<table>
<thead>
<tr>
<th>Title</th>
<th>Program 3: Community-Based Landslide Disaster Reduction in Developing Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KHANG, Dang Quang</td>
</tr>
<tr>
<td>Citation</td>
<td>教育啓蒙への利活用を考慮した防災技術情報アーカイブシステムの開発 (2013)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/175521</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Community - Based Landslide Disaster Reduction in Developing Countries

| Proposer Information | **Dang Quang Khang**
PhD student of Civil and Earth Resources Engineering, Kyoto University, Japan
Tel: 080-4010-1628 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aims of Education/training</td>
<td>Knowledge, Actions</td>
</tr>
<tr>
<td>Target User</td>
<td></td>
</tr>
</tbody>
</table>
Type | Self learning, Education/training |
| Direct user | School teachers, Community leaders, Students |
| Trainee/Indirect User | Students (Elementray school, Junior high school, High school, College/University), Local residents |
| **Focus of this Information** | Process Technology (PT) |
| **Hazards** | Landslide |
| **Type of Education/training** | Training Camp, Group discussion, Field trip, Self learning |
| **Media/Material** | Presentation, Guideline |
| **References** |
1. DRH 56 - Low-cost and adaptive technology to support a community-based landslide early warning system in developing countries
2. DRH 61 - rain-induced landslide susceptibility: a guidebook for communities & non-experts
Lecture Contents

Step 1 - Basic Information about Landslides

What is a Landslide?
A landslide is the movement of a mass of rock, earth, or debris down a slope

Basic Landslide Types

An animated picture of landslide

Landslide that occurred at La Conchita, California, USA in 2005

An animated picture of landslide

A rockfall that occurred in Clear Creek Canyon, Colorado, USA 2005
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topple</td>
<td>Block toppling at Fort St. John, British Columbia, Canada</td>
</tr>
<tr>
<td>Rotational</td>
<td>Rotational landslide in New Zealand (Michael J. Crozier, September 21, 2007)</td>
</tr>
<tr>
<td>Translational</td>
<td>A translational landslide in 2001 in British Columbia, Canada</td>
</tr>
<tr>
<td>Spread</td>
<td>Lateral spread in 1989 in Loma Prieta, California, USA (Steve Ellen, U.S. Geological Survey)</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Debris flow</td>
<td>Debris flow on the north coast of Venezuela in December 1999, killing 30,000 people</td>
</tr>
<tr>
<td>Lahars (Volcanic debris flows)</td>
<td>A lahar in 1982 from Mount St. Helens, Washington, USA</td>
</tr>
<tr>
<td>Debris avalanche</td>
<td>A debris avalanche in the Philippines in February 2006</td>
</tr>
</tbody>
</table>
Spread

The 1993 Lemieux landslide – a rapid earthflow in sensitive marine clay near Ottawa, Canada

Slow earthflow (creep)

Creep in United Kingdom (Photograph by Ian Alexander)

Where do Landslides Occur?

Anywhere in the world:

+ On land and under water;

+ Bedrock or soils;

+ Cultivated land, barren slopes, and natural forests

+ Extremely dry areas and very humid areas

+ Steep slopes or gentle slopes (1–2 degrees)

Map of the global risk of landslides (Robert Adler and Yang Hong)

Example of lateral spreading, a type of ground failure often associated with earthquakes
What Causes Landslides?

- Natural occurrences:
 + Water: rainfall, snowmelt, changes in groundwater levels
 + Seismic activity: earthquakes
 + Volcanic activity

The Mameyes, Puerto Rico landslide in 1985, triggered by a tropical storm (Randall Jibson, U.S. Geological Survey)

Earthquake-induced landslide after the 2004 Niigata Prefecture Earthquake (Professor Kamai, Kyoto University, Japan)

- Human activities:
 + Populations expanding onto new land: Disturbing or changing drainage patterns, destabilizing slopes, and removing vegetation
 + Undercutting the bottom and loading the top of a slope
 + Irrigation, lawn watering, draining of reservoirs, leaking pipes, and improper excavating or grading on slopes.

Example of landslides due to human activities
Step 2 - Making a Landslide Hazard Map

- Start with community knowledge
- Conduct field investigation
- Produce a landslide hazard map

Proposer: Assoc. Dr. Teuku Faisal Fathani, Gadjah Mada University, INDONESIA

Saved 35 families from a landslide that occurred in Kalitelaga village in Banjarnegera Regency on November 7, 2007

These monitoring equipment are connected to a siren system in order to directly warn the local community.

The local community in remote areas can easily operate and maintain the equipment based on their own capability.

Step 3 - Low Cost Early Warning System (DRH 56)
- Two types of simple extensometers and automatic rain gauge
- A handmade manual reading extensometer
- Automatic extensometer, where the relative movement between two points is mechanically enlarged by 5 times and recorded on a paper continually

- Both types of extensometers are connected to the siren system in order to directly warn the local community for taking necessary actions in dealing with landslide disaster.

- A simple modified rain gauge was also developed with hourly rainfall intensity recorded on a paper continually.
- This rain gauge is also connected to the siren system to warn the community when the precipitation reaches a certain value.

- This system presents the results of real-time measurement by using automatic extensometer, tiltmeter, groundwater measurement, and tipping bucket rain gauge

- The monitoring equipment connected with a data logger and integrated in a fieldserver

- This sensing device provides real-time online data display system, which gathers the data from multiple sensors and shows them in a webserver.

- This unit also implements early warning that can be adjusted depending on the site condition.
Step 4 - Implementation

- Task Force for Disaster Mitigation and Management of local community:
 - installation
 - operation
 - maintenance of the technical system

- All the equipment are run by a dry battery and/or solar energy

- Public education and evacuation drill
 - Training for operator
 - Evacuation drills involving primary school students
References

1. DRH 56 - Low-cost and adaptive technology to support a community-based landslide early warning system in developing countries

2. DRH 61 - Rain-induced landslide susceptibility: a guidebook for communities and non-experts