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1  Introduction
The ternary system, calcium oxidesilicon oxide 
phosphorus oxide, constitutes one of the most fundamen
tal steelmaking slags. Figure 1(a) gives the isothermal 
section of the ternary system CaOSiO2P2O5 near the CaO 
apex at 1573 K, determined by the present authors /1/. As 
can be seen in Figure 1(a), this system has the following 
double oxides;

dicalcium silicate Ca2SiO4 = 2CaO ⋅ SiO2 = C2 S

tricalcium silicate Ca3SiO5 = 3CaO ⋅ SiO2 = C3 S

tricalcium phosphate Ca3P2O8 = 3CaO ⋅ P2O5 = C3 P

tetracalcium phosphate Ca4P2O9 = 4CaO ⋅ P2O5 = C4 P

It has been known that solid solutions form between 
dicalcium silicate, Ca2SiO4, and tricalcium phosphate, 

Ca3P2O8. Figure 1(b) shows the pseudobinary phase 
diagram of Ca2SiO4Ca3P2O8 based upon the work of Fix 
et al. /2/ and includes the following triple oxides;

Ca7P2Si2O16 = 7CaO ⋅ P2O5 ⋅ 2SiO2 = C7 PS2

Ca5P2SiO12 = 5CaO ⋅ P2O5 ⋅ SiO2 = C5 PS

Figure 1(b) illustrates that the temperatures of the phase 
transformations from α′C2 S to αC2 S and from αC3 P to  
α̅C3 P are 1693 K and 1743 K, respectively, and solid solu
tions 〈C2 S-C3 P 〉ss form between αC2 S and α̅C3 P. As seen 
in Figure 1(a), 〈C2 S-C3 P 〉ss can coexist with solid CaO at 
1573 K although the stoichiometric compounds of C2 S and 
C3 P can not. This is consistent with the observation that, 
during phosphorus removal from hot metal, phosphorus 
would often be present in 〈C2 S-C3 P 〉ss coexisting with 

Fig. 1: (a) Iso-thermal section of the ternary system CaO-SiO2-P2O5 
near the CaO apex at 1573 K. (b) Phase diagram of the pseudo-
binary system Ca2SiO4-Ca3P2O8.
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solid CaO /3/. A better understanding of dephosphoriza
tion process would rely on the knowledge of the ther
modynamic properties of 〈C2 S-C3 P 〉ss, whereas there has 
been a definite lack of such data. The present study is 
aimed at deriving the activities of the components at 1573 
K by applying solution models to 〈C2 S-C3 P 〉ss.

2 Calculation

2.1 Solution models

Figure 1(b) reported by Fix et al. /2/ shows that solid solu
tions 〈C2 S-C3 P 〉ss could form between highertemperature 
forms of Ca2SiO4 and Ca3P2O8, represented by αC2 S and 
α̅C3 P, respectively. The lattice structures of these solid 
phases have not been clarified /2/. As illustrated schemat
ically in Figure 2, however, it is not unacceptable that elec
trically neutral molecules of “(1/2)Ca3P2O8” would replace 
with those of “Ca2SiO4”, depending on compositions of 
solid solutions. Such a simple assumption derives the 
definition of the substitution ratio Y, given as

Y ≡ n(1/2)Ca3 P2O8
/(nCa2SiO4

 + n(1/2)Ca3 P2O8
 ) (1)

where ni denotes the number of moles of component i in 
solid solutions. The consideration that the molecular 
mass of “(1/2)Ca3P2O8” is half of that of Ca3P2O8 leads to 
equation (2).

n(1/2)Ca3 P2O8
 = 2nCa3 P2O8

(2)

Inserting equation (2) into equation (1), we have

Y = 2nCa3 P2O8
/(nCa2 SiO4

 + 2nCa3 P2O8
 ) (3)

The present study is aimed at deriving the relative 
partial molar Gibbs free energies of Ca2SiO4 and Ca3P2O8 
within 〈C2 S-C3 P 〉ss at 1573 K. Towards this objective, the 
ideal solution model and the regular solution model were 
applied to solid solutions 〈C2 S-C3 P 〉ss between αC2 S and 
α̅C3 P. The activities of Ca2SiO4 and Ca3P2O8 referred to the 
most stable forms at 1573 K as standard states, i.e., α′C2 S 
and αC3 P, could be formulated as follows.

Ideal Solution Model

RT ln aCa2SiO4
 = DG°t(Ca2 SiO4 ) + RT ln(1 − Y  ) (4)

RT ln aCa3 P2O8
 = 2RT ln a(1/2)Ca3 P2O8
= DG°t(Ca3 P2O8 ) + 2RT ln Y (5)

Regular Solution Model

RT ln aCa2SiO4
 = DG°t(Ca2 SiO4 ) + RT ln(1 − Y  ) + WY 2 (6)

RT ln aCa3 P2O8
 = 2RT ln a(1/2)Ca3 P2O8
= DG°t(Ca3 P2O8 ) + 2RT ln Y + 2W (1 − Y  )2 (7)

where R is the gas constant, DG°t(Ca2 SiO4 ) and 
DG°t(Ca3 P2O8 ) represent the Gibbs free energy changes of 
the phase transformations of Ca2SiO4 and Ca3P2O8, respec
tively, and W is the interaction parameter independent of 
composition and temperature.

2.2  Thermodynamic data used for 
calculations and necessary conditions

Kubashewski, Alcock and Spencer listed the thermal data 
on Ca2SiO4, i.e., heat capacities of α′C2 S and αC2 S, and 
heat of the phase transformation /4/. By extrapolating the 
data for heat capacity of αC2 S at temperature below 1693 K, 
the value for DG°t(Ca2 SiO4 ) at 1573 K could be calculated as

DG°t(Ca2 SiO4 ) ≡ G°(αC2 S) − G°(α′C2 S) 
= 1,132 J ⋅ mol−1  at 1573 K (8)

where G°(i) is the standard Gibbs free energy of substance 
i. On the other hand, the literature data have been lacking 
for the calculation of DG°t(Ca3 P2O8 ). Therefore, the follow
ing formula was assumed in this study.

DG°t(Ca3 P2O8 ) ≡ G°(α̅C3 P) − G°(αC3 P)
= DH°t(Ca3 P2O8) (1 − T/1743) (9)

where DH°t(Ca3 P2O8 ) is the heat of the phase transporta
tion from αC3 P to α̅C3 P at the transition temperature of 
1743 K.

Fig. 2: Schematic illustration of solid solution between Ca2SiO4 and 
Ca3P2O8.
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The reactions of the formations of Ca2SiO4 and Ca3SiO5 
from CaO and SiO2 are expressed as

2 CaO + SiO2 = Ca2SiO4 (10)

3 CaO + SiO2 = Ca3SiO5 (11)

The present authors assessed the thermal data by 
Kubaschewski et al. /4/ to derive the equilibrium con
stants of reactions (10) and (11) thermodynamically con
sistent with phase diagrams; the results could be given as 
follows /5/.

log K(10) = log aCa2 SiO4
 − 2 log aCaO − log aSiO2

= 4.78  at 1573 K (12)

log K(11) = log aCa3 SiO5
 − 3 log aCaO − log aSiO2

= 4.80  at 1573 K (13)

where ai represents the activities of substance i referred to 
pure i of the most stable form at 1573 K. For the standard 
Gibbs free energy changes of the formations of Ca3P2O8 
and Ca4P2O9 from CaO and P2O5, the following literature 
data were accepted.

3 CaO + P2O5 = Ca3P2O8 (14)

DG(14)° = −RT ln K(14)
= −776,300 + 18.6 × (T/K) (J ⋅ mol−1)  /6, 7/ (15)

log K(14) = log aCa3 P2O8
 − 3 log aCaO − log aP2O5

= 24.80  at 1573 K (16)

4 CaO + P2O5 = Ca4P2O9 (17)

DG(17)° = −RT ln K(17)
= −781,500 + 14.8 × (T/K) (J ⋅ mol−1)  /7/ (18)

log K(17) = log aCa4 P2O9
 − 4 log aCaO − log aP2O5

= 25.18  at 1573 K (19)

In this study, aP2O5
 represents the activity of P2O5 referred to 

hypothetical pure liquid P2O5 /8/.
As shown in Figure 1(a), the isothermal section of the 

CaOSiO2P2O5 system near the CaO apex at 1573 K consists 
of the following threephase assemblages.

〈C2 S-C3 P 〉ss + Ca2SiO4 + Ca3SiO5; triangle baCa3SiO5

〈C2 S-C3 P 〉ss + CaO + Ca3SiO5; triangle cCaOCa3SiO5

〈C2 S-C3 P 〉ss + CaO + Ca7P2Si2O16; triangle dCaOe

〈C2 S-C3 P 〉ss + CaO + Ca7P2Si2O16; triangle gCaOf

〈C2 S-C3 P 〉ss + CaO + Ca5P2SiO12; triangle hCaOi

CaO + Ca4P2O9 + Ca5P2SiO12; triangle CaOCa4P2O9j

〈C2 S-C3 P 〉ss + Ca4P2O9 + Ca5P2SiO12; triangle lCa4P2O9k

〈C2 S-C3 P 〉ss + Ca4P2O9 + Ca3P2O8; triangle mCa4P2O9n

It should be noticed here that the compounds of Ca2SiO4, 
Ca7P2Si2O16, Ca5P2SiO12 and Ca3P2O8 included in these three
phase regions were nonstoichiometric. The compositions 
of points a, b, d, e, f, g, h, i, k, l, m and n could be read off 
by using the scales of the mole fractions of SiO2 and P2O5 in 
Figure 1(a), while those of points c and j have not been 
determined precisely /1/. Table 1 summarizes the values 
for Y in 〈C2 S-C3 P 〉ss at compositions b, h, l and m. Based on 

Region Y in 〈C2 S-C3 P 〉ss aCa2SiO4
aCa3 P2O8

log aCaO log aSiO2
log aP2O5

Remark

〈C2S-C3P 〉ss + Ca2SiO4 +  
Ca3SiO5

(triangle b-a-Ca3SiO5)

0.088 0.995a) 0.016 −0.02 −4.75 −26.53a) log aP2O5
 = −26.53;  

Eq. (28)  
aCa2SiO4

 < 1; Eq. (20)

〈C2S-C3P 〉ss + CaO +  
Ca5P2SiO12

(triangle h-CaO-i )

0.592 0.445 0.745b) 0.00 −5.13 −24.93 aCa3P2O8
 < 0.417;  

Eq. (25)

〈C2S-C3P 〉ss + Ca4P2O9 +  
Ca5P2SiO12

(triangle l-Ca4P2O9-k)

0.748 0.274 1.193b) −0.46 −4.43 −23.35 0.417 < aCa3P2O8
 < 1;  

Eq. (26)

〈C2S-C3P 〉ss + Ca4P2O9 +  
Ca3P2O8

(triangle m-Ca4P2O9-n)

0.841 0.173 1.507b) −0.56 −4.33 −22.95 aCa3P2O8
 < 1; Eq. (21)

a) The values with superscript “a” satisfied the necessary conditions.
b) The values with superscript “b” did not satisfy the necessary conditions.

Table 1: Calculation results of the ideal solution model with DH°t(Ca3 P2O8  ) = 101 kJ ⋅ mol−1.
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the thermodynamic considerations of the phase relations, 
the conditions which the solution models should satisfy 
were mentioned below.

As seen in Figure 1(b), Ca3P2O8 is soluble in α′C2S; 
point a represents the solubility limit at 1573 K. Such a sol
ubility requires that the Ca2SiO4 activity at point a is to be 
less than unity. According to the Condenced Phase Rule, 
when three phases coexist in a threecomponent system, 
there is only one degree of freedom. This implies that for a 
particular temperature, there are zero degrees of freedom; 
the Ca2SiO4 activity is independent of the bulk composi
tion in the threephase region of 〈C2 S-C3 P 〉ss + Ca2SiO4 +  
Ca3SiO5 (triangle baCa3SiO5). Namely, the Ca2SiO4 activity 
within 〈C2 S-C3 P 〉ss at point b is equivalent to that at point 
a and hence to be less than unity.

aCa2SiO4
 < 1  (at point b; Y = 0.088, T = 1573 K) (20)

In analogy with this, for the threephase region of 
〈C2 S-C3 P 〉ss + Ca4P2O9 + Ca3P2O8 (triangle mCa4P2O9n), the 
solubility of Ca2SiO4 in αC3 P requires that the Ca3P2O8 
activity within 〈C2 S-C3 P 〉ss at composition m is less than 
unity.

aCa3 P2O8
 < 1  (at point m; Y = 0.841, T = 1573 K) (21)

The P2O5 activity within the threephase assemblage 
of CaO + Ca4P2O9 + Ca5P2SiO12 (triangle CaOCa4P2O9j) can 
be calculated from equation (19) with the unit activities of 
CaO and Ca4P2O9.

log aP2O5
 = −log K(17) = −25.18  at 1573 K (22)

Inserting equation (22) into equation (16), the activity of 
hypothetical solid Ca3P2O8 in the threephase region of 
CaO + Ca4P2O9 + Ca5P2SiO12 can be evaluated as

log aCa3 P2O8
 = log K(14) − log K(17) = −0.38  at 1573 K (23)

aCa3 P2O8
 = 0.417  at 1573 K (24)

Along the Ca2SiO4Ca3P2O8 edge in Figure 1(a), the Ca3P2O8 
activity should increase with an increase in the Ca3P2O8 
concentration. Therefore, the Ca3P2O8 activity in the three
phase region of CaO + Ca4P2O9 + Ca5P2SiO12 is to be greater 
than that at point h and is to be smaller than that at point 
l. Thus, we obtain the following inequalities.

aCa3 P2O8
 < 0.417  (at point h; Y = 0.592, T = 1573 K) (25)

0.417 < aCa3 P2O8
 < 1  (at point l; Y = 0.748, T = 1573 K) (26)

The P2O5 activity in 〈C2 S-C3 P 〉ss at composition b was 
determined by the present authors through a gas equilib
rium method /9/. Molten copper containing phosphorus 
was brought to equilibrium with mixtures of 〈C2 S-C3 P 〉ss +  
Ca2SiO4 + Ca3SiO5 in a stream of Ar + H2 + H2O gas mixtures. 
The results were expressed as

RT ln aP2O5
 = −1,106,000 + 194.7 × (T/K)  (J ⋅ mol−1) (27)

log aP2O5
 = −26.53  (at point b, T = 1573 K) (28)

On the other hand, by using equations (12), (13) and (16) 
with the unit activity of Ca3SiO5, aP2O5

 in the threephase 
region of 〈C2 S-C3 P 〉ss + Ca2SiO4 + Ca3SiO5 can be expressed 
as

log aP2O5
 = 3 log aCa2SiO4

 + log aCa3 P2O8
 − 3 log K(10)

+ 3 log K(11) − log K(14)
 = 3 log aCa2SiO4

 + log aCa3 P2O8
 

− 24.74  (at 1573 K) (29)

Combining equations (28) and (29), we have

3 log aCa2SiO4
 + log aCa3 P2O8

 = −1.79
(at point b; Y = 0.088, T = 1573 K) (30)

Equation (30) should hold when the values for aCa2SiO4
 

and aCa3 P2O8
 at composition b evaluated with the solution 

models are inserted.

3 Calculation results
When the ideal solution model was applied to solid solu
tions 〈C2 S-C3 P 〉ss, combining equations (4), (5), (8) and (9) 
gave the following formulae for the activities of Ca2SiO4 
and Ca3P2O8 at 1573 K.

log aCa2SiO4
 = 3.76 × 10−2 + log(1 − Y  ) (31)

log aCa3 P2O8
 = 2 log a(1/2)Ca3 P2O8

 
= 3.24 × 10−6 × DH°t(Ca3 P2O8 ) + 2 log Y (32)

The ideal solution model used in this study had one 
 undetermined parameter, viz., DH°t(Ca3 P2O8 ). Inserting 
equations (31) and (32) into equation (30), the value for 
DH°t(Ca3 P2O8 ) could be determined as

DH°t(Ca3 P2O8 )/J ⋅ mol−1 = 1.01 × 105 (33)

Thus, the activities of Ca3P2O8 at 1573 K could be expressed 
as
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log aCa3 P2O8
 = 2 log a(1/2)Ca3 P2O8

 = 3.28 × 10−1 + 2 log Y (34)

Rewriting equations (31) and (34), we had

aCa2SiO4
 = 1.09 × (1 − Y  ) (35)

a(1/2)Ca3 P2O8
 = 1.46 × Y (36)

aCa3 P2O8
 = (a(1/2)Ca3 P2O8

 )2 = (1.46 × Y  )2 (37)

The numbers of 1.09 in equation (35) and 1.46 in equa
tion (36), respectively, indicated the activities of αCa2SiO4 
with reference to α′Ca2SiO4 as the standard state and that 
of α̅“(1/2)Ca3P2O8” with reference to α“(1/2)Ca3P2O8” as 
the standard state at 1573 K. Dotted lines in Figure 3(b) 
shows aCa2SiO4

 and a(1/2)Ca3 P2O8
 at 1573 K based on equations 

(35) and (36). As seen in this figure, aCa2SiO4
 and a(1/2)Ca3 P2O8

 
within 〈C2 S-C3 P 〉ss were proportional to (1 − Y  ) and Y, 
respectively. Figure 3(a) is the redrawn pseudobinary 
phase diagram of Ca2SiO4Ca3P2O8, in which compositions 
are shown by the values for Y. According to the Condensed 
Phase Rule, the activities were constant within the two

phase regions of ab, de, fg, hi, kl and mn. The values 
for aCa3 P2O8

 were obtainable from equation (37) and could 
be read off by using the subsidiary scale added to Figure 
3(b). Table 1 summarizes aCa2SiO4

 and aCa3 P2O8
 at composi

tions b, h, l and m. As seen in Table 1, the values for aCa3 P2O8
 

at points h, l and m did not satisfy inequalities (25), (26) 
and (21), respectively. These results led to the conclusion 
that the ideal solution model could not give the relative 
partial molar Gibbs free energies of the components 
within 〈C2 S-C3 P 〉ss.

On the other hand, the regular solution model gave 
the following equations by combining equations (6), (7), 
(8) and (9).

log aCa2SiO4
 = 3.76 × 10−2 + log(1 − Y  ) 
+ 3.32 × 10−5 × WY 2 (38)

log aCa3 P2O8
 = 2 log a(1/2)Ca3 P2O8
= 3.24 × 10−6 × DH°t(Ca3 P2O8 ) + 2 log Y 
+ 6.64 × 10−5 × W (1 − Y  )2 (39)

These formulae included undetermined parameters, viz., 
DH°t(Ca3 P2O8 ) and W. Inserting equations (38) and (39) 
into equation (30), the relation between DH°t(Ca3 P2O8 ) 
and W was obtained as

W = 5.86 × 103 − 5.79 × 10−2 × DH°t(Ca3 P2O8 ) (40)

Substituting equation (40) into equations (38) and (39), 
the activities of Ca2SiO4 and Ca3P2O8 could be expressed as 
functions of DH°t(Ca3 P2O8 ) and Y.

log aCa2SiO4
 = 3.76 × 10−2 + log(1 − Y  ) + [1.95 × 10−1 
− 1.92 × 10−6 × DH°t(Ca3 P2O8 )] × Y 2 (41)

log aCa3 P2O8
  = 2 log a(1/2)Ca3 P2O8

  
=  3.24 × 10−6 × DH°t(Ca3 P2O8 ) + 2 log Y  
+ [3.90 × 10−1 − 3.84 × 10−6 × DH°t(Ca3 P2O8 )]  
× (1 − Y  )2 (42)

Under the conditions that the values calculated from 
equations (41) and (42) satisfied inequalities (20), (21), 
(25) and (26), DH°t(Ca3 P2O8 ) was determined as

DH°t(Ca3 P2O8 )/J ⋅ mol−1 = (2.10 ± 2.10) × 103 (43)

Inserting equation (43) to equation (40), we had

W/J ⋅ mol−1 = (5.74 ± 0.12) × 103 (44)

Combining equations (38), (39), (43) and (44), the activi
ties of Ca2SiO4 and Ca3P2O8 at 1573 K were expressed as

Fig. 3: (a) Phase diagram of the pseudo-binary system Ca2SiO4-
Ca3P2O8. (b) Activities of Ca2SiO4 and Ca3P2O8 as functions of the 
substitution ratio Y.
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log aCa2SiO4
 = 3.76 × 10−2 + log(1 − Y  ) + 1.91 × 10−1 × Y 2 (45)

log aCa3 P2O8
 =  2 log a(1/2)Ca3 P2O8

 = 6.80 × 10−3 + 2 log Y  
+ 3.81 × 10−1 × (1 − Y  )2 (46)

Table 2 gives the present values for aCa2SiO4
 and aCa3 P2O8

 cal
culated from equations (45) and (46). The uncertainties of 
the activities in Table 2 were based on the inaccuracies of 
DH°t(Ca3 P2O8 ) and W given in equations (43) and (44). As 
seen in this table, inequalities (20), (25), (26) and (21) held 
with the present results at compositions b, h, l and m, 
respectively. Solid curves in Figure 3(b) represent the 
activitycomposition curves evaluated from equations 
(45) and (46). These curves were slightly convex upward 
owing to the positive value for the interaction parameter 
W. As already mentioned above, the activities were con
stant in the twophase regions. For example, the Ca3P2O8 
activity at point h was equal to that at point i. The 
hatched areas in Figure 3 denote the composition ranges of 
nonstoichiometric compounds of α′Ca2SiO4, Ca7P2Si2O16, 
Ca5P2SiO12 and αCa3P2O8, in which activitycomposition 
curves could not be obtained in this study.

4 Discussion
Figure 4(a) shows the isothermal section of the ternary 
system CaOSiO2P2O5 near the CaO apex at 1573 K; this 
figure is identical to Figure 1(a). By using the present 
results of the regular solution model, the activities of CaO, 
SiO2 and P2O5 could be calculated within the following 
regions.

〈C2 S-C3 P 〉ss + Ca2SiO4 + Ca3SiO5; triangle baCa3SiO5

〈C2 S-C3 P 〉ss + Ca3SiO5; region bcCa3SiO5

〈C2 S-C3 P 〉ss + CaO + Ca3SiO5; triangle cCaOCa3SiO5

〈C2 S-C3 P 〉ss + CaO; region cdCaO

〈C2 S-C3 P 〉ss + CaO + Ca7P2Si2O16; triangle dCaOe

〈C2 S-C3 P 〉ss + CaO + Ca7P2Si2O16; triangle gCaOf

〈C2 S-C3 P 〉ss + CaO; region ghCaO

〈C2 S-C3 P 〉ss + CaO + Ca5P2SiO12; triangle hCaOi

〈C2 S-C3 P 〉ss + Ca4P2O9 + Ca5P2SiO12; triangle lCa4P2O9k

Region Y in 
〈C2 S-C3 P 〉ss

aCa2SiO4
aCa3 P2O8

log aCaO log aSiO2
log aP2O5

Remark

〈C2S-C3P 〉ss + Ca2SiO4 +  
Ca3SiO5

(triangle b-a-Ca3SiO5)

0.088 0.998a) ± 
0.000

0.016 ± 
0.000

−0.02 ± 
0.00

−4.74 ± 
0.00

−26.53a) log aP2O5
 = −26.53; 

Eq. (28)
aCa2SiO4

 < 1; Eq. (20)

〈C2S-C3P 〉ss + CaO +  
Ca3SiO5

(triangle c-CaO-Ca3SiO5)

0.131 ± 
0.000

0.955 ± 
0.000

0.034 ± 
0.000

0.00 −4.80 −26.27 ± 
0.00

–

〈C2S-C3P 〉ss + CaO +  
Ca7P2Si2O16

(triangle d-CaO-e)

0.493 0.615 ± 
0.001

0.309 ± 
0.003

0.00 −4.99 ± 
0.00

−25.31 ± 
0.00

–

〈C2S-C3P 〉ss + CaO +  
Ca7P2Si2O16

(triangle g-CaO-f   )

0.560 0.550 ± 
0.001

0.378 ± 
0.005

0.00 −5.04 ± 
0.00

−25.22 ± 
0.01

–

〈C2S-C3P 〉ss + CaO +  
Ca5P2SiO12

(triangle h-CaO-i )

0.592 0.519 ± 
0.001

0.412a) ± 
0.005

0.00 −5.06 ± 
0.01

−25.19 ± 
0.01

aCa3P2O8
 < 0.417; Eq. 

(25)

〈C2S-C3P 〉ss + Ca4P2O9 +  
Ca5P2SiO12

(triangle l-Ca4P2O9-k)

0.748 0.351 ± 
0.002

0.602a) ± 
0.008

−0.16 ± 
0.01

−4.92 ± 
0.01

−24.54 ± 
0.02

0.417 < aCa3P2O8
 < 1; 

Eq. (26)

〈C2S-C3P 〉ss + Ca4P2O9 +  
Ca3P2O8

(triangle m-Ca4P2O9-n)

0.841 0.236 ± 
0.001

0.735a) ± 
0.011

−0.25 ± 
0.01

−4.91 ± 
0.01

−24.19 ± 
0.02

aCa3P2O8
 < 1; Eq. (21)

a) The values with superscript “a” satisfied the necessary conditions.

Table 2: Calculation results of the regular solution model with DH°t(Ca3 P2O8 ) = 2.10 ± 2.10 kJ ⋅ mol−1 and W = 5.74 ± 0.12 kJ ⋅ mol−1.
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〈C2 S-C3 P 〉ss + Ca4P2O9; region lmCa4P2O9

〈C2 S-C3 P 〉ss + Ca4P2O9 + Ca3P2O8; triangle mCa4P2O9n

Such regions could be classified by solid phases coexist
ing with 〈C2 S-C3 P 〉ss, viz., Ca3SiO5, CaO and Ca4P2O9.

In the regions including Ca3SiO5, the activity of Ca3SiO5 
should be unity. Therefore, equation (13) could be rewrit
ten as

log K(11) = −3 log aCaO − log aSiO2
(47)

Solving simultaneous equations (12), (16) and (47), we had

log aCaO = −log aCa2SiO4
 + log K(10) − log K(11) (48)

log aSiO2
 = 3 log aCa2SiO4

 − 3 log K(10) + 2 log K(11) (49)

log aP2O5
 =  log aCa3 P2O8

 + 3 log aCa2SiO4
 − 3 log K(10)  

+ 3 log K(11) − log K(14) (50)

Combining equations (45), (46), (48), (49) and (50), the 
activities of CaO, SiO2 and P2O5 at 1573 K in the twophase 
region of 〈C2 S-C3 P 〉ss + Ca3SiO5 (region bcCa3SiO5) could 
be expressed as the functions of Y.

log aCaO = −0.06 − log(1 − Y  ) − 1.91 × 10−1 × Y 2 (51)

log aSiO2
 = −4.63 + 3 log(1 − Y  ) + 5.73 × 10−1 × Y 2 (52)

log aP2O5
 =  −24.62 + 3 log(1 − Y  ) + 2 log Y + 5.73 × 10−1 × Y 2  
+ 3.81 × 10−1 × (1 − Y  )2 (53)

The activities in the threephase region of 〈C2 S-C3 P 〉ss +  
Ca2SiO4 + Ca3SiO5 (triangle baCa3SiO5) could be calcu
lated by inserting Y = 0.088 at point b into equations (51), 
(52) and (53).

log aCaO = −0.02  (at point b; Y = 0.088, T = 1573 K) (54)

log aSiO2
 = −4.74  (at point b; Y = 0.088, T = 1573 K) (55)

log aP2O5
 = −26.53  (at point b; Y = 0.088, T = 1573 K) (56)

On the other hand, the composition of 〈C2 S-C3 P 〉ss in equi
librium with Ca3SiO5 and CaO, i.e., point c, has not been 
reported. By solving equation (51) under the condition 
that log aCaO = 0, this composition could be estimated as

Y = 0.131  (at point c, T = 1573 K) (57)

Inserting equation (57) to equations (52) and (53), the SiO2 
and P2O5 activities in the threephase assemblage of 
〈C2 S-C3 P 〉ss + CaO + Ca3SiO5 (triangle cCaOCa3SiO5) were 
obtained as

log aSiO2
 = −4.80  (at point c; Y = 0.131, T = 1573 K) (58)

log aP2O5
 = −26.27  (at point c; Y = 0.131, T = 1573 K) (59)

The CaO activity in the regions including CaO should 
be unity. Thus, equations (12) and (16), respectively, could 
be rewritten as

log aSiO2
 = log aCa2SiO4

 − log K(10) (60)

log aP2O5
 = log aCa3 P2O8

 − log K(14) (61)

Combining equations (45), (46), (60) and (61), the SiO2 and 
P2O5 activities within the twophase resion of 〈C2 S-C3 P 〉ss +  
CaO (regions cdCaO and ghCaO) were given as

log aSiO2
 = −4.74 + log(1 − Y  ) + 1.91 × 10−1 × Y 2 (62)

log aP2O5
 = −24.79 + 2 log Y + 3.81 × 10−1 × (1 − Y  )2 (63)

The values for aSiO2
 and aP2O5

 in the threephase regions 
of  〈C2 S-C3 P 〉ss + CaO + Ca7P2Si2O16 (triangles dCaOe and 
gCaOf  ) and 〈C2 S-C3 P 〉ss + CaO + Ca5P2SiO12 (triangle 
hCaOi) could be calculated from equations (62) and (63).

Fig. 4: (a) Iso-thermal section of the ternary system CaO-SiO2-P2O5 
near the CaO apex at 1573 K. (b) Activities of CaO at 1573 K. 
(c) Activities of SiO2 and P2O5 at 1573 K.
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Based on the unit Ca4P2O9 activity in the regions 
including Ca4P2O9, equation (19) was rewritten as

log K(17) = −4 log aCaO − log aP2O5
(64)

Solving simultaneous equations (12), (16) and (64), we 
had

log aCaO = −log aCa3 P2O8
 + log K(14) − log K(17) (65)

log aSiO2
 =  log aCa2SiO4

 + 2 log aCa3 P2O8
 − log K(10)  

− 2 log K(14) + 2 log K(17) (66)

log aP2O5
 = 4 log aCa3 P2O8

 − 4 log K(14) + 3 log K(17) (67)

Combining equations (45), (46), (65), (66) and (67), the 
activities at 1573 K in the twophase region of 〈C2 S-C3 P 〉ss +  
Ca4P2O9 (region lmCa4P2O9) could be expressed as

log aCaO = −0.39 − 2 log Y − 3.81 × 10−1 × (1 − Y  )2 (68)

log aSiO2
 =  −3.97 + log(1 − Y  ) + 4 log Y + 1.91 × 10−1 × Y 2  
+ 7.62 × 10−1 × (1 − Y  )2 (69)

log aP2O5
 = −23.63 + 8 log Y + 1.52 × (1 − Y  )2 (70)

The values for the activities in the threephase regions 
of  〈C2 S-C3 P 〉ss + Ca4P2O9 + Ca5P2SiO12 (triangle lCa4P2O9k) 
and 〈C2 S-C3 P 〉ss + Ca4P2O9 + Ca3P2O8 (triangle mCa4P2O9n) 
could be calculated from equations (68), (69) and (70).

The CaO, SiO2 and P2O5 activities estimated in this 
study are summarized in Table 2, and illustrated in Figures 
4(b) and 4(c). The uncertainties of the values in Table 2 
were due to the inaccuracies of DH°t(Ca3 P2O8 ) and W deter
mined in this study. Figure 4(b) shows that the CaO activi
ties are unity between point c and point j; in this composi
tion range, the two and threephase regions include solid 
CaO as seen in Figure 4(a). Figure 4(c) illustrates that the 
P2O5 activities increase monotonically with an increase in 
the values for Y in 〈C2 S-C3 P 〉ss. It would be worth mention
ing here that the P2O5 activity in the twophase assemblage 
of stoichiometric Ca3P2O8 + Ca4P2O9 at 1573 K can be calcu
lated as

log aP2O5
 = −4 log K(14) + 3 log K(17) 
= −23.66  at 1573 K (71)

This value corresponds to the logarithmic activity of P2O5 
at Y = 1.0 in Figure 4(c), and would not be imcompatible 
with the activitycomposition curves determined in this 
study. On the other hand, the SiO2 activities do not 
decrease monotonically with an increase in Y. Magnitude 
correlations of activities strongly depend on phase rela

tions. Therefore, the behaviour of the SiO2 and P2O5 activi
ties will be able to be explained by future work on the 
SiO2rich and/or P2O5rich areas of the CaOSiO2P2O5 
ternary isothermal section. The present values for aP2O5

 
and aSiO2

 can be recommended at least as tentative esti
mates for understanding dephosphorization process.

The reaction of phosphorus removal from molten iron 
can be represented as

2 [P]Fe + 5 (FeO)slag = (P2O5)slag + 5 {Fe} (72)

where [P]Fe is phosphorus in liquid iron, (FeO)slag and 
(P2O5)slag are FeO and P2O5 in liquid slag, and {Fe} is liquid 
iron. For reaction (72), Turkdogan and Pearson derived the 
following expression /10/.

log K(72) = log {aP2O5 /hP
2 aFeO

5} = −17.7 + 8,490/(T/K) (73)

By rewriting equation (73), we have

log hP = −(1/2) log K(72) + (1/2) log aP2O5
 − (5/2) log aFeO (74)

For carbonsaturated {FeCP} liquid alloys, the Henrian 
activity of phosphorus is given by

log hP = log[%P] + eP
C [%C] (75)

By combining equations (74) and (75), we have

log[%P] =  −eP
C [%C] − (1/2) log K(72) + (1/2) log aP2O5

  
− (5/2) log aFeO

=  −eP
C [%C] + (1/2) log aP2O5

  
− (5/2) log aFeO + 8.9 − 4,250/(T/K) (76)

Equation (76) means that the equilibrium phosphorus 
concentrations can be estimated by using the values for 
the activities of P2O5 and FeO. Figure 5 shows a schematic 
illustration of the isothermal tetrahedron of the pseudo 
quaternary system CaOCa2SiO4Ca3P2O8FeO at 1573 K, 
showing the following fourphase assemblages /11/.

Ca3SiO5 + Ca2SiO4 + 〈C2 S-C3 P 〉ss + Liquid; tetrahedron 
Ca3SiO5abL(1)

CaO + Ca3SiO5 + 〈C2 S-C3 P 〉ss + Liquid; tetrahedron 
CaOCa3SiO5cL(2)

CaO + Ca4P2O9 + Ca5P2SiO12 + Liquid; tetrahedron  
CaOCa4P2O9jL(3)

According to the Condensed Phase Rule, when four phases 
coexist in a fourcomponent system, there is only one 
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degree of freedom. This implies that for a particular tem
perature, the activities of FeO and P2O5 are fixed and there
fore independent of the bulk slag composition. The P2O5 
activities in the fourphase assemblages of Ca3SiO5 +  
Ca2SiO4 + 〈C2 S-C3 P 〉ss + Liquid, CaO + Ca3SiO5 + 〈C2 S-C3 P 〉ss +  
Liquid and CaO + Ca4P2O9 + Ca5P2SiO12 + Liquid are given 
by equations (27), (59) and (22), respectively. On the other 
hand, the FeO activities have been reported as follows 
/11/.

log aFeO =  −0.77 + 720/(T/K)
Ca3SiO5 + Ca2SiO4 + 〈C2 S-C3 P 〉ss + Liquid (77)

log aFeO =  −1.57 + 1,960/(T/K)
CaO + Ca3SiO5 + 〈C2 S-C3 P 〉ss + Liquid (78)

log aFeO =  0.90 − 1,810/(T/K)
CaO + Ca4P2O9 + Ca5P2SiO12 + Liquid (79)

Figure 6 shows the estimated phosphorus contents in 
molten iron attainable with the fourphase assemblages 
under consideration. This figure also gives the final phos
phorus levels achieved with the industrial slags, given in 
Table 3 /12/. It is evident from this graph that the phospho
rus concentrations attainable by using the heterogeneous 
slags are four to five orders of magnitude lower than those 
obtained with the industrial slags. As a consequence of 
this behavior, the opportunity is available to consider
ably  reduce required slag volume. Recently, phosphorus 
removal from hot metal in Japanese steelmaking indus
tries has been operated with relatively lower basic slags to 
aim at reducing consumption of fluorspar, CaF2, which 
causes emission of hazardous fluoride species. The 
present results of solid solutions between Ca2SiO4 and 
Ca3P2O8 would also be applicable to estimate thermody
namic properties of such dephosphorization slags.

Sample 
Code

Slag composition (mole %) Hot metal

CaO SiO2 FeO CaF2 P2O5 Others* T/K [%P]

#1 53.0 32.2 1.7 6.8 1.1 5.3 1548 0.112
#2 57.3 28.3 2.5 5.6 1.8 4.5 1548 0.090
#3 58.3 20.8 2.4 10.4 2.6 5.5 1548 0.057
#4 58.9 16.1 2.1 11.1 3.2 8.6 1548 0.016
#5 58.3 11.1 1.6 21.0 3.4 4.6 1573 0.020
#6 60.0 11.6 1.1 21.5 2.1 3.7 1543 0.030

* “Others” means CaS + MgO + MnO + Al2O3

Table 3: Industrial slags of hot metal processing and corresponding hot metal temperature and phosphorus level.

Fig. 5: Schematic illustration of the iso-thermal tetrahedron showing 
the phase relations in the pseudo-quaternary system CaO-Ca2SiO4-
Ca3P2O9-FeO coexisitng with metallic iron at 1573 K.

Fig. 6: Estimated phosphorus contents in molten iron.
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5 Conclusions
Solution models have been applied to solid solutions 
between Ca2SiO4 and Ca3P2O8 to aim at deriving their ther
modynamic properties at 1573 K. The parameters included 
in the regular solution model were determined under the 
conditions that the activities of Ca2SiO4 and Ca3P2O8 were 
consistent with the literature data and the phase dia
grams. The present results suggested the estimations of 
the activities of the components in the CaOSiO2P2O5 
ternary system at high CaO contents and the composition 
of the Ca2SiO4Ca3P2O8 solid solution in equilibrium with 
CaO and Ca3SiO5 at 1573 K.
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