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GENERAL INTRODUCTION 

In the post-genomic era, it is becoming increasingly important to analyze how molecules in a single 

cell play individual roles on each specific occasion. Proteins, one of the cellular components, were 

previously believed to have only a single function. Therefore, other molecules, such as RNAs or 

peptides, were believed to have multiple functions and to compensate for the small numbers of 

protein-coding genes in a cell. However, it is now clear that some proteins have more than one 

function. The discoveries in the 1980s that the lens protein crystallin is similar to glycolytic enzymes 

opened up the potentiality of proteins once again. The examples of multifunctional proteins, called 

“moonlighting proteins” by Jeffery in 1999, are increasing year by year. It is now reported that 10 of 

10 glycolytic enzymes and 7 of 8 TCA cycle enzymes, as well as chaperones and histone proteins, 

are moonlighting proteins. Moonlighting proteins have different functions depending on their time or 

location of production. Therefore, analyzing changes in the localization of moonlighting proteins is 

highly important. Revealing how moonlighting proteins perform more than one function will 

disclose the hidden living machinery of the cell. Although some moonlighting proteins are reported 

to be functional outside the cell, their secretion machineries are not known in all organisms. 

Determining the translocation pathway of glycolytic enzymes will be a feasible approach to analyze 

the molecular basis of moonlighting. In addition, development of suitable cultivation methods for 

analyzing intercellular proteins is necessary for further research. 

 

Moonlighting proteins―history, molecular mechanisms, and evolution 

The word “moonlighting” had been used to mean “commit crimes at night” in 19th-century Ireland1,2, 

and now, this term is used as an informal intransitive verb to describe taking on a second job 2. The 

compound term moonlighting proteins was first defined by Jeffery in 1999 (Jeffery 1999). According 

to Jeffery, moonlighting proteins are proteins with more than one function. These proteins are not 

cleaved or post-translationally modified, but they perform different functions in the same or in 

different locations (Jeffery 1999, Fig. 1).  

  

                                                  
1moonlight. (n.d.). Online Etymology Dictionary. Retrieved August 26, 2012, from Dictionary.com website: 

http://dictionary.reference.com/browse/moonlight 

 
2moonlight. (n.d.). Collins English Dictionary - Complete & Unabridged 10th Edition. Retrieved August 26, 2012, 

from Dictionary.com website: http://dictionary.reference.com/browse/moonlight 
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Fig.1 Moonlighting 

proteins 

 

The first examples of moonlighting proteins were lens crystallins, three of which were found to 

be identical to metabolic enzymes, namely lactate dehydrogenase, enolase, and aldolase (Wistow and 

Piatigorsky 1987, Piatigorsky and Wistow 1989, Piatigorsky 1998, Wistow et al. 1988). Surprisingly, 

these enzymes were purified from lens that retained enzymatic activity, suggesting that these 

proteins function as both structural proteins and metabolic enzymes (True and Carroll 2002, Graw 

2009). A number of proteins have been subsequently found to have more than one function. A 

remarkable feature of moonlighting proteins is that, as a primary function, they often take part in 

central cellular processes such as transcription, translation, signaling, and metabolism (Fig. 2, 

Pancholi 2001). These proteins are also essential in the synthetic minimal genome created by Glass 

and colleagues (Glass et al. 2006).  

 

 

 

 

 

 

 

 

Fig. 2 Previously-known 

roles of moonlighting 

proteins (modified from 

Sriram et al. 2005) 
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Two important points arise when considering the importance of moonlighting proteins. First, 

because of the presence of moonlighting proteins, the living system can reduce the number of 

protein-coding genes. It is known that Escherichia coli has fewer number of protein-coding genes 

than the number of biological processes needed for survival (Thiele et al. 2009). With the help of 

moonlighting proteins, organisms can fill the gap and save energy to maintain a large number of 

gene sets. Second, these proteins possibly reflect the primitive form of proteins. The moonlighting 

abilities of proteins may have evolved over generations and diverged as homologs in the late stages 

of life (Piatigorsky et al. 2003). Indeed, most mammalian proteins have homologs that have different 

functions or localization sites in the cell. In some cases, the number of homologs is greater in “later” 

organisms, such as mammals, than in “earlier” organisms, such as prokaryotes (Jensen 1976, Parsot 

et al. 1987). Investigating how moonlighting proteins could have more than one function may reveal 

the features of polypeptides necessary to form organisms, to evolve, and to stand the test of immense 

amount of time. 

The reason why moonlighting proteins can have more than one function or the molecular basis of 

moonlighting proteins is not completely understood. Some insights have been gained from the 

following two examples: tau protein and moonlighting peptides (Rodríguez et al. 2012). Tau protein, 

which is unfolded in its native state (Jeganathan et al. 2008), is known to change its conformation to 

bind to neuronal axons or form aggregates that cause neuronal diseases (Kolarva et al. 2012). In 

addition, it has been demonstrated that a single amino acid residue can govern the folding of tau 

(Margittai and Langen, 2006). Rodríguez and colleagues (2012) demonstrated that a part of proteins 

(in their case, peptides) govern multiple functions. From these examples, it might be said that a 

single protein is likely to regulate multiple functions by changing its conformation to change the 

exposed surface of individual domains.  

Some researchers consider that moonlighting is not a special feature. Proteins can change their 

three-dimensional folding to change their interactions with other proteins. In association with proper 

proteins, the moonlighting protein can play a role in some biological events (Tompa et al. 2005, 

Sugase et al. 2007). These proteins are sometimes called “intrinsically unstructured proteins (IUPs)” 

(Dunker et al. 2001) and can be considered as a subset of moonlighting proteins, although the 

differences between IUPs and moonlighting proteins are under debate (Hernández et al. 2012). It 

may be said that changing protein structure to accommodate associated biomolecules (Sinthuvanich 

et al. 2012) is the molecular mechanism of moonlighting. In that case, a part of the moonlighting 

protein domain can be attributed to moonlighting properties, and the domain can change its 

conformation easily. The important question here is whether the specific amino acid sequence, which 

participates in a certain function exists. 
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Fig. 3 Glycolysis and the associated pathways 

Violet: Glycerol synthetic pathway, Black: Glycolytic pathway, Green: Pentose-5-phosphate pathway, 

Red: Ethanol or acetate fermentation, Orange: TCA cycle.  
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Glycolytic enzymes and their moonlighting functions 

Glycolytic enzymes are conserved proteins in most biological species. They are also present in 

Achaea, Mycoplasma (free living organism with the smallest genome), cyanobacteria, and algae. 

Glycolytic enzymes are an important class of proteins that produce energy from carbon sources 

under anaerobic conditions. The glycolytic pathway is connected to and crossed with important 

metabolic pathways such as the pentose phosphate pathway, TCA cycle, amino acid synthesis, and 

lipid metabolism (Fig. 3). Thus, they are vital cellular components. 

Of the 43 moonlighting proteins reported before 2005, 47% of them were previously known as 

glycolytic enzymes (Pancholi 2001, Sriram et al. 2005). It is known today that all glycolytic 

enzymes are moonlighting proteins (Table 1). The moonlighting functions of glycolytic enzymes are 

often related to important cellular machineries such as transcription, translation, signal transduction, 

cell movement, and trafficking. 

 
Table 1 Glycolytic enzymes and examples of their moonlighting functions 

 
 

Moonlighting glycolytic enzymes often need to change their location to perform their 

moonlighting functions. For example, enolase has at least seven moonlighting functions (Table 1) 

both inside and outside the cell. Extracellular enolase, which is a glycolytic enzyme, is a virulence 

factor in Candida albicans and some parasites (Jong et al. 2003, Avilan et al. 2011). Enolase has 

been found in small vesicles outside the cell (Oliveira et al. 2010, Oliveira et al. 2010) and in the cell 
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wall (Edwards et al. 1999). In addition, enolase is secreted in a sequence-dependent manner 

(Lopez-Villar et al. 2006, Yang et al. 2011) and is present in the cell wall with no enzymatic activity, 

but it binds to plasminogen and helps pathogens invade (Swenerton et al. 2011). Enolase is also 

found in viral particles (Bechtel et al. 2005, Chertova et al. 2006, Shaw et al. 2008) and is required 

for transcription in Sendai virus (Ogino et al. 2001). Therefore, enolase is a therapeutic target for 

many diseases, including candidiasis (van Deventer et al. 1996, Capello et al. 2011). Another 

extracellular glycolytic enzyme, phosphoglucose isomerase, enhances the motility of tumor cells 

(Dobashi et al. 2006) and acts like a cytokine (Torimura et al. 2001), although it possesses no 

enzymatic activity outside the cell (Tsutsumi et al. 2003). However, the secretory pathway of 

glycolytic enzymes such as enolase and phosphoglucose isomerase remains to be revealed. This 

pathway appears to be unconventional because glycolytic enzymes have no known secretion signals. 

Therefore, in this study, we analyze the secretory pathway of glycolytic enzymes.  

Conventional secretion pathways of proteins have been extensively studied using Saccharomyces 

cerevisiae (Schekman 2010). In addition, we may reveal unknown secretion pathways of proteins; 

however, it remains challenging because the trafficking patterns inside the organism are not 

completely known. 

 

Secretion pathways of S. cerevisiae 

S. cerevisiae is a model organism for determining the secretion pathways of proteins and lipids 

because it has known gene sets that work in various protein transport pathways. Schekman (Novick 

and Schekman 1979, Novick et al. 1980, Schekman 2010), Ohsumi (Nagatogawa et al. 2009, 

Mizushima et al, 2011), and numerous other researchers (Bryant and Stevens 1998, Hua et al. 2002, 

Gall et al. 2002) have developed various temperature-sensitive and/or knockout mutants of S. 

cerevisiae to investigate protein transport pathways. The outline of S. cerevisiae secretion pathways 

is shown in Fig. 4.  

Protein transport mediated by membrane cargoes is regulated by various membrane-associated 

proteins or protein complexes (Whyte and Munro 2002, Bröcker et al. 2010). Among the proteins 

involved in transport machineries, soluble N-ethylmaleimide-sensitive factor attachment protein 

receptor (SNARE) proteins are the most extensively studied (Ungar and Hughson, 2003, Duman and 

Forte 2003, Jahn and Scheller 2006, Table 2). As shown in Table 2, 13 of 23 SNAREs are essential, 

and at least 9 proteins are used in more than two of the pathways described in Fig. 4. Of these, 

pathways 5 and 6 are considered conventional secretion pathways, while the others (17 and secretion 

via early endosome) are unconventional. The pathway used by unconventionally secreted 

moonlighting glycolytic enzymes remains unknown. 
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 Fig. 4 Overview of protein secretion pathways in S. cerevisiae (modified figure from Brocker et 

al. 2010 and Muthusamy et al. 2009) N: Nucleus, ER: Endoplasmic reticulum, TGN: Trans-Golgi 

network, V: Vacuole, EE: Early endosome, LE: Late endosome, MVB: Multi vesicular vody, A: 

Autophagosome. See also Table 2 for detailed names of pathways numbered. 

 

  

Spatial arrangement of glycolytic enzymes 

Fluorescent protein tags have been used to determine the subcellular localization of proteins (Phillips 

2001, Rudner and Losick 2010, Chudakov et al. 2010), especially in S. cerevisiae. Dr. Erin O'Shea 

and Dr. Jonathan Weissman at UCSF generated a collection of S. cerevisiae open reading frames that 

were tagged at the carboxy terminal using the coding sequence of Aequorea victoria GFP (S65T) 

(Huh et al. 2003). A database of GFP-fused protein localization (yeast GFP localization database, 

http://yeastgfp.yeastgenome.org/) is now available. In addition, many other databases for the 

subcellular localization of proteins are available (LOCATE, subcellular localization database for 

mouse and human, http://locate.imb.uq.edu.au/; eSLAB, a database of protein subcellular 

localization annotation for eukaryotic organisms, http://gpcr.biocomp.unibo.it/esldb/; Organelle DB, 

a database of organelle proteins and subcellular structures/complexes, 

http://organelledb.lsi.umich.edu/; locDB, collection of experimental annotations for the subcellular 

localization of proteins in human and weed, http://www.rostlab.org/services/locDB/). Apart from its 

property to accumulate in the nucleus to some extent (Seibel et al. 2007) and that its fluorescence 

intensity is affected by oxygen concentration (Yang et al. 1996, Takahashi et al. 2006), GFP is useful 
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and is one of the frequently used fluorescent proteins. Accumulation, aggregation, and association of 

proteins inside the cell often indicate some cellular machineries or protein functions (Kanda et al. 

1998, Bence et al. 2001, Tilsner and Oparka 2010). Therefore, protein localization in response to 

certain stimuli has been extensively researched to discover novel cellular machineries (Sakai et al. 

1997, Dastoor and Dreyer 2001, An et al. 2008, Narayanaswamy et al. 2009, Noree et al. 2010). 

Spatial rearrangement of moonlighting proteins, including glycolytic enzymes, is highly 

important for their various functions. In several organisms and cells, some glycolytic enzymes have 

been reported to associate with the cytoskeleton (Masters 1984, Stephan et al. 1986), erythrocyte 

membrane (Campanella et al. 2005), or muscle (Brooks and Storey 1988), or to associate with each 

other (Mowbray and Moses 1976, Anderson et al. 1995, Mazzola and Sirover 2003). In a few species 

of protozoa, including Trypanosoma brucei, glycolytic enzymes are contained in a 

membrane-enclosed organelle called glycosome (Hannaert and Michels 1994, Bakker et al. 2000). 

Association of glycolytic enzymes is believed to facilitate metabolism (Beeckmans et al. 1990, Amar 

et al. 2008). In addition, changes in the localization of glycolytic enzymes suggest other 

moonlighting functions (Dastoor and Dreyer 2001, Decker and Wickner 2006). 

The intracellular assembly of glycolytic enzymes has been observed in mammalian cells; one of 

the glycolytic enzymes, i.e., GAPDH conjugated with GFP, was found to form fluorescent foci under 

hypoxia (Agbor et al. 2011). Agbor and colleagues (2011) demonstrated that the spatial 

rearrangement was dependent on modification by small ubiquitin-like modifier (SUMOylation). 

However, its function and sensing machineries involved in the initiation of spatial reorganization of 

the glycolytic enzyme under hypoxia remain known. It is important to determine the location of the 

foci because GAPDH has been reported to translocate into the nucleus under hypoxia (Stannard et al. 

2004). Moreover, according to the S. cerevisiae database (yeast GFP localization database, 

http://yeastgfp.yeastgenome.org/), subcellular localization of glycolytic enzymes fused with GFP 

(GFP clones, Invitrogen) is uniform in the cytoplasm. Therefore, it is uncertain whether glycolytic 

enzymes change their localization in response to hypoxia, especially in yeast cells. When the spatial 

rearrangement of glycolytic enzymes occurs under hypoxia, the relocalization of enzymes may affect 

cell physiology. 
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Cell physiology under hypoxia 

Hypoxia is a condition in which the cell is deprived of adequate oxygen supply. Many studies define 

hypoxia at ≤2 mg/L of dissolved oxygen (DO) in an aqueous environment (Eby et al. 2002, Buzzelli 

et al. 2002). In cultured mammalian cells, 1% atmospheric oxygen is regarded to be a hypoxic state, 

while 21% is regarded to be the normal oxygen concentration (normoxia) (Hagen et al. 2003, Frezza 

et al. 2011). A hypoxic state for mammalian cells often occurs in vivo when the oxygen supply is 

limited (Denko 2008). Hypoxia is reported to correlate with many diseases including heart attack, 

cancer, and stroke (Lyer et al. 1998). Some tumor cells are known to response to hypoxia and obtain 

increased metastatic activity (Zhong et al. 1999), radiation resistance (Eyler and Rich 2008), and 

drug resistance (Teicher 1994). Baker’s yeast, S. cerevisiae is also well known to response to 

hypoxia during fermentation (Simeonidis et al. 2010). When sufficient amounts of nutrients are 

supplied, S. cerevisiae produces CO2 in metabolic processes, which decreases the oxygen 

concentration in the medium (Rosenfeld et al. 2003). The hypoxic responses of yeast cells have 

attracted attention because researchers have proved that these responses have some roles in infection 

by pathogenic fungi including C. albicans (Grahl and Cramer, 2010) and Aspergillus fumigatus 

(Grahl et al. 2011, Fller and Rhodes, 2012).  

The hypoxic responses of mammalian cells and yeasts are common to some extent (Fig. 5). 

Because molecular oxygen is required for heme and sterol biosynthesis, the production of these 

molecules is reduced under hypoxia (Hickman et al. 2011, Siso et al. 2012). In addition, oxygen 

deprivation triggers the release of reactive oxygen species (ROS) from mitochondria (Chandel et al. 

1998, Chandel et al. 2000, Blokhina et al. 2003, Guzy et al. 2005, Bell et al. 2007, Murphy 2009) by 

unknown mechanisms (Guzy and Schumacker 2006). These primary hypoxic responses trigger the 

following secondary responses. In mammalian cells, cytosolic ROS stabilize hypoxia-inducible 

factor 1α (HIF-1α) (Guzy and Schumacker 2006), which is a major regulator for the hypoxic 

response. ROS (Gillespie et al. 2009, Ruchko et al., 2009, Poyton et al. 2009, Gillespie et al. 2010), 

and HIF-1α (Ortiz-Barahona et al. 2010, Tanimoto et al. 2010, Schödel et al. 2011, Liu et al. 2012) 

oxidizes or binds several specific bases in hypoxia-responsive elements (HRE). Genes containing 

HRE in their promoters include those that encode aldolase, enolase, and lactate dehydrogenase 

(Semenza et al. 1996). In mammalian cells, transcription of PKM2, a gene that encodes one of the 

glycolytic enzymes, is activated by HIF-1α (Luo et al. 2011). Interestingly, Pkm2p interacts directly 

with the HIF-1α subunit and acts as a coactivator (Luo et al. 2011). In addition to HRE oxidization, 

mitochondria-generated ROS trigger AMP-activated protein kinase signaling (Jung et al. 2008, 

Emerling et al. 2009, Mungai et al. 2011, Kim et al. 2011) through several reaction steps (Mungai et 

al. 2011). Yeast cells have no HIF-1α homologs (Rytkönen and Storz 2011); however, yeast has HRE 

clusters in the promoters of TDH2, ALD6, and genes involved in amino acid metabolism (Ferreira et 

al. 2007). It is also reported that hexose transporters are affected under a hypoxic condition, 
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accelerating the uptake of extracellular hexoses (Rintala et al. 2008). Because of the resemblance of 

responses to hypoxia between S. cerevisiae and mammalian cells, some researchers regard S. 

cerevisiae as one of the model organisms for studying a hypoxic response (Netzar and Breitenbach 

2010). Mitochondrial ROS production can also be measured in yeast cells. Using dihydroethidium 

and MitoSOX Red, cellular and mitochondria-specific reactive oxygen can be measured in vivo 

(Quaranta et al. 2011). 2′, 7′-dichlorofluorescin diacetate can also be used as a cytosolic indicator of 

ROS (Gomes et al. 2005, Bonini et al. 2006, Al-Mehdi et al. 2012). 

Hypoxic response mechanisms have been extensively studied by culturing yeast cells in a media 

depleted in oxygen by sparging with N2 (Kwast et al. 2002, Lai et al. 2008). Kwast and colleagues 

(2002) have shown that N2-induced hypoxia triggers global changes in metabolic gene induction. 

Interestingly, these two researches do not report enolase gene induction, in contrast to that in 

mammalian cells (Kwast et al. 2002, Lai et al. 2008). In S. cerevisiae, a decrease in heme and sterol 

levels induces the activation of transcription by Upc2p, while a decrease in only heme levels inhibits 

Rox1p and Mot3p to repress hypoxic genes, thus inducing hypoxia-responsive genes (Grahl and 

Cramer, 2010). The connection between sterol- and heme-regulated responses to hypoxia, and their 

correlation with mitochondrial ROS production have not been described. 

 

 

Fig. 5 Outline of similar hypoxic responses in mammalian and yeast cells 

 

In response to hypoxia, cultured mammalian cells produce large amounts of lactate, alanine 

(Brecht and Groot 1994, Chateil et al. 2001), and acetate. On the other hand, S. cerevisiae cells 

grown under hypoxic conditions are known to produce ethanol, glycerol, succinic acid, and alanine 

(Chico et al. 1978, Gleason et al. 2011) as end products of glycolysis. These changes in metabolites, 

especially overproduction of alanine under hypoxia, are also known in flies (Feala et al. 2007) and 
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plants (Rocha et al. 2010). In rat heart, aspartate production is significantly increased under hypoxia 

relative to normoxia (Rumsey et al. 1999). Alanine, aspartate, and other amino acids are considered 

to protect cells from hypoxic injury (Weinberg et al. 1990, Brecht and Groot 1994). In yeasts, 

conversion of pyruvate to oxaloacetate and aspartate is a part of gluconeogenesis, which enables 

yeast cells to grow on non-sugar carbon sources such as ethanol, glycerol, or peptone (Foy and 

Bhattacharjee 1977, Eschrich et al. 2002).  

In case of gluconeogenesis in yeast, acetyl-CoA carboxylase produces malonyl-CoA under 

regulation by SNF1, which is a yeast functional homolog of mammalian AMP kinase (Woods et al. 

1994). Malonyl-CoA is the first precursor of long fatty acids (Fig. 6). Without acetyl-CoA 

carboxylase, yeasts need fatty acids to survive and arrest the G2/M phase of the cell cycle (Al-Feel et 

al. 2003). Acetyl-CoA carboxylase is also vital in mammalian cells, as RNAi of acetyl-CoA 

carboxylase inhibits the growth of prostate cancer cells and mouse embryos (Abu-Elheiga et al. 2005, 

Brusselmans et al. 2005).   

 

Fig. 6 Fatty acid synthesis from pyruvate in S. cerevisiae 

 

There had been several reports demonstrating that cobalt and other metal ions induce cellular 

responses, which resemble the hypoxic response. However, reports also suggest that there are some 

differences between these two stimuli. For example, overproduction of alanine is observed under 

hypoxia but not in the presence of cobalt (Gleason et al. 2011). In addition, ROS generation by 

hypoxia and by CoCl2 addition is differently inhibited by adding mitochondria-inhibiting agents to 

mammalian cells (Chandel et al. 2000). 

Although the role of the spatial relocalization of glycolytic enzymes under hypoxia is not 

revealed, there is a report suggesting the importance of spatial localization of cellular components. 

Recently, Al-Mehdi and colleagues (2012) have revealed that mitochondria localize near the nucleus 
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under hypoxia to translocate ROS into the nucleus and oxidize guanine nucleotides of specific 

promoter DNA sequences in order to induce the expression of the vascular endothelial growth 

factor-encoding gene (VFGF) (Murphy 2012). The results suggest that regulating intracellular 

localization of mitochondria has an important role in the hypoxic response. If glycolytic enzymes 

change their localization in the cell, the role this relocation plays in cellular metabolism and the 

mechanisms that regulate this translocation should be investigated. 

 

Culture instruments for cultivation of yeast cells 

Suitable culture vials are needed to study hypoxia in yeast cells. A novel culture device, which can 

separate and co-cultivate different types of cells at the same time, is needed to investigate unknown 

functions of unconventionally secreted proteins.  

Because yeast cells experience a hypoxic environment during fermentation, vials for fermentation 

can be used to investigate their hypoxic responses. Glass vials have been developed by Matsumoto et 

al. (2002) for laboratory-scale fermentation. A small pump can be used to create normoxia (sufficient 

oxygen concentration) in these vials. 

Several different culture vials, including Millicell culture inserts (Millipore, Germany), IdMOC 

(Kurabo, Osaka, Japan), and Alvetex (TaKaRa Bio, Otsu, Japan), have been developed for the 

investigation of intercellular proteins. Because these chambers developed are for mammalian cells, 

only a small volume of microbial cells can be cultured using these chambers. These chambers can be 

used for co-cultivation of different cells, but first, a model system to investigate the intercellular 

function of extracellular proteins should be constructed. Following which, large-scale culture vials 

for separated co-cultivation should be developed. 

 

 

 To determine the molecular machineries that enable proteins to perform moonlighting functions, 

investigating the mechanism regulating the localization of moonlighting proteins is a plausible 

approach. In this regard, the following questions arise: 

 Is there a specific amino acid sequence that participates in certain localizations? 

 Through which transporting pathway is the change in localization achieved? 

 By which cellular mechanism or sensing pathway is the change in localization regulated? 

 Does the change in localization correlate with cell physiology? 

These issues were addressed in this study using the moonlighting glycolytic enzyme, enolase, as a 

model. 
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CHAPTER I 

Searching for secretory pathway of enolase and discovery of enolase foci-forming region 

 

Introduction 

Glycolytic enzymes play various roles inside and outside the cell (Tristan et al. 2011). Although they 

are cytosolic proteins, numerous large-scale analyses have revealed their extracellular existence, in 

both unicellular and multicellular organisms (Lamonica et al. 2005, Nombela et al. 2006, Chiellini et 

al. 2008, Oliveira et al. 2010, Oliveira et al. 2010, Shinya et al. 2010). Many glycolytic enzymes 

have been reported to play roles in important cellular processes such as signal transduction and 

surface binding (Sriram et al. 2005, Makhina et al. 2009, Ghosh and Jacobs-Lorena 2011, Renigunta 

et al. 2011). For example, extracellular enolase, which is a glycolytic enzyme, is a virulence factor in 

Candida albicans and other parasites (Jong et al. 2003, Avilan et al. 2011). Enolase has been found 

in small vesicles outside the cell (Oliveira et al. 2010, Oliveira et al. 2010) and in the cell wall 

(Edwards et al. 1999). In addition, enolase is secreted in a sequence-dependent manner (Lopez-Villar 

et al. 2006, Yang et al. 2011), and presents in the cell wall with no enzymatic activity, but binds to 

plasminogen and helps the pathogen invade (Swenerton et al. 2011). Enolase is also found in viral 

particles (Bechtel et al. 2005, Chertova et al. 2006, Shaw et al. 2008), and is required for 

transcription of the Sendai virus (Ogino et al. 2001). Therefore, enolase is a therapeutic target for 

many diseases, including candidiasis (van Deventer et al. 1996, Capello et al. 2011). Another 

extracellular glycolytic enzyme, phosphoglucose isomerase, enhances the motility of tumor cells 

(Dobashi et al. 2006) and performs like a cytokine (Torimura et al. 2001), although it possesses no 

enzymatic activity outside the cell (Tsutsumi et al. 2003). However, the secretory pathway of 

glycolytic enzymes such as enolase and phosphoglucose isomerase remains to be revealed. This 

pathway appears to be unconventional because glycolytic enzymes have no known secretion signals. 

Therefore, in this study, I analyzed the secretory pathway of glycolytic enzymes. 

A number of secreted proteins without known secretion signals have been found (Kinseth et al. 

2007), and several unconventional secretory pathways have been discovered and suggested (Duran 

et al. 2010, Manjithaya et al. 2010, Nickel and Rabouille 2009). Recently, Duran and coworkers 

identified the novel unconventional secretory pathway of the Acb1 protein (Duran et al. 2010). The 

budding yeast Saccharomyces cerevisiae is a useful organism to identify previously unknown 

secretory pathways, because it is a commonly used and well-understood model for studying cellular 

processes (Schekman 2010).  

Two popular methods can be used to detect cellular secretion, namely, secretome analysis and 

glucoamylase assay (Innis et al. 1985). Although these methods are highly informative and 

convenient, three major problems arise when using them to detect unknown secretory pathways. 

First, because proteome analysis targets naturally produced proteins, the proportion of each protein 
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varies. Therefore, the secretory abilities of different proteins are incommensurable, and detecting 

leakage is inevitable. Second, the glucoamylase assay cannot detect changes in the size of proteins. 

Therefore, this method can miss the processing of proteins during secretion, which is important for 

the prediction of the secretory pathway. Third, neither method can visually trace the intracellular 

secretory pathway. Therefore, it is important to be cautious with the information obtained by these 

methods and investigate all the possible pathways.  

Previously, Morisaka and colleagues have developed a novel two-dimensional high-performance 

liquid chromatography (2D-HPLC)-based method that detects proteins on the living cell surface 

(Morisaka et al. 2012). Using this method, an overview of the proteins on the outside of the cell can 

be gained. In addition, glycolytic enzymes suitable for secretion analyses can be selected. In this 

study, I utilized enhanced green fluorescence protein conjugated with FLAG-tag 

(EGFP-FLAG)-tagged glycolytic enzymes to analyze the secretory pathway of glycolytic enzymes. 

Western blot analysis enabled detection of the secreted proteins in the culture media. Moreover, the 

use of plasmid-based protein expression facilitated uniform protein levels and analysis of the 

secreted proteins. Moreover, the secretory pathway was visualized and assessed with the aid of the 

conjugated fluorescent proteins (Hirschberg and Lippincott-Schwartz 1999, Huang and Shusta 

2005). 

 

Materials and methods 

Strains and media 

Escherichia coli DH5 (F-, 80dlacZM15, (lacZYA-argF)U169, deoR, recA1, endA1, 

hsdR17(rK
-, mK

+), phoA, supE44, -, thi-1, gyrA96, relA1) strain was used for host cells in the 

cloning experiments. The temperature-sensitive sec23-1 strain RSY282 (MATa, leu2 ura3 

sec23-1) was kindly provided by Dr. Randy Schekman (Department of Molecular and Cell Biology 

and Howard Hughes Medical Institute, University of California at Berkeley). The yeast strain 

BY4741 (MATa, his31, leu2 met15 ura3), and the derived deletion strains of SED1 (sed1), 

SSO1 (sso1), SSO2 (sso2), SEC22 (sec22), SNC2 (snc2), TLG2 (tlg2), BTN2 (btn2), PEP12 

(pep12), VPS51 (vps51), GOS1 (gos1), ATG1 (atg1), ATG8 (atg8), ATG11 (atg11), ATG17 

(atg17), ATG20 (atg20), VAM3 (vam3), and GRH1 (grh1) were purchased from EUROSCARF 

(Frankfurt, Germany). The yeast GFP clones (Invitrogen, Carlsbad, CA, USA) with GFP-tagged 

endogenous proteins (Pma1p, Nup84p, Mae1p, Chs5p, Snf7p, Vrg4p, Pex11p, and Sec13p) and HIS3 

marker in the parent BY4741 strain were used to determine the localization of proteins. E. coli was 

grown in lysogeny broth (LB) (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) sodium 

chloride, and 100 ng/mL ampicillin). The yeast cells were grown in yeast extract peptone dextrose 

(YPD) medium (1% (w/v) yeast extract, 2% (w/v) polypeptone, and 2% (w/v) glucose), SD+HM 

medium (0.67% (w/v) yeast nitrogen base without amino acids, 2% (w/v) glucose, 0.002% 
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L-histidine-HCl, and 0.003% L-methionine), SDC+HM medium (0.67% (w/v) yeast nitrogen base 

without amino acids, 2% (w/v) glucose, 0.002% L-histidine-HCl,0.003% L-methionine, 2% casamino 

acids (BD, Franklin Lakes, NJ), and 2% (w/v) agar), SC+ML medium (0.67% (w/v) yeast nitrogen 

base without amino acids, 2% (w/v) glucose, 0.003% L-methionine,0.003% L-leucine, 0.13% SD 

Multiple drop Out (-Ade, -His, -Leu, -Lys, -Trp, -Ura, Funakoshi Co., Ltd., Tokyo, Japan), 2% (w/v) 

agar), SD+ML medium (0.67% (w/v) yeast nitrogen base without amino acids, 2% (w/v) glucose, 

0.003% L-methionine,0.003% L-leucine), or SDC+ML medium (SD+ML supplemented with 2% 

casamino acids).  

 

Construction of S. cerevisiae expression plasmids  

The plasmids were constructed using a conventional PCR-based method and our novel PCR-free 

method (one-step construction method for plasmids (OSCoM-P); Fig. 1). In addition, iProof DNA 

polymerase (Bio-Rad, Richmond, CA, USA), KOD-plus-DNA polymerase (Toyobo, Osaka, Japan), 

KOD-plus-Neo-DNA polymerase (Toyobo), Ligation High (Toyobo), and synthetic oligonucleotides 

(Japan Bio Services, Saitama, Japan) were used. All primers used in this study are shown in Table 1. 

The plasmids for the internal production of the recombinant proteins were constructed from 

pULSG1 (Matsui et al. 2009). The primers coding the ATG codon were mixed with the pULSG1 

digest and inserted using the EcoR I and Xho I sites by OSCoM-P (Fig. 1); the resulting plasmid was 

named pUL-ATG-EGFP. The section of pUL-ATG-EGFP including the GAPDH promoter, the 

terminator, the FLAG-tag (DYKDDDDK; 21), and the EGFP sequence was amplified and added to 

the BamH I and Not I sites by PCR using the primers GAPDH promoter-F and GAPDH terminator-R, 

and inserted into the BamH I–Not I section of pRS423 (47, from ATCC); the resulting plasmid was 

named pRS423-ATG-EGFP. For constructing the plasmid pULGI2, OSCoM-P was also performed. 

Oligonucleotide fragments with several restriction sites were inserted into pULSG1 by using the 

EcoR I and Xho I sites. The plasmids for the internal expression of the glycolytic enzymes 

conjugated with EGFP-FLAG were constructed as follows. The yeast genomic DNA was extracted 

and purified from the S. cerevisiae BY4741 strain, and each gene coding a glycolytic enzyme was 

cloned using the appropriate primer set (Table 1). The fragments were digested and inserted into 

pULGI2 by using the BamH I and Xho I sites or the BamH I and Sac I sites. The internal expression 

vector without EGFP was constructed from pULSG1C (Matsui et al. 2009) and pWGP3 (Takahashi 

et al. 2001). The multi-cloning site followed by the GAPDH terminator sequence was amplified from 

pWGP3 and inserted into pULSG1C by using the Sac I and Kpn I sites; the resulting plasmid was 

named pULI1. For the construction of the plasmid for the intercellular production of 

enolase-EGFP-FLAG with the N-terminal peptide sequence (HA-tag), the HA-tag sequence was 

inserted into pULGI2 by using OSCoM; the resultant plasmid was named pULGI2-HA. The ENO2 

coding sequence from pULGI2-ENO2 was inserted into pULGI2-HA, and the resultant plasmid was 
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named pULGI2-HA-ENO2. For the construction of plasmids to produce the red-fluorescent proteins, 

the Discosoma red fluorescent protein (DsRED) monomer with EcoR I and Xho I sites at the 

N-terminus and Sal I at the C-terminus was cloned from pKRD4 (Kuroda et al. 2009). The amplified 

fragments were digested with EcoR I and Sal I, and then inserted into the same site of pULSG1; the 

resultant plasmid was named pUL-ATG-DsRED. For production of the enolase fragments fused with 

EGFP or DsRED, amplified fragments were digested and inserted into pULSG1 or 

pUL-ATG-DsRED by using the EcoR I and Xho I sites (see Table 1). Plasmids for production of 

Tlg2p (p413-ADH-TLG2) were constructed as follows: TLG2-coding  sequence was cloned  from 

the genomic DNA extracted from S.cerevisiae BY4741 and inserted into MCS of p413-ADH (ATCC 

87370) using EcoR I and Xho I sites. The plasmid construction was confirmed by DNA sequencing 

performed using a BigDye Terminator v3.1 cycle sequencing kit and an ABI PRISM 3100 Genetic 

Analyzer (Applied Biosystems, Foster City, CA, USA). 

 

 

Fig. 1 Schematic illustration of the one-step construction method for plasmids (OSCoM-P) The 

digested linear fragments of the plasmids were ligated with the designed primers at a dry weight 

ratio of 1:1–1:10 (linear plasmid:each primer). The reaction solution was directly transformed into E. 

coli DH5 competent cells (Toyobo). The purchased oligonucleotides were dissolved in dH2O at 10 

ng/mL before use. TE buffer was not used because OSCoM-P was severely inhibited by the presence 

of TE buffer (data not shown). Maximum length of fragments to be inserted into plasmids using 

OSCoM-P is 45 bp (data not shown). 

 

 

Production of recombinant proteins in yeast cells 

The yeast cells were transformed with plasmids by using a Frozen-EZ Yeast Transformation II™ kit 

(Zymo Research, Orange, CA, USA) and grown on SDC+HM agar plates. The transformants were 



32 
 

selected as single colonies and inoculated into 10 mL of SD+HM medium for pre-cultivation at 25°C 

with shaking. At the late-log phase, the pre-culture was subcultured into 10 mL (for secretion 

analysis of the sec23-1 strains) or 25 mL of the same medium to obtain an optical density at 600 nm 

(OD600) of 0.01 (for secretion analysis of the glycolytic enzymes) or 0.3. The cells were cultivated at 

25°C for 26 h (for secretion analysis of the glycolytic enzymes) or 4 h with shaking until they 

reached an OD600 of 0.9–1.1 or 0.5. Genotypes of knockout strains were checked by colony PCR. 

For secretion analysis of plasmid co-transformed strains, plasmids for internal overexpression of 

EGFP-FLAG-conjugated proteins (pUL-X) were co-transformed with p413-plasmids into 

BY4741wt and TLG2 strains. Transformants were grown on SC+ML agar medium. Single colonies 

were picked up and re-cultivated on the same medium, and then used for secretion analysis. 

Transformants were pre-cultivated in 10 mL of SDC+ML media at 25°C for 26 h with shaking. Cells 

were washed with fresh media SD+ML and inoculated into 25 mL of SD+ML media. The cells were 

cultivated at 25°C for 4 h with shaking until they reached an OD600 of 0.5. 

 

Identification of noncovalently bound cell surface proteins of living cells 

The budding yeast BY4741 sed strain transformed with the plasmids pRS423-ATG-EGFP and 

pKRD4 (Kuroda et al. 2009) was grown in SDC+HM media. The noncovalently bound cell surface 

proteins extracted from living yeast cells by using CHAPS were separated by a 2D-HPLC system 

optimized for protein separation (34). The fractionated proteins were lyophilized using a Labconco 

vacuum centrifuge (Labconco, MO, USA) and solubilized in 50 mM ammonium hydrogencarbonate. 

The collected proteins were reduced with 50 mM DTT for 30 min at 60°C and alkylated with 500 

mM iodoacetamide for 45 min at room temperature. The alkylated proteins were digested by trypsin 

(sequencing grade modified trypsin; Promega Corp., WI, USA) for 12 h at 37°C for protein 

identification by mass spectrometry using a Prominence nanoflow system (Shimadzu, Kyoto, Japan) 

and an LTQ Velos linear ion trap mass spectrometer (Thermo Scientific Inc., Bremen, Germany). 

The proteolytic digests were separated by reversed-phase chromatography using a packed tip column 

(NTCC-360, 150 mm × 100 μm I.D.; Nikyo Technos, Tokyo, Japan) at a flow rate of 500 nL/min. 

The gradient was provided by changing the mixing ratio of the 2 eluents (A, 0.1% (v/v) formic acid 

and B, acetonitrile containing 0.1% (v/v) formic acid). The gradient was started with 5% B, 

increased to 45% B for 60 min, further increased to 95% B to wash the column, and then returned to 

the initial condition and held for re-equilibration. For data-dependent acquisition of mass 

spectrometry detection, the method was set to automatically analyze the top 3 most intense ions 

observed in the mass spectrometry scan. An ESI voltage of 1.9 kV was directly applied to the flow 

using a microtee. The ion transfer tube temperature on the LTQ Velos ion trap was set to 300°C. The 

experiments were independently repeated twice. Protein identification was performed using the 

combined tandem mass spectrometry data and the Protein Discoverer software (Thermo Scientific). 
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The results were compared to the Saccharomyces Genome Database (SGD; 

http://www.yeastgenome.org) and filtered at a q-value of ≤0.05 corresponding to 5% false discovery 

rate (FDR) on a spectral level, and the identified proteins contained >2 peptide fragments. 

 

Preparation of extracellular and intracellular proteins 

The detection was performed as follows. The culture media (25 mL) was centrifuged at 900 g for 10 

min at 4C to remove cells. Following this, the culture media were filtered through a 0.2-m 

Acrodisc syringe filter (PALL Corporation, MI, USA) and concentrated by ultrafiltration (YM-10 

filter for pULI1, pULSG1C, pUL-ATG-EGFP, pUL-eno(1–17), pUL-eno(1–28), and pUL-eno(1–30), 

and a YM-30 filter for the others; Amicon, Millipore, Millford, MA, USA). After washing thrice 

with 4 volumes of 20 mM Tris-HCl (pH 7.8), the concentrated proteins were frozen and lyophilized. 

The proteins were then suspended with 15 µL (for secretion analysis of the glycolytic enzymes) or 

30 L of loading buffer and analyzed by SDS-PAGE. The cells were suspended with 500 L of 20 

mM Tris-HCl (pH 7.8) containing 0.1% SDS. After homogenization at 4,000 rpm for 20 sec using 

glass beads (GB-05, diameter 0.5 mm; TOMY, Tokyo, Japan) and Bead Smash 12 (Wakenyaku, 

Kyoto, Japan), the sample solutions were centrifuged at 9,700 g for 5 min. Aliquots (5 µL) of the 

supernatants were suspended with 5 L of 2× loading buffer and analyzed by SDS-PAGE.  

 

Inhibition of conventional secretion by using the sec23-1 strain 

After pre-culture in SD+HM medium, the cells were washed with fresh media and inoculated into 

fresh 10 mL of the same media to obtain an OD600 of 0.3, and incubated at 25 or 37C with shaking. 

After 4 h, the culture media was filtered and concentrated. Following measurement of the protein 

concentration, the solution was lyophilized and suspended in 10 L of loading buffer.  

 

SDS-PAGE 

SDS-PAGE was conducted according to the previously described method (Laemmli, 1970) by using 

a continuous polyacrylamide gel (5%–20%, 120 × 100 mm, e-PAGEL; Atto, Tokyo, Japan). The 

samples were heated in the loading buffer at 100C for 3 min, centrifuged at 21,900 g at 4C for 5 

min to remove the debris, and loaded. As an external standard, the FLAG-protein (48-kDa cleavage 

control protein; Novagen, Inc., WI, USA) was used.  

 

Western blotting 

After transfer to a nitrocellulose membrane (0.45 m, pore size) by using trans-blot transfer medium 

(Bio-Rad), western blot analysis was performed using an anti-FLAG M2 antibody conjugated with 

HRP (Sigma). The loading control Pgi1p was detected using the rabbit anti-baker’s yeast Pgi1p 

(Acris Antibodies GmbH, Hiddenhausen, Germany) and an anti-rabbit antibody conjugated to HRP 
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(GE Healthcare, UK, Ltd., Buckinghamshire, UK). The detection was enhanced by using the Can 

Get Signal Immunoreaction Enhancer solution (Toyobo). After detection, the antibodies were 

removed using a stripping agent (WB Stripping solution; Nacalai), and the membranes were blocked 

and reprobed using an anti-FLAG M2 antibody conjugated to HRP (Sigma). The chemiluminescence 

was detected using ECL Plus™ western blotting detection reagents (GE Healthcare). The 

membranes treated with the detection reagent were exposed to Amersham Hyperfilm ECL (GE 

Healthcare) and developed using Rendol and Renfix (Fujifilm, Kanagawa, Japan) to detect the 

secreted glycolytic enzymes and enolase fragments. Other data were taken by using the ImageQuant 

LAS 4000 mini system (GE Healthcare). Gained signals from extracellular Pgi1p and Eno2p 

conjugated with EGFP-FLAG-tag using anti-Pgi1p and anti-FLAG were processed by setting signals 

obtained from 0.4 ng/ lane of FLAG-protein as 1. Relative amounts of Eno2p-EGFP-FLAG-tag were 

calculated as: [signal intensities of anti-FLAG treatment/ that of anti-Pgi1p treatment]. One-tailed 

t-tests were performed to detect significant differences. 

 

Fluorescence microscopy 

For confocal microscopy, the cells were grown to the mid-log phase and fixed with PBS (pH 7.4) 

containing 3.7% paraformaldehyde. The cells were then fixed to the bottom of a 35-mm glass-base 

dish (Synapse Fine View Dish SF-G-D27; FPI Inc., Kyoto, Japan) by using the same buffer. The 

fluorescence images were obtained at room temperature with a 60× objective (oil immersion NA, 

1.35) by using a laser-scanning confocal microscope (FluoView FV1000; Olympus) and FV10-ASW 

software (Olympus). The efficiency of colocalization was analyzed using ImageJ software 

(http://rsb.info.nih.gov/ij/). To observe the cells producing recombinant proteins and perform 

time-course observations, an epifluorescence microscope IX71 (Olympus) with a 100× objective (oil 

immersion NA, 1.40) and Aquacosmos software (Hamamatsu Photonics, Hamamatsu, Japan) were 

used. 

 

Time-course observation of the living cells on agarose pad 

To observe the time-dependent localization changes of the foci, the agarose pad was prepared using a 

slightly modified method (Tanaka et al. 2010). Briefly, 2% agarose was added to the SD+HM media, 

heated, and dissolved. The solution at 60°C was spotted onto the slide glass with vinyl tape wrapped 

on each side. Immediately following this, the cover glass was overlaid and left at room temperature. 

Before observation, the yeast culture in the mid-log phase with an OD600 of 0.4 was spotted onto the 

agarose pad and covered with the cover glass. Time-lapse observations were conducted by fitting a 

small incubator (MI-IBC-IF; Olympus) onto the microscopy system and by manually photographing 

at every 5 min for 30 min. The incubator was pre-warmed to 30°C, and the excitation light source 

was turned on only during image recording. 
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Table 1 Primers used in CHAPTER I  
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Table 1 Primers used in CHAPTER I (continued) 
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Table 1 Primers used in CHAPTER I (continued) 
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Table 2 List of genes and proteins used in Chapter 1 
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Results  

Detection of unconventional secretion of glycolytic enzymes 

2D-HPLC-based cell surface proteome analysis was done to detect the extracellular presence of 11 

glycolytic enzymes, namely, enolases (Eno1p and Eno2p), glyceraldehyde-3-phosphate 

dehydrogenases (Tdh1p, Tdh2p, and Tdh3p), 3-phosphoglycerate kinase (Pgk1p), fructose 

1,6-bisphosphate aldolase (Fba1p), phosphoglucose isomerase (Pgi1p), triose phosphate isomerase 

(Tpi1p), phosphoglycerate mutase (Gpm1p), and pyruvate kinase (Cdc19p; Table 3 and 4). To 

shortlist the candidate proteins for analysis of the secretory pathway, the detected glycolytic enzymes 

were produced as recombinant proteins fused to EGFP-FLAG. Although all the glycolytic enzymes 

were successfully produced in the cell, only 4 (Eno2p, Pgi1p, Tpi1p, and Fba1p) were reproducibly 

detected in the culture media (Fig. 2A left). Among these, Eno2p and Pgi1p were both thought to be 

important molecules when secreted, and thus, were used for further investigation. To examine 

whether Eno2p and Pgi1p were secreted via the conventional pathway, a sec23-1 

temperature-sensitive mutant strain was 

used. The secretion of EGFP fused with 

the conventional glucoamylase secretion 

signal sequence was successfully inhibited 

at 37C. Comparatively, under the same 

conditions, by using the same strain, both 

Eno2p and Pgi1p were detected in the 

culture media (Fig. 2B). To examine 

whether a cleavable peptide sequence 

existed at the N-terminus of Eno2p, which 

is typical for conventionally secreted 

proteins, an extra N-terminal peptide 

sequence (in this case, HA-tag) was added 

to Eno2p. In the wild-type cells, Eno2p 

with the extra N-terminal peptide 

sequence was detected in the culture 

media as well as Eno2p without the extra 

sequence (Fig. 2C). These results suggest 

that glycolytic enzymes, at least Eno2p, 

can be secreted via an unconventional pathway in S. cerevisiae. Among the glycolytic enzymes 

detected in the culture media, Pgi1p-EGFP-FLAG gave the clearest bands. Moreover, the secretion 

of endogenous Pgi1p has been detected in the previous study (Oliveira et al. 2010). Therefore, I used 

endogenous Pgi1p as a control in the following experiments.  

Cellular process 
Number of 
identified 
proteins 

Metabolism Glycolysis 11 

Amino acid biosynthesis 6 

TCA cycle 1 

Pentose phosphate pathway 1 

Alcoholic fermentation 1 

Fatty acid metabolism  1 

Protein binding 6 

Homeostasis 5 

Translation 4 

Signaling 1 

Folding 1 

Traffic 1 

Unknown   3 

  Total 42 

Table 4 List of identified noncovalently-bound cell 

surface proteins 
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Searching for the enolase sequence responsible for secretion 

N-terminal fragments of Eno2p containing 169 amino acids (1–169) were prepared in reference with 

the previous report (29). In addition, N-terminal fragments of Eno2p containing 17, 28, 30, 50, and 

110 amino acids ((1–17), (1–28), (1–30), (1–50), and (1–110)) were prepared. Subsequently, the (1–

28), (1–50), and (1–169) fragments were reproducibly detected in the culture media (Fig.3A). In 

addition, secretion of the (1–28) Eno2p fragment (eno(1–28)) conjugated to EGFP and FLAG in the 

sec23-1 strain was not inhibited at 37C (Fig. 3B). These results suggest that eno(1–28), as well as 

Eno2p, is secreted via an unconventional pathway. 

 

 

 

Fig. 2 Detection of unconventional secretion of glycolytic enzymes Anti-FLAG antibody was 

used for detection. A: Secretion of glycolytic enzymes. (Left) secreted proteins. (Right) cellular 

proteins. I1, pULI1; SG1C, pULSG1C; ATG, pUL-ATG-EGFP; PYK2, pULGI2-PYK2; CDC19, 

pULGI2-CDC19; ENO2, pULGI2-ENO2; GPM1, pULGI2-GPM1; PGK1, pULGI2-PGK1; TPI1, 

pULGI2-TPI1; FBA1, pULGI2-FBA1; PGI1, pULGI2-PGI1. B: The effect of inhibition of the 

conventional pathway on the secretion of the glycolytic enzymes. Secretion of recombinant proteins 

in sec23-1 strains under 25C or 37C is shown. C: The effect of the N-terminal peptide (HA-tag) on 

the secretion of enolase. Control (secretion signal +, secretion of EGFP-FLAG protein with 

conventional secretion signal sequence), pULSG1C; control (secretion signal -, secretion of 

EGFP-FLAG protein without secretion signal sequence), pUL-ATG-EGFP; ENO2 (peptide addition 

+, secretion of N-terminal HA peptide-tagged Eno2p-EGFP-FLAG), pULGI2-ATG-HA-ENO2; 

ENO2 (peptide addition -, secretion of Eno2p-EGFP-FLAG without peptide addition), 
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pULGI2-ENO2. Similar results were obtained from 3 independent experiments. *Glycolytic 

enzymes conjugated to EGFP and FLAG. Additional bands are either nonspecific binding of 

antibody or degradation products of target proteins.  

 

 

 
 

Fig. 3 Detection and monitoring of the secretion of the N-terminal fragment of enolase 

conjugated to EGFP and FLAG A: Detection of secreted enolase fragments. Cont., 

pUL-ATG-EGFP; ALL, pULGI2-ENO2; (1–17), pUL-eno(1–17); (1–28), pUL-eno(1–28); (1–30), 

pUL-eno(1–30); (1–50), pUL-eno(1–50); (1–110), pUL-eno(1–110); (1–169), pUL-eno(1–169). B: 

SEC23-independent secretion of the enolase fragment. Secretion of recombinant proteins in sec23-1 

strains under 25C or 37C is shown. (1–28), pUL-eno(1–28); ALL, pULGI2-ENO2; 37, cultivated 

at 37°C; 25: cultivated at 25°C. C: Fluorescence microscopy of cells transformed with pUL-eno(1–

28), pULGI2-ENO2, and pULGI2-PGI1. Scale bar: 10 m. Similar results were obtained from 3 

independent experiments. 
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Fig. 4 Time-dependent localization change of the eno(1–28) fragment fused to EGFP  Scale 

bar: 5 m. 

 

 

 

Fig. 5 Colocalization of the enolase fragment conjugated to DsRED and the GFP-tagged 

organelle markers The fixed cells were observed at room temperature. The numbers of cells 

forming foci are shown in Table 5. White arrow, foci colocalized with organelle markers. Scale bar: 

5 m. 
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Table 5 Calculation of Figure 5 and 6 

 

Organelle 
marker 

a. Number of 
cells forming 
DsRED foci 

b. Number of cells with 
GFP fluorescence 

c. Number of cells with 
colocalized foci 

c/a [%] 

Nup84p 28 72 19 68 

Pma1p 21 224 14 67 

Snf7p 28 77 15 54 

Chs5p 20 80 9 45 

Sec13p 20 159 8 40 

Pex11p 48 40 16 33 

Vrg4p 41 198 15 27 

Mae1p 72 27 1 3.7 

 

 

Foci formation and intracellular translocation of eno(1–28) 

To monitor the secretion of the eno(1–28) fragment, the cells producing eno(1–28) conjugated with 

EGFP and FLAG were observed by fluorescence microscopy (Fig. 3C). The green fluorescence from 

EGFP was detected as a dot, suggesting that eno(1–28) formed foci. In addition, some of the foci 

changed location when observed at 30C on the agarose pad (Fig. 4).  

 

Colocalization of eno(1–28) with organelle marker proteins 

To examine the localization of the foci formed by eno(1–28) in the cells, eno(1–28) conjugated with 

the DsRED monomer was produced in the GFP clones carrying the organelle-marker protein-coding 

genes (Table 2; PMA1 (plasma membrane), NUP84 (nuclear membrane), MAE1 (mitochondria), 

CHS5 (exomer), SNF7 (endosome and multivesicular body (MVB) vesicle), VRG4 (cis-Golgi), 

PEX11 (peroxisome), and SEC13 (ER to Golgi transport vesicle)), fused with the GFP-coding 

sequence at the 3′-end. Our results showed that eno(1–28)-DsRED colocalized with the plasma 

membrane, nuclear membrane, exomer, endosome/MVB vesicle, Golgi, and peroxisome, but not 

with the mitochondria (Fig. 5, 6, and Table 5). 
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Fig. 7 Intracellular SNARE dependence of Eno2p and Pgi1p secretion A: Secretion in strains 

transformed with Eno2-expressing plasmids. Cont., wild-type BY4741 cells transformed with 

pUL-ATG-EGFP; wt, wild-type BY4741 cells transformed with pULGI2-ENO2; , knockout strains 

transformed with pULGI2-ENO2. B: Calculated amounts of secreted Eno2p by comparison to the 

levels of Pgi1p secreted. Values are the mean ± SEM of ≥3 independent experiments. 
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Inhibition of enolase secretion by knockout strains 

Knockout strains of SNAREs (see Table 2; SEC22, GOS1, PEP12, TLG2, VPS51, BTN2, SNC2, 

SNX4, SSO1, and SSO2), which play a major role in intracellular protein transportation were utilized 

to examine their effects on the secretion of Eno2p conjugated with EGFP and endogenous Pgi1p (Fig. 

7A). Pgi1p was detected in the culture media of all strains, while the levels of Eno2p-EGFP-FLAG 

were lower in the culture media of the TLG2 knockout strain. Inhibition of the translocation of 

Eno2p-EGFP-FLAG to the cell surface was also tested using immunostaining (Fig. 7B). The ATG1, 

ATG8, ATG11, ATG17, ATG20, VAM3, and GRH1 knockout strains (see Table 2) as well as 

wild-type BY4741 were further tested to investigate the role of autophagy-related genes in secretion 

(Fig. 9). The secretion of Eno2p was not inhibited in the knockout strains of the autophagy-related 

genes, demonstrating that of all the SNARE and autophagy-related genes analyzed, only the TLG2 

knockout strain inhibited the secretion of Eno2p (Fig. 7A). TLG2-dependency of 

Eno2p-EGFP-FLAG secretion was further confirmed by complementation of the mutation with a 

wild-type plasmid (Fig.8). Therefore, I concluded that Eno2p is secreted by an unknown 

TLG2-dependent pathway. 

 

 

 

Fig. 8 TLG2-dependency of Eno2p secretion A: Secretion in strains transformed with 

Eno2-expressing plasmids. B: Calculated amounts of secreted proteins by comparison to the levels 

of Pgi1p secreted. ATG, cells transformed with pUL-ATG-EGFP; ENO2, cells transformed with 

pULGI2-ENO2; SG1C, cells transformed with pULSG1C, TLG2, TLG2 knockout strains; wt, wild 

type BY4741 strains; M, marker; Tlg2p -, cells transformed with p413-ADH (control vector); Tlg2p 

+, cells transformed with p413-ADH-TLG2 (plasmid for producing Tlgp2). Values are the mean ± 

SEM of ≥3 independent experiments.  
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Fig. 9 Autophagy independency of Eno2p and Pgi1p secretion A: Western blots. B: Calculated 

amounts of secreted Eno2p by comparison to the Pgi1p secreted. Values are the mean ± SEM of 3 

independent experiments. 
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Discussion 

The 11 glycolytic enzymes detected by the cell surface proteome analysis, including the 4 detected 

in the secretion analysis, were all previously reported to be secreted or present in the cell wall in S. 

cerevisiae (Nombela et al. 2006, Oliveira et al 2010). These results demonstrate both the different 

detection capacities of proteome analysis and western blotting, and the efficacy of our detection 

method (Table 3). The lower number of glycolytic enzymes detected in the secretion analysis 

compared to those detected by proteome analysis suggests that the secretion of some of the proteins 

was undetectable, because the tendency to secrete was too low. However, it is also possible that the 

conjugated extra amino acid sequence inhibited the secretion of the glycolytic enzymes. I utilized 

Eno2p to analyze the secretory pathway because enolase secretion is thought to be important for 

many diseases, and the secretory pathway has not yet been investigated. I utilized Pgi1p as a control 

because it was detected in high amounts in the culture media. Conjugation of an extra peptide 

sequence to the N-terminus of Eno2p slightly increased its molecular weight (Fig. 2C), suggesting 

that Eno2p does not possess a conventional secretion signal sequence that is cleaved during secretion. 

In addition, Eno2p and Pgi1p were secreted in the sec23-1 mutant at 37C. These results provide 

persuasive evidence that the secretion of glycolytic enzymes, at least Eno2p and Pgi1p, is not 

dependent on the conventional secretory pathway.  

Although full-length Eno2p conjugated with EGFP had a broad subcellular localization, the 

Eno2p fragment formed foci in the cell, and some of the foci changed location from the center of the 

cell to the cell periphery (Fig. 3C and 4). Therefore, I assumed that the short amino acid sequence of 

enolase that can be secreted from the cell exemplifies the secretory pathway of enolase. In the 

previous report, Lopez-Villar and colleagues demonstrated that eno(1–46) and (1–101) did not exist 

in the cell wall, whereas the eno(1-169) fragment conjugated with glucoamylase did (Lopez-Villar et 

al. 2006). Recently, Yang et al. identified the hydrophobic domain required for enolase secretion 

(Yang et al. 2011). The domain includes the 96–132-aa-long region of S. cerevisiae enolase that is a 

conserved membrane-embedded (EM) domain (Yang et al. ), and the domain is not identical to 

1-28-aa-long region of enolase. Although EM domain is a bacterial domain, eukaryotic S.cerevisiae 

may have similar mechanisms for secretion of enolase. Because the eno(1–28) region has similarity 

with the 96–132-aa-long region and EM domain of yeast enolase to some extent, respectively, the 

secretion of eno(1–28) may depend on the same secretion mechanism as that of the 96–132-aa-long 

region. There may be a sequence in the N-terminal (29–96) region that inhibits secretion, because in 

contrast to eno(1–28), eno(1–30) was hardly detected in the culture media. It will be important to 

complete further investigations and to determine the precise signal sequence required for enolase 

secretion.  

Eno(1–28) conjugated with EGFP and FLAG formed foci in the cell, and changed location over 

time (Fig. 4). The fragment localized to various cellular membranes, but not to the mitochondria (Fig. 
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5, 6, and Table 5). It has been previously reported that glycolytic enzymes, including enolase, 

associate with the post-Golgi vesicles (Forsmark et al. 2011), and that yeast enolase takes part in a 

macromolecular complex associated with the mitochondria (Brandina et al. 2006), and assists in the 

transport of tRNA (Entelis et al. 2006). However, the localization of enolase to the mitochondria 

seems to be regulated by a different region of enolase.  

It is reasonable that not all DsRED were colocalized with a particular marker, regarding that enolase 

colocalized with several markers (Fig. 5, 6, and Table 5). The difference in the number of DsRED 

and GFP cells reflects the difference in the producing way of each fluorescent protein in the cell; the 

GFP encoding gene is integrated in the genome of yeast cells, after the each ORF which codes 

organelle marker protein, whilst DsRED is produced by plasmids. The numbers of GFP-conjugated 

organelle marker proteins in the cell are dependent on endogenous promoter for each organelle 

marker protein. Although GFP should be produced in all the cells, some organelle marker proteins 

are weekly translated and therefore in some case the fluorescence is undetectable. The number of 

eno(1-28)-DsRED molecules seem to be dependent on transfection efficiency of plasmids, regarding 

that the plasmid uses the strong GAPDH promoter.  

I assumed that the major elements that participate in intracellular trafficking also play a role in 

the secretion of Eno2p. SNAREs govern the translocation of proteins, and although many 

SNARE-coding genes are lethal when deleted, some non-lethal deletion mutants are available. I used 

the SNAREs from the S. cerevisiae genome database (SGD; http://www.yeastgenome.org/) that 

participate in the translocation of proteins between the Golgi, endosome, and plasma membrane 

(Table 2). Analyses of the deletion mutants revealed that knocking out TLG2 inhibits enolase 

secretion. However, I propose other proteins may be involved because the inhibition was not 

complete. In contrast to the previously reported unconventional secretion of the Acb1 protein (Duran 

et al. 2010, Manjithaya et al. 2010), secretions of Eno2p and Pgi1p were not inhibited in the GRH1, 

SSO1, and BTN2 knockout strains (Fig. 7). Therefore, it is probable that regulation of the secretion 

of these glycolytic enzymes differs from that of the Acb1 protein. There was also no incorporation of 

the GRASP protein Vps51p; this is surprising as GRASP proteins have been reported to participate 

in several unconventional secretory pathways (Kinseth et al. 2007, Manjithaya et al. 2010, Giuliani 

et al. 2011, Schotman et al. 2008). Therefore, the secretion of glycolytic enzymes in S. cerevisiae 

seems to be independent of the GRASP-regulated pathway. Moreover, Gos1p, which has a role in 

the cytoplasm-to-vacuole (Cvt) pathway (Bensen et al. 2001), had no influence on the secretion of 

Eno2p. In addition to its involvement in the Cvt pathway, Tlg2p is a syntaxin-like t-SNARE that 

participates in vesicle fusion, endocytosis, Golgi-to-vacuole transport, endosomal protein sorting, 

and protein release from the endoplasmic reticulum (Abeliovich et al. 1999, Coe et a. 1999, Holthuis 

et al. 1998, Paumet et al. 2001, Gurunathan et al 2002, Mousley et al. 2008). Mousley and colleagues 

have previously shown that Tlg2p has a role in protein secretion in combination with Sec14p 
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(Mousley et al. 2008), and our results suggest that the participation of Tlg2p in the secretion of 

Eno2p is plausible. Therefore, I conclude that the secretory pathway of glycolytic enzymes is 

regulated in a different manner compared with the Cvt pathway. S. cerevisiae is reported to have 

autophagosome-mediated membrane compartments for the unconventional secretion of proteins 

(Bruns et al. 2011), and it is, therefore, possible that the secretion of Eno2p is related to an 

autophagy-related pathway. However, our results using the knockout strains of autophagy-related 

proteins (Fig. 9) suggest that the absence of active participation of autophagy-related genes in Eno2p 

secretion.  

Foci formation of N-terminal region of Eno2p conjugated with EGFP has not been reported 

before. Because plasmids for overexpression were used in this study, the observed foci can be 

aggregates of proteins. However, for the following three reasons, the foci can be a signature of 

unknown property of the amino acid sequence of Eno2p. First, although full length of Eno2p was 

overexpressed in the cell in the same way as N-terminal region, full length Eno2p conjugated with 

EGFP didn’t form foci. If the N-terminal foci formation was aggregation of proteins, there should be 

inhibitory sequences of aggregation inside the sequence of Eno2p. Second, the foci were moving in 

the cell, and colocalized with various membranes of intracellular organelles. Foci forming region 

was secreted from the cell without degradation. These observations make it plausible that N-terminal 

region may be the “carrier” region of Eno2p. Since regulation of intracellular and intercellular 

localization of moonlighting proteins, including enolase, is highly important for their function, 

N-terminal region of Eno2p can have unknown roles for moonlighting function of Eno2p. 

 

Summary 

Glycolytic enzymes are cytosolic proteins, while they play important extracellular roles in cell-cell 

communication and infection. I used S. cerevisiae to analyze the secretory pathway of some of these 

enzymes, including enolase, phosphoglucose isomerase, triose phosphate isomerase, and fructose 

1,6-bisphosphate aldolase. Enolase, phosphoglucose isomerase, and an N-terminal 28-aa-long 

fragment of enolase were secreted in a sec23-independent manner. The EGFP-conjugated enolase 

fragment formed cellular foci, some of which were found at the cell periphery. Therefore, we 

speculated that an overview of the secretory pathway can be gained by investigating the 

colocalization of the enolase fragment with intracellular proteins. The DsRED-conjugated enolase 

fragment colocalized with membrane proteins at the cis-Golgi, nucleus, endosome, and plasma 

membrane, but not the mitochondria. In addition, the secretion of full-length enolase was inhibited in 

a knockout mutant of the intracellular SNARE protein-coding gene TLG2. The results suggest that 

enolase is secreted via a SNARE-dependent secretory pathway in S. cerevisiae. 
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Fig. 10 Putative trafficking pathway of Eno2p 
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CHAPTER II 

Foci-formation of enolase under hypoxia 

 

Introduction 

Spatial rearrangements of proteins and organelles are often a sign of unexpected phenomena in the 

cell. Some researchers have found novel phenomena by tracking the fluorescence of 

protein-conjugated GFP (Huh et al. 2003). For example, in several organisms, purine and CTP 

synthesis is promoted by the formation of protein complexes (An et al. 2008, Noree et al. 2010, An 

et al. 2010, Ingerson-Mahar et al. 2010). I have found that recombinant EGFP conjugated with 

N-terminal (1–28) amino acid residues of enolase (Eno2p) can form fluorescent foci in the cell. In 

addition to its function as a glycolytic enzyme, Eno2p is known as one of the moonlighting proteins 

(Jeffery 1999). Moonlighting proteins, which have more than one function, often localize to different 

sites of the cell in association with particular proteins and cellular components to perform their 

functions (Jeffery 1999). I speculated that the N-terminal (1–28) amino acid sequence might be the 

region regulating the intercellular localization of Eno2p. Full-length Eno2p conjugated with EGFP 

localizes uniformly in the cell in shake culture. If the N-terminal region of Eno2p participates in 

Eno2p localization, full-length Eno2p conjugated with fluorescent proteins would be expected to 

form foci under unknown environmental stimuli or in a specific phase of cell life. Moreover, amino 

acid substitution that inhibits foci formation by the N-terminal region should inhibit foci formation 

by full-length Eno2p. Comparison of foci-forming and -non-forming cells in conjunction with the 

inhibition of foci formation by reagents that inhibit specific cellular processes may reveal the 

mechanisms of the regulation and the biological functions of foci formation. 

  Ununiformed intracellular localization of glycolytic enzymes has been reported in some 

organisms and cells. An intracellular assembly of glycolytic enzymes was recently reported in 

mammalian cells; one of the glycolytic enzymes, GAPDH, conjugated with GFP was found to form 

fluorescent foci under hypoxia (Agbor et al. 2011). Regulation of metabolic pathways by spatial 

rearrangement of glycolytic enzymes is plausible, given that changes in carbon metabolism under 

hypoxia have been reported (Feala et al. 2009, Frezza et al. 2011, Postmus et al. 2012). If foci 

formation by Eno2p could be triggered by hypoxia, the regulatory pathways and biological effects of 

foci formation might be the same with hypoxic responses. If this hypothesis were borne out, it would 

be the first case in which spatial rearrangement of glycolytic enzymes under hypoxia was found to 

regulate a carbon metabolic pathway. 
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Materials and methods 

Strains and media 

The Escherichia coli DH5 (F−, 80dlacZM15, (lacZYA-argF)U169, deoR, recA1, endA1, 

hsdR17(rK
−, mK

+), phoA, supE44, −, thi-1, gyrA96, relA1) strain was used as host cells in the 

cloning experiments. The yeast strain BY4741 (MATa, his31, leu2 met15 ura3) and the 

derived deletion strains of HOG1 (hog1), SCH9 (sch9), SNF1 (snf1), and UPC2 (upc2) were 

purchased from EUROSCARF (Frankfurt, Germany). The yeast GFP clones (Invitrogen, Carlsbad, 

CA, USA) with GFP-tagged endogenous proteins (Eno2p, Eno1p, Hxk1p, Pgi1p, Pfk1p, Fba1p, 

Tpi1p, Gpd1p, Gpp1p, Znf1p, Sol1p, Gnd1p, Tal1p, Tkl1p, Tlk1p, Tdh3p, Pgk1p, Gpm1p, Cdc19p, 

Pyc1p, Pyc2p, and Pdc1p) and the HIS3 marker in the parent BY4741 strain were used to determine 

localization changes in proteins. E. coli was grown in lysogeny broth (1% (w/v) tryptone, 0.5% 

(w/v) yeast extract, 0.5% (w/v) sodium chloride, and 100 ng/mL ampicillin). The yeast cells were 

grown in yeast extract peptone dextrose (YPD) medium [1% (w/v) yeast extract, 2% (w/v) 

polypeptone, and 2% (w/v) glucose], YPD+G418 medium [YPD medium supplemented with 0.2 

mg/mL G418], SDC+HM agar medium [0.67% (w/v) yeast nitrogen base without amino acids, 2% 

(w/v) glucose, 0.002% L-histidine-HCl, 0.003% L-methionine, 2% casamino acids (BD, Franklin 

Lakes, NJ, USA), and 2% (w/v) agar], SDC+HM medium [0.67% (w/v) yeast nitrogen base without 

amino acids, 2% (w/v) glucose, 0.002% L-histidine-HCl, 0.003% L-methionine, 2% casamino acids 

(BD), 50 mM MES, pH 6.0], or SC+ML medium [0.67% (w/v) yeast nitrogen base without amino 

acids, 2% (w/v) glucose, 0.003% L-methionine, 0.003% L-leucine, 0.13% SD Multiple drop out 

(-Ade, -His, -Leu, -Lys, -Trp, -Ura, Funakoshi Co., Ltd., Tokyo, Japan), and 2% (w/v) agar].  

 

Construction of plasmids  

All primers and plasmids used are described in Table 1. Plasmids pULI1 and pUL-ATG-EGFP were 

used both to adjust growth conditions of different cell types and as controls. To determine the amino 

acid residue important for foci formation by enolase (Eno2p), plasmids encoding Eno2p fragments 

and fragments carrying alanine substitutions (Table 1) were constructed. iProof DNA polymerase 

(Bio-Rad, Richmond, CA, USA), Ligation High (Toyobo, Tokyo, Japan), and synthetic 

oligonucleotides (Japan Bio Services, Saitama, Japan) were used for plasmid construction. DNA 

sequencing was performed using BigDye Terminator v3.1 Cycle Sequencing Kit and ABI PRISM 

3100 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). All other chemicals were of 

analytical grade. The primers and restriction enzymes used are listed in Table 1. In brief, nucleotide 

sequences were amplified or mixed (for pUL-ATG-EGFP construction) and ligated with restriction 

fragments of plasmids [pULSG1 (Matsui et al. 2009) and pRS423 (ATCC), respectively]. 
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Plasmid transformation  

Yeast cells were transformed with plasmids using Frozen-EZ Yeast Transformation II™ kit (Zymo 

Research, Orange, CA, USA) and grown on SDC+HLM agar plates. Transformants were selected as 

single colonies and inoculated into 10 mL of SDC+HM medium with 50 mM MES (pH 6.0) for 

preculture at 25C with shaking. At the late log phase, the preculture was subcultured in 100 mL of 

SD+HM medium at A600 = 0.01 and incubated at 25C with shaking for 24 h. The culture was 

subcultured in 100 mL of SDC+HM medium with 50 mM MES (pH 6.0) at A600 = 0.1 for aerobic 

or semi-anaerobic (CO2 bubbled) culture at the indicated temperatures. 

 

Preparation of genomes 

Gentoru-kun High Recovery kit (Takara, Otsu, Shiga, Japan) was used to extract genomic DNA of 

GFP clones and yeast knockout mutants. The resulting genomes were used as templates for 

preparing nucleotide fragments to be transformed into cells. 

 

Construction of GFP-encoding yeast cells 

To construct a GFP clone of ENO2 containing the V22A substitution, an ENO2 knockout strain was 

constructed (Table 1). Oligonucleotide fragments containing ENO2-GFP-HIS3 and 

ENO2V22A-GFP-HIS3 were prepared (Fig. 1) and then inserted into the genome of the ENO2 

strain at the position of ENO2. Yeast cells were transformed with nucleotide fragments and grown on 

SC+MLU agar plates. Single colonies were picked and again cultured on SC+ML or SC+MLU agar 

plates. The resulting cells were inoculated into SDC+HM media with 50 mM MES (pH 6.0) and 

cultured. Construction was confirmed by microscopic observation of fluorescence. 

 

Preparation of knock-out mutants of GFP clones 

Primers used are listed in Table 1. In this case, two methods were adopted. For the first, 

KanMX4-containing gene fragments were amplified from genomic DNA of yeast knockout mutant 

strains and transformed into yeast GFP clones. Transformants were cultivated on YPD+G418 agar 

plates, and resulting single colonies were again plated on SC+MLU+G418 agar media. For the 

second method, target gene fragments conjugated with GFP-HIS3 were amplified and transformed 

into knockout strains. Transformants were cultured on SC+MLU agar plates, and resulting single 

colonies were again plated on the same media. Constructed yeast strains were cultured in 

YPD+G418 liquid media and transformed with plasmid pULI1. Transformants were cultured on 

SDC+HM agar plates and the resulting colonies were used. 

 

Culture conditions 

For aerobic cultivation, a 500-mL Erlenmeyer flask with 100 mL of media was used. For 
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semi-anaerobic cultivation, a modified method of Katahira et al. (2006) was used. In brief, a culture 

vial with 100 mL media and stir bar was used. For introduction of CO2 before cultivation, CO2 was 

bubbled for 2 min into the media of the culture vial to remove DO. To provide air in the culture vial, 

a small air pump (Ei-bukubuku set; Kotobuki-kogei, Matsubara, Osaka, Japan) equipped with a 

needle-connected tube was used. For static culture, a test tube with 10 mL media was used. Yeast 

cells were cultivated at the indicated temperatures. 

 

 

Fig. 1 Preparation of fragments for integration of ENO2V22A-GFP pro, promoter, term, 

terminator  

 

 

Treatments of cells with reagents  

Stock solutions of 100 mM farnesol and 1 mg/mL rapamycin (Santa Cruz Biotechnology, Santa Cruz, 

CA, USA) in ethanol and 1 mM oligomycin A (Sigma, St. Louis, MO, USA) and 10 mM rotenone 

(Sigma) in DMSO were prepared. To determine whether mitochondria participate in foci formation, 

CCCP (a mitochondria depolarizing agent) was used. A stock solution of 5 mM CCCP (Sigma) was 

prepared in ethanol and added to the media. Antioxidant NAC was directly added to the media. 

 

Fluorescence microscopy 

For confocal microscopy, cells were immediately fixed with 4% paraformaldehyde-containing PBS 

buffer for 1 h and observed. For observation of foci, the cells were immediately fixed or without 

fixation, immediately mounted on a glass slide and observed. For confocal microscopy, a Carl Zeiss 

LSM 700 laser scanning microscope (Carl Zeiss, Oberkochen, Germany) with a 60× objective (oil 

immersion NA, 1.35) and ZEN software were used. Otherwise, an epifluorescence microscope IX71 

(Olympus, Lake Success, NY, USA) with a 100× objective (oil immersion NA, 1.40) and 

Aquacosmos software (Hamamatsu Photonics, Hamamatsu, Shizuoka, Japan) were used. 
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Table 1 Primers used in CHAPTER II  
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Table 1 Primers used in CHAPTER II (continued) 
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pH and DO measurement 

pH measurement of culture media was performed using a F-52 pH meter (Horiba, Kyoto, Japan). 

Time course measurement of DO (mg/L) was performed using a luminescent DO (LDO) meter 

(HQ30d; Hach Co., CO, USA). Measurements were recorded automatically every 15 min for 8 h. As 

an indicator of anoxia, 1 mg/mL stock solution of resazurin (Sigma) was added to the media to a 

final concentration of 1 g/mL to make a blue-colored solution. Under anoxia, the 

resazurin-containing media has no color, while under hypoxia, it turns red. 

 

FACS analysis 

Cells were suspended in PBS and assayed immediately using a cell sorter (JSAN, Bay Bioscience, 

Kobe, Hyogo, Japan) using the detection channel FLT1 (535DF45). In each case, the fluorescence of 

10,000 cells was acquired. 

 

Sample preparation of yeast proteins for proteomic analysis 

S. cerevisiae BY4741 strains transformed with pYEX-ENO2G or pYEX-ENO2V22AG were 

cultivated aerobically or semi-anaerobically at 30°C. The cells were lysed as described above, and 

proteins were extracted. Protein purification was performed as follows:  

250 L of 25 mM Tris-HCl buffer (pH 7.8) was added to frozen cells. After homogenization for 

3 times at 4,000 rpm for 60 sec using glass beads (GB-05, diameter 0.5 mm; TOMY, Tokyo, Japan) 

and Bead Smash 12 (Wakenyaku, Kyoto, Japan), the sample solutions were centrifuged at 9,700 g 

for 5 min at 4°C. Aliquots (500 µL) of the supernatants were filtrated using 0.45 μm spin column 

filter membrane (Durapore PVDF membrane; Millipore, Eschborn, Germany) and set still on ice. 

Purification of proteins was carried out immediately after extraction of proteins using ANTI-FLAG 

M2 affinity gel (Sigma) and column (Poly-Prep Chromatography Columns; Bio-Rad) following the 

manufacturer's protocol. After purification, samples were washed with 20 mM triethylammonium 

bicarbonate using Microcon YM-3 concentrator (Millipore). 

The collected proteins were reduced with 10 mM tris(2-carboxyethyl)phosphine (Thermo 

Scientific) for 30 min and alkylated with 20 mM iodoacetamide (Thermo Scientific) for 60 min in 

the dark at room temperature. After acetone precipitation, the proteins were solubilized in 200 mM 

triethylammonium bicarbonate (Sigma). Protein digestion (trypsin:protein = 1:50) was performed 

overnight at 37°C. Tryptic digests were applied to a proteome analysis system. 

 

Liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis and MS data 

analysis 

rotein identification was performed with a liquid chromatography/mass spectrometry system as 

described in (Aoki et al. 2012). Proteolytic digests were separated by reversed-phase 
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chromatography using a UltiMate3000 nano LC system (Dionex). A monolithic silica capillary 

column (200 cm long, 0.1 mm i.d.) prepared with a mixture of tetramethoxysilane and 

methyltrimethoxysilane was used at a flow rate of 500 nL/min. The gradient was provided by 

changing the mixing ratio of the 2 eluents: A, 0.1% (v/v) formic acid and B, 80% acetonitrile 

containing 0.1% (v/v) formic acid. The gradient was started with 5% B and increased to 50% B for 

600 min. The separated analytes were detected on an LTQ Velos linear ion trap mass spectrometer 

(Thermo Scientific). An ESI voltage of 2.4 kV was applied directly to the LC buffer distal to the 

chromatography column using a microtee. The ion transfer tube temperature on the LTQ Velos ion 

trap was set to 300°C. For data-dependent acquisition, the method was set to automatically analyze 

the five most intense ions observed in the MS scan. The mass spectrometry data were used for 

protein identification by the Mascot search engine on Protein Discoverer software (Thermo 

Scientific) against the information in the Saccharomyces Genome Database (SGD; 

http://www.yeastgenome.org). Search parameters for peptide identification included a precursor 

mass tolerance of 2.2 Da, a fragment mass tolerance of 0.8 Da, a minimum of one tryptic terminus, 

and a maximum of one internal trypsin cleavage site. Cysteine carbamidomethylation (+57.021 Da) 

and methionine oxidation (+15.995 Da) were set as a differential amino acid modification. The data 

were then filtered at a q value ≤ 0.01 corresponding to 1% FDR at the spectral level, and identified 

proteins coimmunoprecipitated with Eno2p-EGFP-FLAG-tag contained ≥4 peptide fragments. 

 

Extraction of cellular metabolites 

Cellular metabolites were extracted by modified methods of Mashego et al. (2003). Cells incubated 

at 30°C in 500 L media containing [U-13C]-glucose for 0, 2, 5, and 10 min were immediately 

injected into 5 mL of 60% methanol at −40°C. After centrifugation at 5,000 ×g at −9°C for 5 min, 

the supernatants were discarded and 3 mL of 75% ethanol was added. After heating at 100°C for 30 

min and cooling on ice and then at −40°C, the cells were lyophilized and stored at −80°C. For 

sample preparation, 1 mL of MilliQ and 60 L of 0.2 mg/mL ribitol were added to lyophilized cells 

and heated at 37°C for 30 min in a 1.5 mL test tube. The samples were then centrifuged at 16,000 ×g 

for 5 min at 4°C, 900 L of supernatant was transferred to a new tube, 400 L of MilliQ was added 

to each sample followed by centrifugation at the same rate, and 400 L of supernatant was 

transferred to a new tube, lyophilized, and used for metabolite analysis. 

Extracted metabolites were derivatized as described (Tsugawa et al. 2011). For oximation, 100 

μL of methoxyamine hydrochloride in pyridine (20 mg/mL) was added and incubated at 30°C for 90 

min. For trimethylsilylation, 50 μL of N-methyl-N-(trimethylsilyl) trifluoroacetamide was added, 

followed by incubation at 37°C for 30 min. Insoluble residue was removed by centrifugation at, 

10,000 ×g for 10 min at 4C, and the supernatant was transferred to a clean vial. 
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GC/MS analysis 

Derivatized metabolites were analyzed using GCMS-QP2010 Ultra (Shimadzu, Kyoto, Japan) 

equipped with a 30 m × 0.25 m i.d. fused silica capillary column coated with 0.25-μm CP-SIL 8 

CB low bleed (Agilent Technologies, Palo Alto, CA, USA). Aliquots of 1 μL were injected in split 

mode (25/1, split mode) at 230°C using helium as carrier gas at a flow rate of 1.12 mL/min. The 

column temperature was held at 80°C for 2 min isothermally, then raised at 4°C/min to 130°C, and 

then raised at 25°C/min to 330°C and held for 6 min isothermally. Interface and MS source 

temperatures were 250°C and 200°C, respectively, and ion voltage was 1 kV. Data were collected by 

GC-MS solution software (Shimadzu), and identified metabolites are shown in Table 2. Mass 

isotopomer distributions were corrected for natural isotope abundance as described (Nanchen et al. 

2007). 

 

Table 2 Target metabolites in GC/MS analysis  

Name Retention time (min) Formula m/z range 

Pyruvate & Oxaloacetate 4.63 C6H12NO3Si 174-177 

Alanine 7.57 C8H20NO2Si2 218-221 

Glycerol 13.20 C12H32O3Si3 218-221 

Malate 17.29 C12H27O5Si3 335-339 

Aspartate 17.60 C9H22NO2Si2 232-235 

PEP 18.27 C11H26O6PSi3 369-372 

 

  



67 
 

Section 1   Determination of foci-forming region of enolase 

 

Determination of the region of Eno2p that is sufficient for foci formation 

To determine the key residue for foci formation by Eno2p, the N-terminal foci-forming Eno2p 

region was investigated. The shortest foci-forming region of N-terminal Eno2p fused with EGFP was 

amino acid residues 5–24 (Fig. 2). Foci-forming cells increased when the amount of proteins 

increased, while still there were foci-forming cells with few proteins (Fig. 3). 

 

Determination of important amino acid residues for foci formation by single alanine 

substitution 

In amino acid residues 6–23, alanine substitution of V22 inhibited foci formation (Fig. 4).  

 

Amino acid substitution of V22 residue to gain information on the role of V22  

Substitution of V22 with A, P, E, D, S, T, R, H, K, and N also inhibited foci formation by the 

N-terminal region, while substitution with L, I,Y, and W conserved foci (Fig.5).  

 

Effects of foci-inhibiting V22A substitution on secretion of Eno2p 

To test whether the foci forming property of Eno2p correlates secretion, secretion of V22A 

substituted proteins of both N-terminal region and full length Eno2p were investigated. As the result, 

substitution of V22 to alanine didn’t inhibit secretion of both N-terminal region of and full length 

Eno2p (Fig. 6). 

 

 
Fig.2 Determination of the foci-forming region of N-terminal Eno2p conjugated with EGFP 

and a FLAG tag. pUL-eno(X-Y): cells transformed with plasmids pUL-eno(X-Y). pUL-eno(5–

25)+GGS: cells transformed with plasmid pUL-eno(5–25)+GGS. Cells were aerobically cultivated 

and observed. 
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Fig. 3 Protein amount-dependent changes in the proportion of foci-forming cells. A: Illustration 

of the plasmid used. B: Time- and Cu2+-dependent fluorescence induction. The number off the line 

indicate the concentration of CuSO4 [M] in the reaction solution. C: Percentage of foci-forming 

cells. D: Images of foci forming cells. 

 

Fig. 4 Single alanine substitution of N-terminal amino acids of Eno2p conjugated with EGFP 

and FLAG. pUL-eno(30): cells transformed with plasmid pUL-eno(30). XxA: cells transformed 

with plasmids pUL-eno(30)XxA. 

BA 

DC 
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Fig. 5 Amino acid substitutions of Val22 residue. A: Illustration of pUL-eno(30) and the mutated 

residues. B: Fluorescence images. V22X: cells transformed with plasmid pUL-eno(30) V22X in 

which the Eno2p N-terminal (1–30) amino acid sequences with V22X substitution were conjugated 

with EGFP and a FLAG tag. 

 

 

Conservation of the foci-forming ability  

Conservation of the foci-forming ability of the N-terminal region was further investigated. The 

N-terminal region of Eno2p is conserved across species (Fig. 7A). In Escherichia coli enolase, 

although V22 was not conserved, the N-terminal region conserved the foci-forming ability. In 

contrast, in mouse - and -enolase, the foci-forming ability was lost although V22 residues were 

conserved. Interestingly, mouse -enolase retained the foci-forming ability (Fig. 7B). These results 

suggest that the foci-forming ability of the N-terminal region of Eno2p is conserved over species but 

is not always dependent on V22. 

 

A 

B 
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Fig. 6 Effects of V22A substitution on secretion of Eno2p. Positive cont.: secreted proteins from 

cells transformed with pULSG1C. Negative cont.: secreted proteins from cells transformed with 

pULI1. pUL-X: secreted proteins from cells transformed with pUL-X plasmids.  

 

 

Discussion 

Val 22 and foci forming (5-25) amino acid residues is located in the N-terminal beta-hairpin forming 

region in Eno2p (Fig. 8). Amino acids V, I, L, Y, and W, which supported the foci-forming ability at 

amino acid 22 in the N terminus, have also been reported to be important in stacking of β-hairpin 

structures of tau proteins (Margittai and Langen 2006). Accordingly, the three-dimensional structure 

of the N-terminal Eno2p region might be important in forming foci. Spatial rearrangement of the 

specific amino acid sequence of Eno2p may promote the spatial rearrangement of the whole protein 

(Fig. 9). 
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Fig. 7 Conservation of primary sequence and foci-forming properties od N-terminal region of 

enolases. A: Sequence alignment of N-terminal amino acids of Eno2p. B: Foci formation of 

N-terminal fragments of enolases conjugated with EGFP and a FLAG tag. Cells transformed with 

plasmids for producing N-terminal amino acid sequences of enolases conjugated with EGFP and a 

FLAG tag are shown. 
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Fig. 8 Three-dimensional structures of N-terminal (1-30) region of Eno2p. Red: positively 

charged amino acid residues. Blue: negatively charged amino acid residues. Yellow: important amino 

acid residues for foci formation. PDB ID: 1one. 

 

 

 

Fig. 9 Suggested roles of N-terminal region of Eno2p on unknown moonlighting functions. Sun: 

previously known function of moonlighting proteins. Moon: moonlighting functions. Dotted circle: 

suggested areas of proteins responsible for the function indicated by arrows. 
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Section 2   Discovery of foci-formation of full-length enolase under hypoxia 

 

Discoveries of changes in localization of glycolytic enzymes including Eno2p, conjugated with 

EGFP, which are overproduced by plasmids in S. cerevisiae BY4741wt cells  

S. cerevisiae B4741 wt strains transformed with plasmids for overexpressing proteins of glycolytic 

enzymes conjugated with EGFP and a FLAG-tag formed concentrated EGFP in static culture (Fig. 

10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Localization of EGFP fluorescence conjugated with glycolytic enzymes after static 

culture.  Cells transformed with PULGI2-X plasmids are shown (X: each name represented in the 

figure). 

 

 

Foci-formation of GFP-conjugated metabolic enzymes under hypoxia  

Fermentation vials were used to culture cells under semi-anaerobic (hypoxic) conditions (Fig. 11). A 

GFP clone in which ENO2 is fused with GFP (ENO2-GFP strain) formed foci under fermentative 

conditions after 6 h of culture in vials at 30°C (Fig. 11A). Foci formation by the glycolytic enzymes 

Cdc19p, Gpm1p, Pfk1p,Gpd1p, Ald4p, and Tdh3p under hypoxia was also observed (Fig. 11B).  
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Fig. 11 Foci formation of glycolytic enzymes under hypoxia. A: Foci formation of ENO2-GFP 

strain under semi-anaerobic culture at 30°C. Bar = 10 m. B: Foci formation of other metabolic 

enzymes. C: Summary of the foci-forming enzymes. Green letters indicate foci-formed proteins. 

Gray letters indicate investigated proteins that didn’t form foci. 

 

Time- and temperature-dependent foci formation of Eno2p-GFP 

Foci formation of Eno2p was dependent on temperature and time. At 30°C, foci were formed after 6 

h of semi-anaerobic cultivation, while in 37°C, foci were formed after 3 h of semi-anaerobic 

cultivation. At 25°C, interestingly, foci weren’t formed after 12 h of semi-anaerobic culture (Fig. 

12). 

 

Measurements of pH and DO changes during the course of foci formation 

During cultivation, pH did not fall below 5 in both CO2-bubbled (Fig. 13A) and non-bubbled (Fig. 

13B) vials. In CO2-nonbubbled vials, DO decreased more rapidly at 37°C than at 30°C and 25°C, 

while in air-bubbled vials, DO remained at normoxic level after 8 h of cultivation  (Fig. 13C). After 

6 h of culture in vials at 30°C, the color of resazurin added to media was still pink, indicating there 

were some amount of oxygen in the vial (Fig. 13D). 

 

Inhibition of foci formation by V22A substitution of Eno2p-GFP 

After 12 h of culture in vials at 30°C, the V22A mutant of ENO2-GFP (ENO2V22A-GFP strain) did 

not form foci (Fig. 14). 
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Colocalization of foci of GFP clones with foci formed by N-terminal (1-28) region of Eno2p 

Fluorescent foci formed by DsRED-conjugated N-terminal Eno2p were colocalized with foci of the 

ENO2-GFP strain at 30°C after 6 h of fermentative culture (Fig. 15). 

 

 

 

Fig. 12 Time-and temperature-dependent foci formation by Eno2p-GFP under hypoxia. 

Time-dependent foci formation of ENO2-GFP strain at indicated temperatures (A: 30°C, B: 37°C, 

and C: 25°C) are shown. 
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Fig. 13 pH and DO changes in the vials. A and B: changes in pH inside the culture vial with (A) or 

without (B) CO2 bubbling before culture are shown. C: Time-and temperature-dependent DO 

changes without bubbling CO2 before culture. D: DO changes represented by color changes of 

resazurin. Clear color shows anoxia.   
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Fig. 14 Effects of substitution of Eno2p sequence on foci formation. Cells grown at 30°C in 

aerobic or anaerobic culture for 12 h. ENO2G: ENO2-GFP strain. eno2::ENO2V22A: V22A 

mutation introduced in ENO2 sequence of ENO2-GFP strain. Bar = 10 m. 

 

 

Fig. 15 Colocalization of the foci. N-terminal foci formation and (Red) and foci foemation of full 

length Eno2p (Green) are shown.   

 

 

Discussion 

Spatial rearrangement of glycolytic enzymes including Eno2p was detected for the first time in S. 

cerevisiae under hypoxic fermentation culture. The novel intercellular localization changes detected 

may enable glycolytic proteins to perform unknown moonlighting functions in response to specific 

environmental stimuli. Given that S. cerevisiae has many biological processes in common with other 

eukaryotic cells, these changes may be conserved over species. Regulation of several proteins 

participating sequentially in a metabolic pathway by spatial reorganization would be an important 

and effective method of regulating cellular processes. Colocalization of foci formed by full-length 

Eno2p-GFP and an N-terminal fragment fused with DsRED (Fig. 15) supported the speculation that 
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an N-terminal foci-forming region regulates spatial rearrangement of full-length Eno2p. I concluded 

that spatial rearrangement of the specific amino acid sequence of Eno2p promoted the spatial 

rearrangement of the whole protein. Screening peptide sequences would be a useful approach for 

discovering such amino acid sequences in other foci-forming proteins under hypoxia.  
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Section 3   Regulatory mechanisms of foci-formation of enolase 

 

Results 

Temperature-independent inhibition of foci formation by cycloheximide and rapamycin 

Foci formation by Eno2p-GFP was inhibited by cycloheximide at 30°C and 37°C in semi-anaerobic 

culture (Fig. 16A). On application of a growth-inhibiting dose of farnesol, an inhibitor of the cAMP, 

PKA, and MAPK signaling pathways in C. albicans (Sato et al. 2004, Rhome et al. 2009, Cho et al. 

2010, Deveau et al. 2010) and a mitochondrial ROS generator (Machida et al. 1998) and growth 

inhibitor (Machida et al. 1999) in S. cerevisiae, foci formation was conserved (Fig. 16B). In contrast, 

rapamycin at a growth-inhibiting dose inhibited foci formation at 37°C (Fig. 16B, C). These results 

suggest the DO-independent participation of both de novo protein synthesis and TORC1-dependent 

regulation at 37°C in foci formation. 

 

Identification of SNF1 as a regulator of foci formation at 30°C 

To determine the signaling pathway regulating foci formation, knockout mutations of genes 

participating in signaling pathways, namely HOG1 (MAPK pathway), SCH9 (PI3K-AKT pathway), 

and SNF1 (SNF1/AMPK pathway) were introduced into the ENO2-GFP strain. In semi-anaerobic 

culture, foci formation by the ENO2-GFP strain without SNF1 (∆SNF1 ENO2-GFP strain) was 

inhibited at 30°C, while the other strains formed foci (Fig. 17A, B). To assess the involvement of 

Upc2p, which is a known regulator of hypoxia-responding transcription factor in yeast C. albicans 

(Synnott et al. 2010) and S. cerevisiae (Siso et al. 2012), a UPC2 knockout mutation was introduced 

in the same manner. Foci formation was not inhibited, suggesting no involvement of Upc2p in foci 

formation under hypoxia (Fig. 17A). At 37°C in semi-anaerobic culture, the ∆SNF1 ENO2-GFP 

strain formed foci (Fig. 17C). A strain with plasmid-reintegrated SNF1 regained the foci-forming 

ability under semi-anaerobic culture at 30°C (Fig. 17D), showing the participation of SNF1 in foci 

formation at 30°C. These results suggested that foci were formed at 30°C in response to hypoxia by 

participation of SNF1/AMPK. In general, the optimum temperature for cultivating the S. cerevisiae 

BY4741 strain is 30°C. We accordingly focused on foci formation induced at 30°C under hypoxia 

and by involvement of SNF1/AMPK. 

 

Involvement of mitochondrial ROS production in foci formation 

The involvement of mitochondrial ROS production, which is known to activate AMPK, was 

investigated using mitochondrial inhibitors and an antioxidant (Fig. 18A). The mitochondrial 

uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) inhibited foci formation, indicating 

mitochondrial involvement (Fig. 18B). Oligomycin A and antimycin A, inhibitors of mitochondrial 

ATPase and complex III, respectively, also inhibited foci formation. The antioxidant 
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N-acetyl-L-cysteine (NAC) inhibited foci formation, indicating the involvement of mitochondrial 

ROS release to the cytoplasm under hypoxia (Fig.18C).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 Inhibition of foci formation by Eno2p with cycloheximide and rapamycin. A: Inhibition 

by the addition of cycloheximide and B: rapamycin. C: Growth inhibition by the addition of 

rapamycin and farnesol. For A, after 3 or 6 h of cultivation at indicated temperatures, ENO2-GFP 

cells transformed with PULI1 were observed. Each media contains cycloheximide. For B: After 12 h 

of semi-anaerobic culture at 37°C containing farnesol or rapamycin at indicated dose, cells were 

harvested and observed. Growth curves show A600 of media containing indicated doses of reagents. 

RAPA: rapamycin. Bar = 10 m. 
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Fig. 17 Foci formation and its dependency on SNF1. A: ENO2-GFP strains with or without HOG1 

or UPC2 knockout mutation. B: ENO2-GFP strains with or without SNF1 knockout mutation. Each 

strain contains plasmid pULI1 or indicated plasmid. C:Foci formation by SNF1 knockout mutant at 

37°C. D: Plasmid reintegration of SNF1. Bar = 10 m. 
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Fig. 18 Inhibition of foci formation by antioxidant and inhibitors for mitochondrial ROS 

production at 30˚C A: Schematic illustration of inhibiting ROS produced by mitochondria 

(modified from Harrero et al. 2008 and Clémençon 2012). B: Inhibition by CCCP. C: Inhibition of 

foci formation by adding mitochondrial inhibitors and antioxidant.  

  

B 

A 

C 



84 
 

Discussion 

Temperature-independent inhibition of foci formation by cycloheximide suggested that de novo 

protein synthesis is an important factor, in addition to regulation by the signaling pathway. Although 

inhibition of foci formation by rapamycin was temperature independent, the doses of rapamycin 

added to cells that allowed inhibition of foci formation inhibited cell growth. This suggests that 

regulation by TORC1 occurs before de novo protein synthesis. However, TORC1 incorporation is 

important, given that foci formation was not inhibited when farnesol was added at a 

growth-inhibiting dose. The finding that HOG1 and SCH9 knockout failed to inhibit foci formation 

is reasonable, given that farnesol is reported to be an inhibitor of the MAPK and PKC/Akt pathways 

in the pathogenic fungus C. albicans (Synnott et al. 2010). 

   Inhibition of foci formation by SNF1 knockout was unexpected, given that the SNF1/AMPK 

pathway is known to be activated by a glucose-limiting state in which glycolytic enzymes are 

downregulated. However, the inhibition of foci formation by mitochondria inhibitors and antioxidant 

supported SNF1/AMPK involvement in hypoxia-responsive foci formation. Foci formation was 

strongly dependent on heat and decreased DO in culture media. These results suggest that foci 

formation by Eno2p was dependent on more than one pathway. Although AMPK is known to inhibit 

the TOR pathway (Hardie 2011), there are some instances in which both the AMPK and TOR 

pathways regulate cell physiology (Hardie 2011). For example, in S. cerevisiae, both Snf1p and 

TORC1 have been suggested to have roles in regulation of fatty acids by unknown mechanisms 

(Zhang et al. 2011). The unknown regulatory mechanisms for these two pathways await discovery by 

future studies. 
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Section 4   The effects of foci on cellular carbon metabolism 

 

Foci formation of plasmid-reintroduced Eno2p-EGFP-FLAG in BY4741ENO2 cells 

To detect proteins involved in foci formation, an ENO2 knockout (∆ENO2) strain and plasmids for 

production of recombinant Eno2p-EGFP-FLAG protein or its V22A mutant 

(Eno2V22Ap-EGFP-FLAG) were prepared. The fluorescence intensities of ∆ENO2 strains 

producing recombinant proteins were similar to those of the ENO2-GFP strain in aerobic culture 

(Fig. 19A). After 12 h of semi-anaerobic culture, the Eno2p-EGFP-FLAG protein formed foci (Fig. 

19B). 

 

 

 

Fig. 19 foci formation of plasmid-reintroduced Eno2p-EGFP under hypoxia. A: Fluorescence 

intensities of each strain measured by FACS. B: Foci formation of plasmid-reintroduced 

Eno2p-EGFP in ENO2 strains. Bar = 10 m. 

 

 

Detection of coimmunoprecipitated proteins with foci-forming Eno2p 

To investigate proteins associating with foci-forming Eno2p, Eno2p-EGFP-FLAG and 

Eno2V22Ap-EGFP-FLAG proteins were immunoprecipitated and identified by LC/MS/MS (Fig. 

20A). As a result, 80 proteins including 43 metabolic proteins were detected in proteins 

coimmunoprecipitated with Eno2p-EGFP-FLAG (Fig. 20B). Of these, two proteins, Shm2p and 

Ade5,7p, were detected only in the proteins coimmunoprecipitated with Eno2p-EGFP-FLAG (Fig. 

20C). 
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Fig. 20 Immunoprecipitation and identification of foci-associated proteins.  A: Strategy for 

identifying foci-forming Eno2p-associated proteins. B: Overview of identified proteins (identified 

peptide number of ENO2-EGFP-FLAG-associated proteins ≥ 3). C: Examples of proteins detected 

by focused proteomic analysis. Eno2p-EGFP-FLAG: proteins detected by coimmunoprecipitation 

with Eno2p-EGFP-FLAG protein. Eno2V22Ap-EGFP-FLAG: proteins detected by 

coimmunoprecipitation with Eno2V22Ap-EGFP-FLAG protein. SHM2: S. cerevisiae gene encoding 

cytosolic serine hydroxymethyltransferase. ADE5,7: S. cerevisiae gene encoding bifunctional 

enzyme of the de novo purine nucleotide biosynthetic pathway, which contains aminoimidazole 

ribotide synthetase and glycinamide ribotide synthetase activities. 
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Fig. 21 Changes in carbon metabolic pathway of foci-carrying cells. A: Retention of the foci 

under aerobic culture. B: Scheme for measurement of incorporated 13C in metabolites. C: 

Incorporation of 13C derived from glucose into metabolites of foci forming and nonforming cells. 

Red line: metabolites extracted from cells after aerobic culture. Blue line: metabolites extracted from 

cells after anaerobic culture. Red line: metabolites extracted from cells after aerobic culture. Blue 

line: metabolites extracted from cells after anaerobic culture. 
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Investigation of the effects of foci-inhibiting mutations in hypoxia-treated cells on the carbon 

metabolic pathway by metabolic turnover analysis 

In the ENO2-GFP strain, after semi-anaerobic culture for 6 h, foci were retained following 24 h of 

aerobic culture in fresh media (Fig. 21A). To investigate the effects of foci on cellular carbon 

metabolism, metabolic turnover analysis using [U-13C]-glucose after semi-anaerobic (foci-forming 

condition) or aerobic (foci-non-forming condition) culture was measured using the ENO2-GFP and 

ENO2V22A-GFP strains (Fig. 21B). The ratio of 13C-containing pyruvate and oxaloacetate were 

higher in foci-forming than in foci-non-forming cells after 2 and 5 min of intake (Fig. 21C). For 

glycerol and alanine, in the ENO2V22A-GFP strain, the ratios of 13C-containing metabolites were 

slightly higher in cells under anaerobic culture, whereas the ratio remained unchanged in the 

ENO2-GFP strain. These results suggested that cells carrying foci accelerated the incorporation of 

glucose-derived 13C into pyruvate and oxaloacetate and preferentially produced aspartate and malate, 

rather than glycerol or alanine, from pyruvate. 

 

 

Discussion 

The organism's ability to switch the carbon metabolic pathway is considered important for 

controlling energy flow and synthesis of cellular components. Given that the glycolytic pathway has 

many branches connected to various metabolic pathways including nucleotide, amino acid, and lipid 

synthesis and energy production, effective use of carbon sources according to cellular needs in 

various situations is expected to be extremely important in the struggle for survival. Regulation of 

the carbon metabolic pathway has been reported to be accomplished by transcriptional regulation of 

various regulators (Daran-Lapujade et al. 2004). With respect to switching the carbon metabolic 

pathway in proliferating mammalian cells, p53 is known to target the TP53-induced glycolysis and 

apoptosis regulator and synthesis of cytochrome c oxidase, leading to glycolysis inhibition and a 

shift to oxidative phosphorylation (Bensaad et al. 2006, Matoba et al. 2006, Jones and Thompson 

2009). It has not been reported that the central carbon metabolic pathway could be regulated by 

spatial reorganization or association of glycolytic enzymes. 

   Foci formation by Eno2p and other glycolytic enzymes conjugated with GFP under hypoxia (Fig. 

5, S5) suggests the formation of a compartment of glycolytic enzymes in the cytosol. As predicted by 

a simulation study of glycolytic flux, under foci-forming conditions, incorporation of 

glucose-derived 13C into pyruvate and oxaloacetate was accelerated. Inhibition of foci formation by 

introduction of the V22A mutation canceled out the effect, demonstrating the participation of foci 

formation by Eno2p in controlling carbon metabolism. Moreover, the increased ratio of 
13C-containing glycerol and alanine in foci-non-forming cells suggest that foci are needed to 

accelerate a specific branch of glycolysis. Thus, these results support a hypothesis that under 
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hypoxia, certain glycolytic enzymes are spatially reorganized to alter the carbon metabolic pathway. 

Fluxes and concentrations of metabolites in glycolysis are rapid and small, especially in reactions 

catalyzed by Eno2p, although Eno2p is one of the most abundant proteins in the cell. However, 

changing the amount of Eno2p seems to have no significant effect, as indicated by results in E. coli 

(Usui et al. 2012). Under hypoxia in S. cerevisiae, the amounts of Eno2p and other glycolytic 

enzymes reportedly increased significantly (de Groot et al. 2007). Controlling protein concentrations 

would be a reasonable and effective method to switch the carbon metabolic pathway.  

In addition to the hypoxic state, higher temperatures of 37C induced foci formation by Eno2p. 

The association of temperature and the hypoxic state in inducing foci formation remains unclear. The 

finding that foci formation at 37C was inhibited by the addition of cycloheximide or rapamycin but 

not by SNF1 knockout mutation suggests that there are two ways of regulation: by oxygen 

concentration and by temperature increase. Postmas et al recently reported that glycolytic flux 

increases in fermenting S. cerevisiae at 38C (Postmus et al. 2012). They showed that increased 

activity of glycolytic enzymes did not correlate with protein abundance and suggested the 

contribution of post-translational regulation to enzyme activity. Foci formation by glycolytic 

enzymes is a seemingly efficient method of regulating glycolytic enzymes post-translationally. 

   The important amino acid residues or domains for foci formation by each enzyme could be 

determined in the manner we have demonstrated for Eno2p. Control of the carbon metabolic 

pathway in proliferating cells is an important issue. Eno2p and other glycolytic enzymes are 

overproduced in tumor cells in which the glycolysis rate is increased. If spatial reorganization of 

glycolytic enzymes occurs in mammalian cells, the results and methods demonstrated in this study 

could contribute to the control of carbon metabolism in proliferating cells including tumor cells. 

 
Fig. 22 Schematic illustration of the proposed regulation and the biological role of foci 

formation 
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Summary 

Shifting metabolic pathways by forming protein complexes is an attractive strategy. In 

Saccharomyces cerevisiae, we found that glycolytic enzymes, including enolase (Eno2p), conjugated 

with GFP formed cellular foci under hypoxia. Foci formation by Eno2p was inhibited temperature 

independently by the addition of cycloheximide or rapamycin or by single alanine substitution of the 

Val22 residue. Using mitochondrial inhibitors and an antioxidant, mitochondrial ROS production 

was shown to participate in foci formation at 30°C. Foci formation was also inhibited at 30°C by an 

SNF1 knockout mutation. Foci were observed in the cell after reoxygenation. Metabolic turnover 

analysis revealed that [U-13C]-glucose was assimilated into pyruvate and oxaloacetate in shorter time 

in foci-forming than in -non-forming cells. These results suggest that under hypoxia, S. cerevisiae 

senses mitochondrial ROS by activating SNF1/AMPK and spatially reorganizes some metabolic 

enzymes in the cytosol via de novo protein synthesis, thereby contributing to an altered carbon 

metabolic pathway (Fig. 22). 
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CHAPTER III 

Development of a novel method and an instrument to validate intracellular roles of 

extracellular moonlighting proteins 

 

Introduction 

Secretion and surface localization of enolase have been found (see Chapter I). Yet, the roles and the 

mechanisms of function of secreted or surface-localized enolase in S. cerevisiae are not known. To 

uncover these, the system for experimental re-construction and investigation of cell-cell interaction 

by designed proteins should be developed. Here, the concept of a novel co-cultivation based method 

that is to observe changes of cells when co-cultivated with genetically-modified (GM) cells to 

produce effector proteins arose. While enolase is known to localize cellular surface of many 

organisms, the mechanisms of surface localization is not known. Therefore, well-known proteins that 

bind cellular surface should be selected to construct the model system. 

Previously, Bosma et al. (2006) developed a method to display recombinant proteins on the 

non-GM gram-positive bacterial cell surface. They used the bacterial LysM domain (Pfam accession 

number PF01476) as a microbial-surfacebinding domain and non-GM gram-positive bacterial cells 

named gram-positive enhancer matrix particles as scaffolds to generate a non-GM vaccine (Bosma et 

al. 2006; van Roosmalen et al. 2006). However, the method includes chemical pretreatment of 

non-GM cells. The treatment kills bacteria, and it was impossible to investigate living bacterial 

functions such as multiple metabolic pathways and mobility. To use various native functions of 

bacteria, there is a need to develop a non-GM display system of living cells without chemical 

pretreatment. On the other hand, our system is different from previously reported system in the 

following points: this is a non-GM display system for living microorganisms without chemical 

pretreatment, and we used the lectin module, which is present in a broad range of species, as a 

binding module.  

The C-type lectin-like domain (CTLD, InterPro entry accession number IPR16186) and LysM 

domain are cell wall-recognition domains, but their three-dimensional structures and determined 

binding substrates are different. The LysM domain has a distinctive αββα fold and has no similarity 

to other carbohydrate-binding modules (Bateman and Bycroft 2000). The fold includes a shallow 

groove formed by two helixes and two loops (Ohnuma et al. 2008). The groove has a cluster of 

hydrophobic residues, and by the participation of the groove, the LysM domain binds -1,4-linked 

N-acetylglucosamine (chitin) oligosaccharides ((GlcNAc)n) (Ohnuma et al. 2008). LysM can 

recognize fungal cell wall (Wan et al. 2008) and bacterial cell wall peptidoglycans and the Nod 

receptor to initiate nodulation in the case of Rhizobium (Radutoiu et al. 2007). CTLD has a 

double-loop structure on both sides of antiparallel β-sheet (Zelensky and Gready 2005) to form a 

carbohydrate-binding site called the SPD (surfactant protein D) cleft (Hallman and Haataja 2006). 
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The cleft involves hydrophobic residues and has a Ca2+-binding site. At this site, CTLD binds to 

various mono- and oligosaccharides or carbohydrate chains in a Ca2+-dependent manner. In this 

study, we constructed a non-GM display system using one of the microbial-surface-binding domains, 

CTLD from human surfactant protein D (SP-D, Protein Data Bank accession number 1PWB), 

without chemical treatment. 

Figure 1 shows a model of a newly constructed system to investigate intercellular roles of 

moonlighting proteins. In this model system termed the “molecular sniping and shooting method 

(MSSM),” target proteins fused with the yeast-cell-surface-binding motif are produced in GM yeast 

and secreted. The mechanism for the protein-targeting system to bind proteins to the co-cultivated 

non-GM yeast surface is based on the property of the binding motif and cell-surface carbohydrates. 

GM and non-GM yeasts were co-cultivated using a filter-membrane-separated reactor for rapid 

detection of the “sniping and shooting” effect. Secreted fusion proteins are diffused in the culture 

medium, through the filter membrane, and bind to target cellular surfaces. In this system, GM cells 

were named as sniper cells, and non-GM cells as target cells. 

 

 

 

 

 

Fig. 1 Scheme of molecular sniping and shooting method (MSSM) A: Surface modified 

non-GMOs are constructed as follows: non-GMOs were cocultivated with GM yeasts, which 

produce recombinant proteins with the “binding domain” and “functional domain”, the “sniping and 

shooting” domain on the surface of non-GMOs. B: The interactions between recombinant proteins 

and the surface of non-GMOs are based on the molecular recognition activity of lectins. In spite of 

cocultivation of non-GMOs and GM yeasts, there are no contaminations, because, in the cultivation 

chamber (Millicell), they are separated by the special membrane filter. The pore size of the 

membrane is 0.4 μm and it allows recombinant proteins to pass through, but not large cells like 

yeasts. Sniper cell: GM sniper cells which secrete recombinant proteins. Target cell: non-GM target 

cells which receive recombinant proteins.  

 

A B 
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Materials and methods 

Strains and media 

Escherichia coli DH5α [F–, endA1, hsdR17 (rK- ; mK+), supE44, thi-1, −, rec A1, gyrA96, ΔlacU169 

(φ80lacZΔM15)] was used both as a host for recombinant DNA manipulation and as a target cell. 

Saccharomyces cerevisiae strain MT8-1 [MATa, ade, his3, leu2, trp1, ura3] (Tajima et al. 1985) was 

used to produce recombinant proteins. S. cerevisiae strain BY4741 [MATa, his3-1, leu2, met15, 

ura3], BY4741ΔCYC8 [MATa, his3-1, leu2, met15, ura3, ΔCYC8] (Conlan et al. 1999), and 

Candida albicans NBRC1594 were used as target cells for targeting recombinant proteins. S. 

cerevisiae BY4741 and BY4741ΔCYC8 were obtained from Euroscarf. E. coli was grown in Luria–

Bertani medium (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) sodium chloride, and 0.1% 

(w/v) ampicillin). Yeast was grown either in yeast peptone dextrose (YPD) medium (1% (w/v) yeast 

extract, 2% (w/v) polypeptone, and 2% (w/v) glucose) or SD-W (synthetic dextrose−tryptophan) 

medium (0.67% (w/v) yeast nitrogen base without amino acids, 2% (w/v) glucose, 0.002% adenine 

sulfate, 0.002% L-histidine-HCl, 0.003% L-leucine, and 0.002% uracil). 

 

Plasmid construction and yeast transformation 

Two expression vectors, pSDLn4 and pSDLc4, were designed for the N-terminal-free type and 

C-terminal-free type of enhanced green fluorescent protein (EGFP) for display, respectively. In short, 

human-placenta-cDNAderived CTLD and glucoamylase secretion signal-EGFPFLAG domains were 

inserted to the multicloning site of pWGP3 (Takahashi et al. 2001).  

All polymerase chain reaction (PCR) amplifications were carried out using KOD-Plus-DNA 

polymerase (Toyobo, Osaka, Japan). Table 1 shows the used primers. EGFP sequence was amplified 

from pEGFP (Takara Bio, Otsu, Japan) using primers (see in Table 1) EGYL-F(Bgl II) and 

EGY-R(Sal I). Amplified EGFP sequence was ligated into the plasmid pMWFD (Kuroda and Ueda 

2005) using the Bgl II and Sal I sites. The resulting plasmid was named pKGD1C. 

EGFP-FLAG-α-agglutinin sequence was amplified from pKGD1C using primers EGFP-F(Xho I) 

and KpnI-R(AG). Amplified EGFP-FLAG-α-agglutinin sequence was ligated into the plasmid 

pCAS1 (Shibasaki et al. 2001) using the Xho I and Kpn I sites. The resulting plasmid was named 

pKGD2. Glucoamylase secretion signal, EGFP, and FLAG sequences were amplified from pKGD2 

using primers (see in Table 1) EGFPF1 and EGFPR1-1 (for pSDLn4) or EGFPF1 and EGFPR1-2 

(for pSDLc4). The CTLD sequence was amplified from human placenta cDNA (BioChain Institute, 

CA, USA) by PCR using the primer pairs SP-DF2-1 and SPD2RXKEX2Bgl20712 (for pSDLn4), 

and SP-DF2-2 and SP-DtaaRXKEX2 (for pSDLc4). To construct pSDLn4 and pSDLc4, amplified 

EGFP fragments were ligated into the multicopy expression plasmid pWGP3 using the Kpn I and 

BamH I sites. The resulting plasmid was cleaved with Mlu I and BamH I (for pSDLn4) or Bgl II and 

Xho I (for pSDLc4) and ligated with the CTLD fragment using the restriction sites Mlu I and BamH I, 
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or Bgl II and Xho I, respectively. All amplification products were purified, and their sequences were 

confirmed by DNA sequencing. The resulting plasmids pSDLn4, pSDLc4, and pWGP3 (control) 

were introduced into S. cerevisiae by the lithium acetate method (Ito et al. 1983). Transformed cells 

were inoculated on the SD-W plates for 2 days at 30°C. 

 

Table 1 Primers used in Chapter III 

 

Fluorescence-activated cell sorting analysis 

Because cocultivation was performed in small scale (using 24-well plate and cell culture insert, total 

volume was 1 ml), we used cell sorter to quantify EGFP transfer from GM cells to non-GM cells. 

The transformants were grown in 10 ml of preculture medium (SD-W containing 0.5% (w/v) 

casamino acids (SDC-W)) for 28 h at 30°C with shaking. Cell cultures were then inoculated into 100 

ml of the main culture medium (SDC-W) at A600 of 0.01 and incubated at 30°C with shaking. After 

24, 48, and 96 h, cells were collected and centrifuged in 1.5 ml tubes at 10,000×g for 1 min. Cell 

pellets were collected and washed with 500 μl of phosphate-buffered saline (PBS; 137 mM NaCl, 

8.1 mM Na2PO4, 2.68 mM KCl, 1.47 mM KH2PO4, pH 7.4, Nippon Gene, Tokyo, Japan) and 

centrifuged in the same conditions. Obtained cell pellets were suspended in PBS and measured 

immediately with a cell sorter (JSAN, Bay Bioscience, Kobe, Japan) using the detection channel 

FLT1 (535DF45). In each case, the fluorescence of 40,000 cells was acquired. 

For quantification of target cells prepared by MSSM, 10 μl samples of each co-cultivation 

medium were collected into 5 ml polystyrene tubes (Becton, Dickinson and Company, NJ, USA) and 

stored on ice. PBS (1 ml) was added to each sample. After 5 min of sonication using an ultrasonic 

washing machine (VS-25, VELVO-CLEAR, Osaka, Japan) at 40 kHz and room temperature, 10,000 

cells were immediately analyzed using a cell sorter. The percentage of cells with high fluorescence 

intensity was calculated with respect to the total number of cells. Sonication was carried out to 

5’‐GGAAGATCTCTGTGGGGGAGAAGATTTTCAA-3’SP-DF2-2 

pSDLc4
5’‐CGCGGATCCTTAGAACTCGCAGACCACAAGACTCTTTTCTCCAC-3’SP-DtaaRXKEX2

5’‐ CGGGGTACCATGCAACTGTTCAATTTGCC-3’EGFPF1

5’‐CGCGGATCCACCAGCGGCCGCATTAATTTAACGCGTCCATGGCGAACCTCCAGCC
TTGTCATCGTCATCCTTGTAATCAGATCCACCCTTGTACAGCTC-3’EGFPR1-2

5’-CGACGCGTGTGGGGGAGAAGATTTTCAA-3’SP-DF2-1 

pSDLn4

5’‐CCGCTCGAGAGAACTCGCAGACCACAAGACTCTTTTCTCCACAAGCCCTGTCATTC
CACTTGCCATTGGTGAATATCTCCACAC-3’SPD2RXKEX2Bgl20712

5’‐ CGGGGTACCATGCAACTGTTCAATTTGCC-3’EGFPF1

5’‐CGCGGATCCACCAGCGGCCGCACCACGCGTCGAACCTCCAGCCTTGTCATCGTCA
TCCTTGTAATCAGATCCACCCTTGTACAGCTCGTCCAT-3’EGFPR1-1

5'-AAAAAGGTACCTTTGATTATGTTCTTTCTATTTGAATGAGATATGAG-3'KpnI-R(AG)

5'-TCGACCTCGAGGTGGATCTGGTGGCGTGAGCAAG-3'EGFP-F(XhoI)
pKGD2

5’-GCGGCCGTCGACCTTGTACAGCTCGTCCATGCCGAGAGTGATC-3’EGY-R(SalI)
5’-GATCCCAGATCTGGTGGATCTGGTGGCGTGAGCAAGGGCGAGGAGCTGTTCAC-3’EGYL-F(Bgl II)

pKGD1C

SequenceName of primerPlasmid
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separate aggregated cells (Kon et al. 2005), which facilitates cell sorting. 

For re-cultivation of cells, 20 μl samples of each co-cultivation medium were collected into 5 ml 

polystyrene tubes, and 1 ml of PBS was added to each sample. After 5 min of sonication (40 kHz at 

room temperature), 10,000 cells were immediately analyzed using a cell sorter and 1,000 cells with a 

high fluorescence intensity were sorted and spread onto agar medium as described below. Cell 

viability was calculated by counting colonies formed on the plate. Colonies were also used for 

colony PCR as described below. 

 

Cocultivation of GM and non-GM cells using membrane filter 

To transfer fluorescence from GM cells to non-GM cells as they grow in the medium in which these 

cells are separated by a filter membrane, GM and non-GM cells were co-cultivated as follows. 

Non-GM cells (cells with the receptor as target cells) were inoculated into each well of a 24-well 

plate at 6.5×105 cells in a volume of 200 μl. A cell culture insert, Millicell (hanging type, membrane 

filter with a pore size of 0.4 μm; Millipore, Billerica, USA, see Fig. 1) was set into each well, then 

GM cells (cells with releasing function as sniper cells) were inoculated into Millicell for 1.3×106 

cells in a volume of 600 μl. In the case of the BY4741ΔCYC8 strain, 200 μl of SDC-W was added 

into Millicell after 65 h of cocultivation. As a control, non-GM cells were inoculated into 24-well 

plates as target cells: in this case, Millicell was not inserted into the wells. After co-cultivation at 

30°C with shaking at 1,200 rpm, cells were harvested, and in each sample, fluorescence intensity 

was measured using a cell sorter. For microscopic observation, yeast cells were washed with PBS 

twice and observed by fluorescence microscopy. 

 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blotting of GM cell 

lysates and supernatants 

Yeast cells transformed with pSDLn4 and pSDLc4 were grown in 100 ml of SDC-W medium for 2 

days after pre-culture. Cells were then collected by centrifugation at 20,000×g for 20 min at 4°C. 

Supernatants were filtrated using 0.2 μm Steradisc (Kurabo, Osaka, Japan) and concentrated by 

ultrafiltration using Microcon YM-30 filters (Millipore). Cell pellets were washed with 50 ml of 50 

mM Tris–HCl (pH 7.8) containing 5 mM ethylenediamine tetraacetic acid and 8 M urea twice and 

centrifuged under the same condition. Cells were homogenized using glass beads (3,000 rpm at 4°C 

for 1 min, twice). Super natants were collected by centrifugation at 20,000×g for 20 min at 4°C. 

After filtration using a 0.2-μm Steradisc, lysates were concentrated by ultrafiltration using Microcon 

YM-30 filters. Concentrated supernatants were analyzed by sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) using PAGEL 5–20% gradient gel (Atto, Tokyo, Japan) and by 

Western blotting. For Western blotting, an anti-flag antibody conjugated with horseradish peroxidase 

was used at a volume of 1:1,000.  
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Blue native-PAGE of GM cell lysates 

Yeast cells transformed with pSDLn4, pSDLc4, and pWGP3 were subjected to the glass bead 

method as described above. Using supernatants obtained, blue-native PAGE (BN-PAGE) was 

performed as previously reported (Wittig et al. 2006) with native PAGETM 4–16% bis–Tris gel 

(Invitrogen, CA, USA). 

 

Results 

Production of EGFP fusion proteins by GM yeast 

The plasmids pSDLn4 and pSDLc4 for the N-terminal- and C-terminal-free display of EGFP (Fig. 2) 

were constructed, respectively. Growth-phase-related production of the EGFP-fusion protein was 

observed by fluorescence microscopy and fluorescence-activated cell sorting (FACS) analysis (Fig. 

3). In the early growth phase, yeast cells transformed with pSDLn4, pSDLc4, and pWGP3 (control) 

did not show any fluorescence. In the stationary phase, yeast cells transformed with pSDLn4 and 

pSDLc4 showed green fluorescence inside and in the periphery of each cell. Observed fluorescence 

indicates the EGFP fusion proteins on the way of secretion from GM sniper yeasts. FACS analysis 

showed a marked change in subcellular fluorescence intensity. SDS-PAGE and Western blotting also 

showed the production of FLAG-conjugated recombinant proteins. These results demonstrated the 

production of EGFP fusion proteins from GM sniper yeasts and suggested the secretion of these 

proteins from cells. 

 

Fig. 2 Plasmids constructed in this 

study for MSSM Plasmids pSDLn4 

and pSDLc4 were constructed for 

N-terminal-free and C-terminal-free 

EGFP surface display of non-GMO, 

respectively. In accompany with the 

secretion signal sequence, EGFP 

fragment was fused to N- or 

C-terminal of CTLD. Between EGFP 

fragment and CTLD was a FLAG-tag 

for immunodetetion. pWGP3 as 

control was used as the cassette 

vector in which the constructs were 

introduced. PGAP: GAPDH promoter, 

TGAP: GAP terminator 
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Transfer of EGFP fluorescence from GM sniper yeast to non-GM target cells in co-cultivation 

To investigate the targeting of recombinant EGFP proteins fromGMsniper to non-GM target yeast 

cells, we cocultivated GMsniper and non-GMtarget cells usingMillicell (Millipore) as shown in Fig. 

1. After cocultivation using 24-well plates and the Millicell system, BY4741ΔCYC8, one of the 

target cells, showed a marked increase in fluorescence intensity, as determined by FACS analysis 

(Fig. 4). Observation under a fluorescence microscope confirmed the green fluorescence on the 

surface of BY4741ΔCYC8 strain cells examined, a shown in Fig. 4. There was no increase in 

fluorescence intensity on other examined strains. These results suggest that the specific display of 

recombinant EGFP on target yeast cells (in this case, BY4741ΔCYC8) succeeded. The target yeast 

cell represents a specific state of non-GM cells (Conlan et al. 1999). To evaluate whether the 

recombinant EGFP forms were trimers, BN-PAGE and Western blotting were performed (Fig. 3). 

BN-PAGE analysis showed that the fusion protein produced by GM sniper yeast cells was a 

monomer, judging from the result of SDS-PAGE.  

 

Confirmation of survival of targeted cells after treatment with MSSM 

MSSM alters properties of living cells without genetic modifications. This is the difference of 

MSSM from previous methods involving chemical treatments (Bosma et al. 2006). Therefore, cells 

used for MSSM should survive after cocultivation. We confirmed that cells were alive after 

treatment with MSSM by sorting and seeding 1×103 cells onto agar medium and calculating their 

viability. As a result, the pSDLc4-transformant and BY4741ΔCYC8 both survived on the SDC-W 

agar medium. Almost all the BY4741ΔCYC8 cells formed colonies. For each colony, colony PCR 

was performed to confirm that there were no plasmids in non-GM target cells. It was proved that 

GM target cells survived and did not contain plasmids. On YPD medium, the average viability of 

BY4741ΔCYC8 after 4 days of co-cultivation was 51.6% (n=3) when compared to the viability of 

cells before co-cultivation. 

 

Specificity of CTLD produced by GM sniper cells 

We investigated whether other strains can be target cells besides the specific BY4741ΔCYC8 strain. 

We examined changes of fluorescence intensity in the S. cerevisiae BY4741 and MT8-1 strains and 

C. albicans after targeting with MSSM. After 1, 2, and 4 days of co-cultivation, all the strains 

showed nearly no transfer of fluorescence (Fig. 5). 
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Fig. 3 Recombinant fusion proteins produced and secreted from GM sniper cells Phase contrast 

and fluorescence observation is shown (A). In fluorescence microscopy (Right), yeast cells 

transformed with pSDLn4 and pSDLc4 showed green fluorescence inside and in the periphery of the 

cells, while yeast cells transformed with pWGP3 showed no fluorescence. In FACS analysis (B) 

showed that from early growth phase (white area) to stationary phase (gray area), yeast cells 

transformed with pSDLn4 and pSDLc4 showed marked change of fluorescence intensity and 

subcellular localization. At stationary phase, as the percentage of cells with high (> 28) fluorescence 

intensity (% Total cells) was 5.28 %, 74.2 %, 76.7 % (At early growth phase, the percentage was 

1.44 %, 9.65 %, 14.2 %) for yeast cells transformed with pWGP3, pSDLn4, and pSDLc4, 

respectively. SDS-PAGE (C, Western blotting) and BN-PAGE (D, Western blotting): yeast cells 

transformed with pWGP3 (pW), pSDLn4 (n4), and pSDLc4 (c4) were homogenized, and lysates 

(lys) and supernatant of culture medium, in C, were analyzed by Western blotting. Samples from 

yeast cells transformed with pSDLn4 and pSDLc4 showed each single band. Closed circle indicates 

the observed band of fusion proteins. Mr standard markers (Full range rainbow marker; GE 

Healthcare, Stockholm, Sweden) were used. n4/ c4/ pW: supernatants, n4 lys/ c4 lys/ pW lys: lysates 

A B

C D
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Fig. 4 Demonstration of transfer of recombinant proteins to non-GM S. cerevisiae 

BY4741ΔCYC8 target cells from GM sniper cells After 0, 2, and 4 days of co-cultivation with GM 

sniper cells, non-GM target cells (S. cerevisiae BY4741ΔCYC8) was analyzed using the cell sorter. 

As a control, the same strain was cultivated in 24-well plate. After 2 and 4 days, co-cultivated 

non-GM yeast showed marked shift of fluorescence intensity. The percent total cells defined in Fig. 

3 that showed over 28 of fluorescence intensity increased from 2 to 4 days. By fluorescence 

microscopic observation, co-cultivated non-GM target yeast cells clearly showed green fluorescence 

on the surface of the cells (photos). Graph shows the presentation of percent total cells that exhibited 

fluorescence intensity >28 in each stage. White bars control, black bars co-cultivated 

BY4741ΔCYC8 

 

Fig. 5 Specificity of non-GM target cells 

as receiver cells S. cerevisiae MT8-1, 

BY4741, BY4741ΔCYC8 strains, and C. 

albicans were co-cultivated with GM sniper 

cells. As a control, the same strain was 

cultivated in 24-well plate. After 1, 2, and 4 

days, co-cultivated cells and control cells 

were analyzed using the cell sorter. The 

average count of percent total cells that 

showed fluorescence intensity (>28) were 

represented. Percent total cell count of 

control cells was subtracted from each count. Open circle S. cerevisiae MT8-1, closed circle S. 

cerevisiae BY4741ΔCYC8, open square C. albicans, X S. cerevisiae BY4741 
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Development of a novel instrument for large-scale co-cultivation 

Instruments for large-scale co-cultivation of microbes were developed with aids of Sanki-seiki and 

Geo support. The instrument has two compartments that are separated by filter membranes, which 

arrow proteins and small molecules to pass through but not cells (Fig. 6). 

 

 

 

 

 

Fig. 6 Development of a novel instrument for large-scale co-cultivation 

 

 

Discussion 

The targeting of the recombinant protein from GM sniper to living non-GM target cells using a novel 

co-cultivation system with a membrane filter was demonstrated. The protein targeting system was 

designated as the molecular sniping and shooting method (MSSM). MSSM has the following 

features: it allows analysis of two different strains in co-cultivation state separately and 

simultaneously; and it allows production of non-GM target cells with the ability derived from 

functional recombinant proteins without self-production in a living state. 

In MSSM, non-GM target strains showed a marked increase in fluorescence intensity, which 

indicates the recombinant fusion proteins were produced and secreted by GM sniper cells to non-GM 

target cells in the filter membrane-separated reactor (Fig. 4). These results indicate that fusion 

proteins produced by GM sniper cells were specifically targeted on the surface of non-GM target 

cells. The co-cultivation test showed that S. cerevisiae MT8-1 strain hardly binds the constructed 

fusion proteins on its surface. Therefore, S. cerevisiae MT8-1 cells were suitable as GM sniper yeast 

cells in the present study. 

BN-PAGE analysis showed that the constructed fusion protein was a monomer. The fusion 

protein contains the CTLD of human SP-D, which was reported to have no binding activity in the 

monomer state; it is required to be a trimmer to exhibit binding ability to lipopolysaccharides and 

A B 
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phospholipids (Kishore et al. 1996) and bacteria (Eda et al. 1997). However, interestingly, our fusion 

proteins bound to its ligand in the monomer state. The observation that C. albicans (previously 

reported suitable strain for SP-D) showed no change in the fluorescence intensity (Fig. 5) also 

suggests that CTLD used in MSSM exhibited the interesting change of property of its binding target. 

 

Summary 

A novel method was developed to coat living wt cells with functional recombinant proteins. First, I 

prepared yeast cells to secrete constructed proteins that have two domains: a functional domain and a 

binding domain that recognizes other cells. Second, I co-cultivated recombinant protein-secreting 

cells and wt cells that share and co-utilize the medium containing recombinant using a 

filter-membrane-separated cultivation reactor. Engineered yeast cells secreted enhanced green 

fluorescent protein (EGFP) fusion proteins to culture medium. After co-cultivation, EGFP fusion 

proteins were targeted to Saccharomyces cerevisiae BY4741CYC8 cell surface. In addition, I 

participated in developing novel culture devises for large scale co-cultivation. 
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GENERAL CONCLUSION 

    

The present study was conducted to reveal the molecular basis of the moonlighting protein enolase, 

particularly focusing on mechanisms regulating inter- and intracellular localization.  

In chapter I, the Eno2p secretion pathway was investigated. It was revealed for the first time that 

Eno2p was secreted via a SNARE protein Tlg2p-driven unknown secretion pathway. In the study, 

the N-terminal amino acid region of Eno2p was found to be secreted while forming foci in the cell. 

The results suggested that the N-terminal region of Eno2p may be the region regulating Eno2p 

localization. 

In chapter II, the first N-terminal foci-forming region was investigated in detail. It was found that 

the (5–25)-amino acid region was sufficient for foci formation. In addition, alanine substitution of 

the V22 residue was found to inhibit foci formation. Next, the correlation between the foci and 

localization of full-length Eno2p was investigated. Full-length Eno2p was found to form foci under 

hypoxia. Because V22 substitution to alanine diminished the foci-forming property of full-length 

Eno2p and both foci formed by the N-terminal region and full-length Eno2p colocalized, localization 

change in Eno2p is suggested to be regulated by the N-terminal region. Furthermore, the 

mechanisms and biological effects of the foci were investigated. Foci formation under hypoxia was 

regulated by the sensing pathway of mitochondrial ROS production. Moreover, the correlation 

between the changes in the metabolic pathway and foci formation in the cell suggests the role of the 

foci as a metabolic regulator. The universality of the sensing and glycolytic pathways suggests that 

foci formation is a conserved way of regulating cellular physiology.  

In chapter III, novel methods and instruments for investigating extracellular roles of 

moonlighting proteins were prepared. Using these, the unknown functions of secreted enolase in 

Saccharomyces cerevisiae will be revealed.  

In summary, the findings of present study suggest that the spatial reorganization of proteins 

regulates cellular physiology. 
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