Unramified extensions and geometric \mathbb{Z}_p-extensions of global function fields

By

Tsuyoshi ITOH

Abstract

We study on finite unramified extensions of global function fields (that is, function fields of one variable over a finite field). We show two results. One is an extension of Perret's result about the ideal class group problem. Another is a construction of a geometric \mathbb{Z}_p-extension which has a certain property.

§ 1. Main theorems

Throughout the present paper, we fix a prime number p and a finite field \mathbb{F} of characteristic p. Let q be the number of elements of \mathbb{F}. Recall that a global function field is a function field of one variable over a finite field. Let k be a global function field with full constant field \mathbb{F}. We also recall that a finite algebraic extension K/k is geometric if and only if the constant field of K is also \mathbb{F}.

It is known that there is a finite abelian group G which is not isomorphic to the divisor class group of degree 0 of any global function field (Stichtenoth [20]). On the other hand, Perret [16] showed the following:

Theorem 1.1 ([16]). For any given finite abelian group G, there is a finite separable geometric extension $k/\mathbb{F}(T)$ such that $\text{Cl}(\mathcal{O}) \cong G$, where \mathcal{O} is the integral closure of $\mathbb{F}[T]$ in k and $\text{Cl}(\mathcal{O})$ is the ideal class group of \mathcal{O}.

This theorem is shown by using the following:
Theorem 1.2 ([16]). For any given finite abelian group G, there is a global function field k with full constant field \mathbb{F} and a non-empty finite set S of places of k such that $\text{Cl}_S(k) \cong G$, where $\text{Cl}_S(k)$ is the S-class group of k.

Let S be a non-empty finite set of places of k, and $H_S(k)$ the S-Hilbert class field of k, that is, the maximal unramified abelian extension field of k in which all places of S split completely (see [17]). We note that $\text{Cl}_S(k) \cong \text{Gal}(H_S(k)/k)$ by class field theory. Hence Theorem 1.2 also implies the existence of k and S which satisfy $\text{Gal}(H_S(k)/k) \cong G$. (More precisely, we can take k and S such that $H_S(k)/k$ is a geometric extension. See [16].)

In the present paper, we extend the above result to non-abelian finite groups. We will show the following:

Theorem 1.3. For any given finite group G, there is a global function field k with full constant field \mathbb{F} and a non-empty finite set S of places of k such that $\text{Gal}(\tilde{H}_S(k)/k) \cong G$, where $\tilde{H}_S(k)$ denotes the maximal unramified Galois extension field of k in which all places of S split completely. Moreover, we can take k and S such that $\tilde{H}_S(k)/k$ is a geometric extension.

See Ozaki [15] for the number field case.

We will prove Theorem 1.3 in section 2. Our proof is due to Perret’s idea (see [16]). That is, we will construct an unramified G-extension, and take a sufficiently large set S of places such that $\text{Gal}(\tilde{H}_S(k)/k) \cong G$. (We use the term “$G$-extension” as a Galois extension whose Galois group is isomorphic to G.) To construct an unramified G-extension, we shall show an analog (Theorem 2.2) of Fröhlich’s classical result [4] for number fields.

In section 3, we shall apply Perret’s idea to Iwasawa theory. Let k be a global function field with full constant field \mathbb{F}, S a non-empty finite set of places of k. We recall that a \mathbb{Z}_p-extension is an infinite Galois extension whose Galois group is topologically isomorphic to the additive group of the ring \mathbb{Z}_p of p-adic integers. Let k_∞/k be a geometric \mathbb{Z}_p-extension, that is, k_∞/k is a \mathbb{Z}_p-extension which satisfies that every finite subextension over k is a geometric extension (see, e.g., [7]). (Recall that p is the characteristic of \mathbb{F}.) We assume that

(A) only finitely many places of k ramify in k_∞/k, and

(B) all places of S split completely in k_∞/k.

Under these assumptions, we can treat Iwasawa theory for the S-class group (see [17]). For a non-negative integer n, let k_n be the nth layer of k_∞/k. That is, k_n is the unique subfield of k_∞ which is a cyclic extension over k of degree p^n. Moreover, let A_n be the
Sylow p-subgroup of the S-class group of k_n. (Here we use the same symbol S as the set of places of k_n lying above S.) We put $X_S = \limleftarrow A_n$, where the projective limit is taken with respect to the norm maps. We call X_S the Iwasawa module of k_∞/k.\footnote{Note that X_S is a finitely generated torsion Λ-module, and the “Iwasawa type formula” holds for A_n (see [17]). That is, there are non-negative integers λ, μ, ν such that $|A_n| = p^{\lambda n + \mu p^n + \nu}$ for all sufficiently large n. Aiba [1] studied these invariants λ, μ, ν for certain geometric \Z_p-extensions.}

There is a natural problem: characterize the Λ-modules which appear as X_S. (For the number field case, the same problem is dealt in, e.g., [14], [5].) Concerning this problem, we shall give the following result including “non-abelian” cases.

\textbf{Theorem 1.4.} For any given finite p-group G, there exist a global function field k with full constant field F, a non-empty finite set S of places of k, and a geometric \Z_p-extension k_∞/k satisfying the above assumptions (A) and (B) such that $\Gal(\tilde{L}_S(k_n)/k_n) \cong G$ (as groups) for all $n \geq 0$, where $\tilde{L}_S(k_n)$ is the maximal unramified Galois pro-p-extension field of k_n in which all places lying above S split completely.

For the number field case, Ozaki [14] showed that every “finite Λ-module” appears as X_S. (For the number field case, the same problem is dealt in, e.g., [14], [5].) Concerning this problem, we shall give the following result including “non-abelian” cases.

\section{Proof of Theorem 1.3}

\subsection{Function field analog of Fröhlich’s result}

At first, we shall show that for any finite group G, there is an unramified geometric extension K/k of global function fields such that $\Gal(K/k) \cong G$. Recall that any finite group can be embedded into a finite symmetric group. Hence it is sufficient to consider the case that G is a finite symmetric group. For the number field case, Fröhlich already showed the following result.

\textbf{Theorem 2.1 ([4])}. For every positive integer n, there is an unramified Galois extension K/k of algebraic number fields such that $\Gal(K/k) \cong \mathfrak{S}_n$, where \mathfrak{S}_n denotes the symmetric group of degree n.

We will show the following:
Theorem 2.2. For every positive integer \(n \), there is a global function field \(k \) with full constant field \(\mathbb{F} \) and an unramified geometric Galois extension \(K/k \) such that \(\text{Gal}(K/k) \cong \mathfrak{S}_n \). More precisely, there exist a geometric Galois extension \(K/\mathbb{F}(T) \) and a subextension \(k/\mathbb{F}(T) \) of \(K/\mathbb{F}(T) \) such that \(K/k \) is unramified and that \(\text{Gal}(K/k) \cong \mathfrak{S}_n \).

To prove this, we follow Fröhlich’s original argument (see also Malinin [10]). That is, we construct a certain (ramified) \(\mathfrak{S}_n \)-extension over \(\mathbb{F}(T) \) and then we take a certain base change of this extension. Let \(\infty \) be the infinite place of \(\mathbb{F}(T) \).

Lemma 2.3. There is a Galois extension \(k' \) over \(\mathbb{F}(T) \) which satisfies all of the following properties.

- \(k'/\mathbb{F}(T) \) is a geometric extension,
- \(\text{Gal}(k'/\mathbb{F}(T)) \cong \mathfrak{S}_n \), and
- \(\infty \) is unramified in \(k'/\mathbb{F}(T) \).

Proof. At first, we must see that there is an \(\mathfrak{S}_n \)-extension over \(\mathbb{F}(T) \). This follows from the fact that \(\mathbb{F}(T) \) is a Hilbertian field (see, e.g., [3, Corollary 16.2.7]). We put \(A = \mathbb{F}[T] \). For an element \(r \) of \(A \), let \(\text{deg}(r) \) be the degree of \(r \) as a polynomial of \(T \).

Fix a monic separable polynomial \(F(X) \in A[X] \) of degree \(n \) such that the splitting field of \(F(X) \) over \(\mathbb{F}(T) \) is an \(\mathfrak{S}_n \)-extension.

We claim that there is an element \(N_F \in A \) which satisfies the following property: if a monic polynomial \(G(X) \in A[X] \) of degree \(n \) satisfies \(G(X) \equiv F(X) \pmod{N_F} \), then the splitting field of \(G(X) \) over \(\mathbb{F}(T) \) is also an \(\mathfrak{S}_n \)-extension. We shall show this claim. By using the Chebotarev density theorem, we can take an irreducible monic polynomial \(p_1 \) such that if \(G(X) \equiv F(X) \pmod{p_1} \) then \(G(X) \) is irreducible and separable. Similarly, we can take distinct irreducible monic polynomials \(p_2, p_3 \) of \(A = \mathbb{F}(T) \) which are distinct from \(p_1 \) and satisfy the following properties: (i) if \(G(X) \equiv F(X) \pmod{p_2} \) then the Galois group of \(G(X) \) contains a cycle of length \(n - 1 \) (as a subgroup of \(\mathfrak{S}_n \)), and (ii) if \(G(X) \equiv F(X) \pmod{p_3} \) then the Galois group of \(G(X) \) contains a transposition. We put \(N_F = p_1p_2p_3 \). This \(N_F \) satisfies the above claim. Moreover, we can take \(N_F \) which is prime to \(T \) by the Chebotarev density theorem. We also fix such \(N_F \).

To construct a geometric \(\mathfrak{S}_n \)-extension which is unramified at the infinite place, we take \(G(X) \) as follows:

\[
\begin{align*}
G(X) & \equiv F(X) \pmod{N_F}, \\
G(X) & \equiv \text{a product of distinct monic polynomials of degree 1} \pmod{r}, \text{ and} \\
G(X) & \equiv \text{a separable polynomial} \pmod{T},
\end{align*}
\]

where \(r \) is a monic irreducible polynomial of \(A = \mathbb{F}[T] \) such that \(n < q^{\text{deg}(r)} \), \(\text{deg}(r) \) is odd, and \(r \) is prime to \(TN_F \). By the first congruence, we see that the splitting field \(k' \)
of $G(X)$ is an \mathcal{S}_n-extension. We shall show that the constant field of k' is F. Let \overline{F} be the algebraic closure of F. We note that $M := k' \cap \overline{F}(T)$ is a finite cyclic extension over $\overline{F}(T)$. Since $\text{Gal}(k'/\overline{F}(T)) \cong \mathcal{S}_n$, M must be $\overline{F}(T)$ or the unique quadratic subfield in $k'/\overline{F}(T)$. If $M \neq \overline{F}(T)$, then no odd degree place of $\overline{F}(T)$ splits in M. However, we see that the place of $\overline{F}(T)$ corresponding to r splits completely in k' by the second congruence. It is a contradiction.

By the third congruence, we see that the place of $\overline{F}(T)$ corresponding to T is unramified in k'. We replace the indeterminate T by $U = 1/T$, then the infinite place of $\overline{F}(U)$ is unramified in k' (and the former two conditions are also satisfied).

We shall prove Theorem 2.2. We may assume that $n \geq 2$. Fix a geometric \mathcal{S}_n-extension $k'/\overline{F}(T)$ satisfying the properties of Lemma 2.3. We put $m = n!$. We can take a separable monic polynomial $F(X) \in A[X]$ of degree m (as a polynomial of X) whose splitting field over $\overline{F}(T)$ is k'. Let M' be the unique quadratic subextension field of $\overline{F}(T)$ contained in k'.

We define the following notation.

- $\{p_1, \ldots, p_t\}$: the set of distinct places of $\overline{F}(T)$ which ramify in k' (hence are distinct from ∞).
- p_{t+1}: a place $\neq \infty, p_1, \ldots, p_t$ of $\overline{F}(T)$ which is inert in M' and has degree $> \frac{\log(m)}{\log(q)}$.
- p_{t+2}: a place $\neq \infty$ of $\overline{F}(T)$ which splits completely in k' and has odd degree $> \frac{\log(m)}{\log(q)}$ (hence is distinct from p_1, \ldots, p_{t+1}).
- p_1, \ldots, p_{t+2}: irreducible monic polynomials of $A = \overline{F}[T]$ corresponding to p_1, \ldots, p_{t+2}, respectively.

Note that we can take p_{t+1} (resp. p_{t+2}) by using Theorem 9.13B of [18], which is an effective version of the Chebotarev density theorem for global function fields. (See also [12], etc.) Indeed, by this theorem, there is a place of $\overline{F}(T)$ of arbitrary sufficiently large degree which is inert in M' (resp. splits completely in k'), as $M'/\overline{F}(T)$ is a geometric cyclic extension (resp. $k'/\overline{F}(T)$ is a geometric Galois extension).

By using Lemma 2.3, we can also construct an \mathcal{S}_m-extension over $\overline{F}(T)$. Let $H(X)$ be a monic polynomial in $A[X]$ of degree m which gives an \mathcal{S}_m-extension. Then there is an element N_H of A having the following property: if a monic polynomial $G(X) \in A[X]$ of degree m satisfies $G(X) \equiv H(X) \pmod{N_H}$, then the splitting field of $G(X)$ over $\overline{F}(T)$ is also an \mathcal{S}_m-extension (see the proof of Lemma 2.3). We can also take N_H such that it is prime to p_1, \ldots, p_{t+2}.

We take a monic polynomial $G(X)$ of $A[X]$ (having degree m) which satisfies the following conditions (2.1)--(2.4).

\begin{equation}
(2.1) \quad G(X) \equiv H(X) \pmod{N_H}.
\end{equation}
If $G(X)$ satisfies (2.1), then $G(X)$ gives an \mathfrak{S}_m-extension. Let L be the splitting field of $G(X)$ over $\mathbb{F}(T)$.

(2.2) $G(X) \equiv (a \text{ product of distinct monic polynomials of degree } 1) \pmod{p_{t+1}}$.

If $G(X)$ satisfies (2.1) and (2.2), then we see that p_{t+1} splits in the unique quadratic subextension, say M_L, over $\mathbb{F}(T)$ contained in L. On the other hand, p_{t+1} is inert in the unique quadratic subextension M' over $\mathbb{F}(T)$ contained in k'. We claim that $k' \cap L = \mathbb{F}(T)$. Indeed, suppose that $k' \cap L \neq \mathbb{F}(T)$. Then $k' \cap L$ is a quadratic extension over $\mathbb{F}(T)$. If $n = 2$, this is clear. For $n \geq 3$, we have $\text{Gal}(L/\mathbb{F}(T)) \cong \mathfrak{S}_m$, where $m = n! \geq 5$. Observe also that $k' \cap L \neq L$, as $m > n$. Now, since the alternating group \mathfrak{A}_m is the unique nontrivial proper normal subgroup of \mathfrak{S}_m when $m \geq 5$ (see, e.g., [19]), $k' \cap L$ is a quadratic extension over $\mathbb{F}(T)$. Since this quadratic extension is contained in both k' and L, it must coincide with both M' and M_L at a time. This contradicts the above observation on the behavior of p_{t+1} in M' and M_L. Thus, we have proved the claim. Then we see $\text{Gal}(Lk'/L) \cong \mathfrak{S}_n$.

(2.3) $G(X) \equiv (a \text{ product of distinct monic polynomials of degree } 1) \pmod{p_{t+2}}$.

If $G(X)$ satisfies (2.1)–(2.3), then the odd degree place p_{t+2} splits completely in $Lk'/\mathbb{F}(T)$. We claim that $Lk'/\mathbb{F}(T)$ is a geometric extension. Note that the degree of a place of k' lying above p_{t+2} is also odd because p_{t+2} splits completely in k'. Since $\text{Gal}(Lk'/k') \cong \mathfrak{S}_m$ and an odd degree place splits completely in Lk'/k', we see that Lk'/k' is also a geometric extension. Hence the claim follows. By using Krasner’s lemma, we can see that there is a positive integer s_i for each $i = 1, \ldots, t$ depending only on $F(X)$ such that if $G(X) \equiv F(X) \pmod{p_i^{s_i}}$ then $L \mathbb{F}(T)_{p_i} = k' \mathbb{F}(T)_{p_i}$, where $\mathbb{F}(T)_{p_i}$ is the completion of $\mathbb{F}(T)$ at p_i (see, e.g., [13]). Hence if we take $G(X)$ satisfying (2.1)–(2.3) and

(2.4) $G(X) \equiv F(X) \pmod{p_i^{s_i}}$ for $i = 1, \ldots, t$,

then we can see that Lk'/L is unramified at all places.

We can take $G(X)$ satisfying (2.1)–(2.4). By the above arguments, the extension Lk'/L satisfies the assertion of Theorem 2.2. □

Remark. When G is abelian, an unramified geometric G-extension was constructed by Angles [2]. Moret-Bailly [11] also gives a result which is very close to ours. Probably, it seems that one can prove our main theorems by using the result given in [11] instead of Theorem 2.2.

§ 2.2. Proof of Theorem 1.3

Since G is embedded into \mathfrak{S}_n for some $n > 0$, Theorem 2.2 implies that there exists a global function field k with full constant field \mathbb{F} and an unramified geometric Galois extension K/k such that $\text{Gal}(K/k) \cong G$.
Proposition 2.4. There is a non-empty finite set S of places of k such that (i) all places of S split completely in K, and (ii) $\tilde{H}_S(k)/k$ is a finite extension.

Proof. The crucial point of this proposition is choosing a set S to satisfy (ii). For a positive integer N, we put

$$B_N = \{p \mid p \text{ is a place of } k \text{ having degree } N, \text{ p splits completely in } K/k\}.$$

Since K/k is a geometric extension, Theorem 9.13B of [18] implies that

$$|B_N| = q^N/|G| + O\left(q^{N/2}/N\right)$$

(recall that q is the number of elements of \mathbb{F}). In particular, if N is sufficiently large, then we obtain the inequality

$$|B_N| > \frac{q^{N/2} - 1}{N}\text{Max}(g-1,0),$$

where g is the genus of k. We fix an integer N which satisfies the above inequality. According to Ihara's theorem [8, Theorem 1(FF)], if $S \supset B_N$, then $\tilde{H}_S(k)/k$ is a finite extension. Hence we can take S to satisfy the conditions (i) and (ii).

The rest of the proof of Theorem 1.3 is quite similar to Perret’s argument given in [16]. We remark that K is contained in $\tilde{H}_S(k)$. For a nontrivial element σ of $\text{Gal}(\tilde{H}_S(k)/K)$, we can take a place \mathfrak{P} of $\tilde{H}_S(k)$ corresponding to σ by the Chebotarev density theorem. We can take \mathfrak{P} which is unramified in $\tilde{H}_S(k)/K$. Let p be the place of k which is lying below \mathfrak{P}. Since the decomposition field of \mathfrak{P} in $\tilde{H}_S(k)/k$ contains K and K/k is a Galois extension, we see that p splits completely in K/k. Then we see $\tilde{H}_S(k) \supset \tilde{H}_{S\cup\{p\}}(k) \supset K$. Replacing $S \cup \{p\}$ by S and repeating the above operation, we can see that $\tilde{H}_S(k) = K$ for some finite set S. This implies $\text{Gal}(\tilde{H}_S(k)/K) \cong G$.

We recall that K/k is a geometric extension. Hence the final part of the theorem follows.

§ 3. Proof of Theorem 1.4

Firstly, we shall show the following:

Theorem 3.1. Let k be a finite Galois extension over $\mathbb{F}(T)$. Then, there exist a non-empty finite set S of places of $\mathbb{F}(T)$ and a geometric \mathbb{Z}_p-extension $F_\infty/\mathbb{F}(T)$ which satisfy the following properties.
• $F_\infty \cap k = F(T)$,

• all places of S split completely in k,

• both of $F_\infty /\mathbb{F}(T)$ and $F_\infty k/k$ satisfy the assumptions (A) and (B) in section 1, and

• the Sylow p-subgroup of $\text{Cl}_S(F_n k)$ is trivial for all $n \geq 0$,

where F_n is the nth layer of $F_\infty /\mathbb{F}(T)$. (We use the same symbol S as the set of places lying above S.)

Proof. We take a place p_0 of $\mathbb{F}(T)$ which splits completely in k. We also take a place r of $\mathbb{F}(T)$ which is distinct from p_0 and unramified in k. We claim that there is a geometric \mathbb{Z}_p-extension $F_\infty /\mathbb{F}(T)$ unramified outside r which satisfies that

• r is totally ramified, and

• p_0 splits completely.

We shall show this claim. Let M be the maximal pro-p abelian extension over $\mathbb{F}(T)$ which is unramified outside r. We know that $\text{Gal}(M/\mathbb{F}(T))$ is isomorphic to a countable infinite product of the additive group of \mathbb{Z}_p (see [21], [9]). Hence there are infinitely many geometric \mathbb{Z}_p-extensions which satisfy the above conditions.

By the above choice of F_∞, we see $F_1 \cap k = \mathbb{F}(T)$. We put $k_1 = F_1 k$. Then $k_1/\mathbb{F}(T)$ is a Galois extension, and p_0 splits completely in k_1. We set $S_0 = \{p_0\}$, and we use the same symbol to denote the set of places lying above p_0. We can see that $H_{S_0}(k_1)$ is a finite Galois extension over $\mathbb{F}(T)$. We take a nontrivial element σ_1 of $\text{Gal}(H_{S_0}(k_1)/k_1)$.

By using the above argument, we can take a geometric \mathbb{Z}_p-extension $F'_\infty /\mathbb{F}(T)$ unramified outside r which satisfies

• $F'_\infty \cap F_\infty = \mathbb{F}(T)$,

• r is totally ramified in $F'_\infty F_\infty$, and

• p_0 splits completely in F'_∞.

Let F'_1 be the initial layer of $F'_\infty /\mathbb{F}(T)$. Then we see that $F'_1 \cap k_1 = \mathbb{F}(T)$ and $k_1 F'_1 \cap H_{S_0}(k_1) = k_1$. We note that

\[
\text{Gal}(F'_1 H_{S_0}(k_1)/k_1) \cong \text{Gal}(F'_1 k_1/k_1) \times \text{Gal}(H_{S_0}(k_1)/k_1), \quad \text{Gal}(F'_1 k_1/k_1) \cong \text{Gal}(F'_1/\mathbb{F}(T)).
\]

Hence there is an isomorphism

\[
\text{Gal}(F'_1/\mathbb{F}(T)) \times \text{Gal}(H_{S_0}(k_1)/k_1) \xrightarrow{\sim} \text{Gal}(F'_1 H_{S_0}(k_1)/k_1).
\]
Let \(\tau \) be a generator of the cyclic group \(\text{Gal}(F'_1/\mathbb{F}(T)) \), and \(\tau_1 \) an element of \(\text{Gal}(F'_1H_{S_0}(k_1)/k_1) \) which is the image of \((\tau, \sigma_1)\) under the above isomorphism. We can regard \(\tau \) as an element of \(\text{Gal}(F'_1H_{S_0}(k_1)/\mathbb{F}(T)) \). By the Chebotarev density theorem, there is a place \(\mathfrak{p}_1 \) of \(F'_1H_{S_0}(k_1) \) which corresponds to \(\tau_1 \). Let \(p_1 \) be the place of \(\mathbb{F}(T) \) lying below \(\mathfrak{p}_1 \). We can take \(\mathfrak{p}_1 \) such that \(p_1 \) is not ramified in \(F'_1H_{S_0}(k_1) \). Then we see that \(p_1 \) splits completely in \(k_1 \) and is inert in \(F'_1 \). We put \(S_1 = S_0 \cup \{ p_1 \} \).

In general, \(p_1 \) may not split completely in \(F_\infty \). This is a problem because we need the assumption (B). We remark that \(F_\infty F'_\infty/\mathbb{F}(T) \) is a \(\mathbb{Z}_p^2 \)-extension unramified outside \(\tau \). We recall that \(p_1 \) does not split in \(F'_1 \). Hence the decomposition field of \(F_\infty F'_\infty/\mathbb{F}(T) \) for \(p_1 \) is a \(\mathbb{Z}_p \)-extension over \(\mathbb{F}(T) \). We denote it by \(F''_\infty \). We also note that \(F''_\infty/\mathbb{F}(T) \) is the unique \(\mathbb{Z}_p \)-extension contained in \(F_\infty F'_\infty \) such that \(p_1 \) splits completely. Then the initial layer of \(F''_\infty/\mathbb{F}(T) \) must coincide with \(F_1 \). We replace \(F_\infty \) by \(F''_\infty \).

We note that \(H_{S_0}(k_1) \supseteq H_{S_1}(k_1) \) by the definition of \(p_1 \). Similarly, we can choose a place \(p_2 \), put \(S_2 = S_1 \cup \{ p_2 \} \), and modify the \(\mathbb{Z}_p \)-extension such that all places of \(S_2 \) splits completely. Repeating this operation, we see that \(H_{S_0}(k_1) = k_1 \) for some finite set \(S_1 \). From the above construction, we see that \(F_\infty \cap k = \mathbb{F}(T) \) and that \(F_\infty k/k \) satisfies the assumptions (A) and (B).

Finally, we shall give an Iwasawa-theoretic argument. In \(F_\infty k/k \), all ramified places (which are lying above \(\tau \)) are totally ramified. From this, we also see \(H_{S_0}(k) = k \). Let \(A_n \) be the Sylow \(p \)-subgroup of \(\text{Cl}_{S_1}(kF_n) \). By the above results, we see that both of \(A_0 \) and \(A_1 \) are trivial. In this situation, we can use the method given in Fukuda [6]. Namely, if all places which ramify in \(F_\infty k/k \) are totally ramified and both of \(A_0 \) and \(A_1 \) are trivial, then \(A_n \) is trivial for all \(n \geq 0 \). (See [6, Theorem 1]. We note that the same method is also applicable for our situation.) Hence we see that \(A_n \) is trivial for all \(n \geq 0 \).

We shall show Theorem 1.4. We fix a finite \(p \)-group \(G \). By using Theorem 2.2, we can take a geometric Galois extension \(K/\mathbb{F}(T) \) and a subextension \(k/\mathbb{F}(T) \) of \(K/\mathbb{F}(T) \) such that \(K/k \) is unramified and \(\text{Gal}(K/k) \cong G \). By Theorem 3.1, we can take a geometric \(\mathbb{Z}_p \)-extension \(F_\infty/\mathbb{F}(T) \) and a set \(S \) of places of \(\mathbb{F}(T) \) such that \(F_\infty \cap K = \mathbb{F}(T) \), all places of \(S \) split completely in \(K \), both of \(F_\infty/\mathbb{F}(T) \) and \(F_\infty K/K \) satisfy the assumptions (A) and (B), and \(A_n \) is trivial for all \(n \geq 0 \) (where \(A_n \) is the Sylow \(p \)-subgroup of \(\text{Cl}_{S}(F_n K) \), and \(F_n \) is the \(n \)th layer of \(F_\infty/\mathbb{F}(T) \)). We note that \(F_\infty k/k \) also satisfies the assumptions (A) and (B). We claim that \(\tilde{L}_S(F_n K) = F_n K \) for all \(n \geq 0 \). Indeed, if \(\tilde{L}_S(F_n K)/F_n K \) is nontrivial, then there is a nontrivial finite Galois \(p \)-subextension over \(F_n K \). Moreover, there is a nontrivial finite abelian \(p \)-subextension over \(F_n K \) because every \(p \)-group is solvable. Since \(A_n \) is trivial, it is a contradiction. We have shown the above claim. This implies that \(\tilde{L}_S(F_n k) = F_n K \) because \(F_n K/F_n k \) is unramified and all places of \(F_n k \) lying above \(S \) split completely in \(F_n K \). Hence
Gal(\(L_S(F_nk)/F_nk\)) \(\cong G\) for all \(n \geq 0\). Then the theorem follows.

References