
require the replacement of bodily movements with machine
devices. Typical evidence of the bodily effect on brain activity
and function is the “phantom limb” (Ramachandran and
Hirstein, 1998). A sudden loss of parts of the body often
causes drastic changes in tactile and movement-related per-
ception and generates hallucinations of body images. This
confused representation of perceptual information is consid-
ered to be due to the reorganization of neuronal networks
and the following confused coding of sensory information
(Melzack, 1990). Accordingly, a BMI might change functions
of the brain, especially the neuronal coding of perceptual
information.

The phenomenon of the phantom limb indicates that stable
and precise coding in the brain requires stable and precise inputs
of sensory information generated from the body. This is not
restricted to tactile and movement-related sensations but also
applicable to other sensory inputs. “Charles Bonnet syndrome”
(Menon et al., 2003) is a typical case of visual hallucinations,
i.e., the confused and spontaneous coding of perceptual infor-
mation caused by the complete and long-lasting deprivation
of visual inputs. In addition, isolation experiments cutting off
visual, auditory, and tactile sensory inputs, originally discussed
by Hebb (1949), showed that several types of hallucination can be
generated even in short periods of sensory deprivation (Heron,
1957). If stable and precise sensory inputs are essential for the
normal coding of information, the artificial operation of sensory
inputs may correct the abnormal hallucinations caused by sen-
sory deprivation. This assumption is supported by the “virtual
reality box” experiment (Ramachandran and Hirstein, 1998), in
which the artificial presentation of mirror images of lost parts of
the body often changes or erases hallucinations that involve body
images.

All these findings indicating the importance of sensory inputs
consistent with bodily behaviors recommend the further devel-
opment of BMIs equipped with sensory feedback contingent
with the behaviors of brain-controlling devices. Recently, Tabot
et al. (2013) have succeeded in restoring tactile feedback using a
brain-controlled prosthetic hand. O’Doherty et al. (2011) have
developed a BMBI (brain-machine-brain interface), which can
provide a monkey with not only visual but also tactile feedback
from a brain-controlled device (virtual hand). Further neuro-
science research on brain-body interaction will contribute to
development of BMBIs, and progress in BMBI research will
clarify how the brain interacts with the body, encodes sen-
sory information, and constructs body images (Shokur et al.,
2013).

TO WHAT EXTENT CAN THE BRAIN INDUCE PLASTICITY?
This final section further discusses the BMI-induced plasticity
of the brain and emphasizes why it is inevitable in all BMIs.
Some studies have reported clear changes in the plasticity of
neuronal activities and functions induced by the use of BMIs
(e.g., Zacksenhouse et al., 2007; Ganguly et al., 2011). Such
plastic changes can be thought to be induced to some extent
in most BMI experiments, in which the conversion of neu-
ronal signals is aided by appropriate transform algorithms to
generate suitable control parameters. The conversion parame-
ters obtained for one set of trials provided increasingly poor
predictions of future responses, indicating the drift of neu-
ronal signals over tens of minutes. Therefore, accurate device
control under BMI conditions inevitably requires the neuronal
activity to be volitionally modulated to become more suitable
signals for device control, and the brain surely responds to
the request for activity modulation. The BMI-induced changes
in neuronal activity are not restricted to the regions from
which signals used for device control are recorded. Koralek
et al. (2012, 2013) investigated the role of corticostriatal plas-
ticity, usually involved in learning physical skills, in abstract
skill learning by a BMI using motor cortical neurons. During
the learning of control by the BMI, an alteration of activ-
ity was observed in the striatal neurons, and strong correla-
tions, reflected in oscillatory coupling, between the neuronal
activity in the motor cortex and the striatum emerged. The
authors concluded that temporally precise coherence develops
specifically in motor output-related neuronal populations dur-
ing learning and that the oscillatory activity serves to syn-
chronize widespread brain networks to produce appropriate
behaviors.

Discussion of the mechanisms of BMI-induced plastic changes
in neuronal activity also requires a psychological view, i.e., oper-
ant conditioning. In most BMI situations, the successful control
of devices can function as a reward and reinforces the occurrence
of volitionally modulated neuronal activity to control the devices.
This process of reinforcing the volitional modulation of activity
is the operant conditioning of neuronal activity (Fetz, 1969).
All BMIs are thought to include this process of conditioning
(Fetz, 2007; Sakurai et al., 2014), making plastic changes in
neuronal activity inevitable. This leads to the argument that the
investigation of neuronal operant conditioning (neurofeedback)
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FIGURE 1 | Interactive advancement of researches on BMIs and the
principal mysteries of the brain.

will inevitably contribute to the realization of higher-performing
BMIs (Fetz, 2007; Moritz et al., 2008; Sakurai et al., 2014). In
addition, research on the operant conditioning of synchrony and
oscillation of neurons (Engelhard et al., 2013; Fetz, 2013; Sakurai
and Takahashi, 2013), i.e., the activity of cell assemblies, will
also significantly contribute to the development of BMIs (Sakurai
et al., 2014).

It should be noted that the neuronal plasticity inherent in
BMI experiments is not always an obstacle for the develop-
ment of higher-performing BMIs and can be actively applied
to research on the extent to which the brain can change
and how the brain can be changed efficiently. The former
means that BMI studies are able to classify the real plas-
ticity of the brain. The latter suggests that the development
of BMIs will lead to the development of better methods
of neurorehabilitation to induce changes in neuronal activ-
ities and connections for functional compensation (Dobkin,
2007; Fetz, 2007; Jackson and Fetz, 2011; Miller and Weber,
2011).

CONCLUSION
Although research in modern neuroscience has made great
progress, BMI research has shown that we still do not fully
understand even the major properties of the brain, i.e., the prin-
cipal mysteries enumerated in the present paper. BMI research
has the role of impelling present neuroscience to clarify the
major properties, including the real plasticity, of the brain, and
further progress in neuroscience in uncovering the properties
of the brain contributes to the further development of BMIs
(Figure 1).
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