On categoricity of atomic AEC

前園 久智 (Hisatomo MAESONO)
早稲田大学メディアネットワークセンター
(Media Network Center, Waseda University)

Abstract

In recent years, the results about atomic abstract elementary class were summarized by J.T.Baldin [1]. In that book, categoricity problem of atomic AEC is discussed mainly under the assumption of atomic ω-stability (or $*-$excellence). I tried the argument around the problem under some weaker conditions.

1. Atomic AEC and splitting

We recall some definitions.

Definition 1 A class of structures (K, \prec_K) (of a language L) is an abstract elementary class (AEC) if the class K and class of pairs satisfying the binary relation \prec_K are each closed under isomorphism and satisfy the following conditions ;
A1. If $M \prec_K N$, then $M \subseteq N$.
A2. \prec_K is a partial order on K.
A3. If $\{ A_i : i < \delta \}$ is a \prec_K-increasing chain :
(1) $\bigcup_{i<\delta} A_i \in K$
(2) for each $j < \delta$, $A_j \prec_K \bigcup_{i<\delta} A_i$
(3) if each $A_i \prec_K M \in K$, then $\bigcup_{i<\delta} A_i \prec_K M$.
A4. If $A, B, C \in K$, $A \prec_K C$, $B \prec_K C$ and $A \subseteq B$, then $A \prec_K B$.
A5. There is a Löwenheim-Skolem number $LS(K)$ such that if $A \subseteq B \in K$, there is an $A' \in K$ with $A \subseteq A' \prec_K B$ and $|A'| \leq |A| + LS(K)$.

Definition 2 We say an AEC (K, \prec_K) is atomic if K is the class of atomic models of a countable complete first order theory and \prec_K is first order elementary submodel.

In the following, K denotes an atomic AEC.

Definition 3 Let T be a countable first order theory.
A set A contained in a model M of T is atomic if every finite sequence in
A realizes a principal type over the empty set.
Let \(A \) be an atomic set.
\(S_{\text{at}}(A) \) is the collection of \(p \in S(A) \) such that if \(a \in \mathcal{M} \) realizes \(p \), \(Aa \) is atomic (where \(\mathcal{M} \) is the big model).
We refer to a \(p \in S_{\text{at}}(A) \) as an atomic type.

We consider the notion of stability for atomic types.

Definition 4 The atomic class \(K \) is \(\lambda \)-stable if for every \(M \in K \) of cardinality \(\lambda \), \(|S_{\text{at}}(M)| = \lambda \).

Example 5 ([1])
1. Let \(K_1 \) be the class of atomic models of the theory of dense linear order without endpoints. Then \(K_1 \) is not \(\omega \)-stable.
2. Let \(K_2 \) be the class of atomic models of the theory of the ordered Abelian group of rationals. Then \(K_2 \) is \(\omega \)-stable.

The notion of independence by splitting is available in this context.

Definition 6 A complete type \(p \) over \(B \) splits over \(A \subset B \) if there are \(b, c \in B \) which realize the same type over \(A \) and a formula \(\phi(x, y) \) such that \(\phi(x, b) \in p \) and \(\neg\phi(x, c) \in p \).

Let \(A, B, C \) be atomic.
We write \(A \downarrow_C B \) and say \(A \) is independent from \(B \) over \(C \) if for any finite sequence \(a \in A \), \(\text{tp}_{\text{at}}(a/B) \) does not split over some finite subset of \(C \).

Fact 7 ([1]) Under the atomic \(\omega \)-stable assumption of \((K, \prec_K) \) (and some assumption of parameters), the independence relation by splitting (over models) satisfies almost all forking axioms.

Theorem 8 ([1]) If \(K \) is \(\omega \)-stable and has a model of power \(\aleph_1 \), then it has a model of power \(\aleph_2 \).

2. Atomic AEC without infinite splitting chain

In Baldwin's book [1] they argue the categoricity of atomic AEC under \(\omega \)-stability assumption of atomic types. I considered the same problem under some weaker conditions.

Definition 9 Let \(K \) be an atomic AEC and \(M \in K \).
\(M \) has no infinite splitting chain if for any nonalgebraic \(p \in S_{\text{at}}(M) \), there is no increasing sequence \(\{A_i\}_{i<\omega} \subset M \) such that \(p \upharpoonright A_{i+1} \) splits over \(A_i \) for all \(i < \omega \).

We can prove the next facts.
Fact 10 If K is ω-stable, then no model of K has infinite splitting chain.

Fact 11 Under the assumption that (K, \prec_K) has no infinite splitting chain, the independence relation by splitting (over models) satisfies almost all forking axioms.

3. Existence of pregeometry

In [1], categoricity of atomic AEC are proved by means of the fact that every model is prime and minimal over a basis of some pregeometry given by a quasi-minimal set. So I tried to define pregeometry in the present context.

At first we prove the next proposition which is some modification of Theorem 8 above.

Proposition 12 If there are $N \in K$ with $|N| > \aleph_0$ and a nonalgebraic type $p(x) \in S^{1}_{at}(N)$ such that N has no infinite splitting chain.

Then there are $M \in K$ with $|M| = \aleph_2$ and a nonalgebraic type $q(x) \in S^{1}_{at}(M)$ such that M has no infinite splitting chain and q does not split over some $b \in M$, and $q \upharpoonright b$ has a Morley sequence I in M with $|I| = \aleph_2$.

Moreover if $|N| = \aleph_1$, then we can take M such that $N \prec M$.

In this note, Morley sequence means the sequence constructed by non-splitting extensions. Thus Morley sequences are indiscernible.

Lemma 13 Let $M \in K$ and $p(x) \in S_{at}(M)$.

Suppose that M has no infinite splitting chain and p does not split over some $b \in M$.

And let $I = \{a_i : i < \alpha\}$ be a Morley sequence of $p \upharpoonright b$ in M.

Then I is totally indiscernible.

In [8], they characterized generically stable types. We try to modify the notion in this context.

Definition 14 Let $M \in K$.

A nonalgebraic type $p(x) \in S_{at}(M)$ is generically stable in M if for some $A \subset M$, p does not split over A and if $I = \{a_i : i < \alpha\}$ is a Morley sequence of $p \upharpoonright A$ in M, then for any $\phi(x) \in L(M)$-formula, $\{i : M \models \phi(a_i)\}$ is either finite or co-finite.

We can prove the next lemma.

Lemma 15 Let $M \in K$ and $q(x) \in S^{1}_{at}(M)$ be in Proposition 12.

Then q is generically stable in M.

Moreover if q does not split over b, then q is definable over b and $q \upharpoonright b$ is stationary w.r.t. nonsplitting extension.
We recall the definition of pregeometry.

Definition 16 Let X be an infinite set and cl a function from $\mathcal{P}(X)$ to $\mathcal{P}(X)$ where $\mathcal{P}(X)$ denotes the set of all subsets of X. If the function cl satisfies the following properties, we say (X, cl) is pregeometry.

(I) $A \subset B \Rightarrow A \subset \text{cl}(A) \subset \text{cl}(B)$,
(II) $\text{cl}(\text{cl}(A)) = \text{cl}(A)$,
(III) (Finite character) $b \in \text{cl}(A) \Rightarrow b \in \text{cl}(A_0)$ for some finite $A_0 \subset A$,
(IV) (Exchange axiom) $b \in \text{cl}(A \cup \{c\}) - \text{cl}(A) \Rightarrow c \in \text{cl}(A \cup \{b\})$.

We define big type which is a modified notion in [1].

Definition 17 Let $a \in M$ and $A \subset M \in K$.

A nonalgebraic atomic type $\text{tp}_{\text{at}}(a/A)$ is big if there is an atomic model $N \in K$ such that $A \subset N$ and $\text{tp}_{\text{at}}(a/A)$ has a nonalgebraic atomic extension over N.

In the following we argue under the existence of uncountable model $M \in K$ and a nonalgebraic type $p(x) \in S^1_{\text{at}}(M)$. We may assume that p has what is called a minimal U-rank, or $\text{U-rank} = 1$.

Lemma 18 Let K has no infinite splitting chain and $M \in K$. And let $p(x) \in S^1_{\text{at}}(M)$ be nonalgebraic and p does not split over b for some $b \in M$.

Then $p \upharpoonright b$ has an extension $q(x) \in S^1_{\text{at}}(c)$ such that $b \in c \in M$ and q is big, but any splitting extension of q is not big.

We may assume that the type q in Proposition 12 above has such property.

We define some closure operator.

Definition 19 Let $M \in K$ and $p(x) \in S^1_{\text{at}}(M)$. And let p does not split over \emptyset (or some finite parameter) and $p \upharpoonright \emptyset$ is stationary.

The operator cl_p is defined by ;

$\text{cl}_p^0(X) = X$ and $\text{cl}_p^{n+1}(X) = \{ a \in (p \upharpoonright \emptyset)(M) | a \notin (p \upharpoonright \text{cl}_p^n(X))(M) \}$,

and $\text{cl}_p(X) = \bigcup_{n<\omega} \text{cl}_p^n(X)$ for any $X \subset (p \upharpoonright \emptyset)(M)$.

We can prove the next fact.

Theorem 20 Let K has no infinite splitting chain and $M \in K$ (with $|M| > \aleph_0$).

And let $p(x) \in S^1_{\text{at}}(M)$ be a nonalgebraic type such that p does not split over \emptyset and $p \upharpoonright \emptyset$ has no big splitting extension (or p has a minimal U-rank among such types).

Then $((p \upharpoonright \emptyset)(M), \text{cl}_p)$ is pregeometry.
4. Constructible sequence of atomic types

In the argument of categoricity for *-excellent AEC, prime models play a crucial role. Now we do not assume the existence of prime models. We try the analogous argument of $F_{\kappa(T)}^a$-prime models in some large atomic model.

First we check the next lemma.

Lemma 21 (K has no infinite splitting chain.)

Let $M \in K$. And let $A \subset B \subset M$ and a be such that $tp_{at}(a/A)$ has a nonsplitting extension over B (or $A \leq TV B$) and $tp_{at}(a/A)$ is stationary.

Then the following are equivalent:

(i) $tp_{at}(a/A) \vdash tp_{at}(a/B)$

(ii) For any a' such that $tp_{at}(a'/A) = tp_{at}(a/A)$, $tp_{at}(a'/B)$ does not split over A.

I define some isolation of atomic types.

Definition 22 Let $a \in M \in K$ and $A \subset M$.

A type $tp_{at}(a/A)$ is quasi–isolated if there is $b \in M$ such that $tp_{at}(a/b) \vdash tp_{at}(a/A)$.

A sequence $\{c_i : i < \alpha\} \subset M$ is quasi–constructible over A if, for any $\beta < \alpha$, $tp_{at}(c_\beta/A \cup \{c_i : i < \beta\})$ is quasi-isolated.

M is quasi–constructible over A if $M \setminus A$ can be written as a quasi-constructible sequence.

We can prove the next proposition by using Lemma 21 above.

Proposition 23 Let K has no infinite splitting chain and $N \in K$ (with $|N| > \aleph_0$).

And let a nonalgebraic $p(x) \in S_{at}^1(N)$ be such that p does not split over \emptyset and p has no big splitting extension (or p has a minimal U-rank among such types).

(Suppose that $p \upharpoonright \emptyset$ has a Morley sequence I with $|I| > \aleph_0$ in N.)

Then for any basis J of $((p \upharpoonright \emptyset)(N), cl_p)$, there is a quasi-constructible model over J in N.

5. Categoricity in some large atomic model

At first we recall the definition of Vaughtian triple from [1]. Note that the notion big is modified here.

Definition 24 A triple (M, N, ϕ) is called a Vaughtian triple if $\phi(M) = \phi(N)$ where $M \prec N \in K$ with $M \neq N$ and $L(M)$–formula ϕ is big.
In this chapter, we assume that K has no infinite splitting chain where K is an atomic AEC. Under this condition we can prove some results about the two cardinal problem.

I tried the argument of categoricity in this context by means of quasi-constructible model. But I do not have the settled result yet. At present I can prove the next theorem by the properties of generically stable types.

If we try to extend the categoricity result to the whole K, we need some additional conditions, such as amalgamation property of models, and any atomic set is included in an atomic model, and so on.

In the next Theorem 25, $p \mid \emptyset$ has a Morley sequence I in N with $|I| = |N|$.

Theorem 25 Let K has no infinite splitting chain and $N \in K$ such that ($|N| > \aleph_0$ and) there is no Vaughtian triple in N.

And let $p(x) \in S_{\text{at}}^1(N)$ be nonalgebraic such that p does not split over \emptyset and $p \mid \emptyset$ has no big splitting extension (or p has a minimal U-rank among such types).

Then for $M_i < N (i < 2)$ with $|M_0| = |M_1|$, $M_0 \cong M_1$.

6. Example of Shelah et al.

Shelah's original work ([4],[5]) showed that categoricity up to \aleph_ω of a sentence in $L_{\omega_1,\omega}$ implies categoricity in all uncountable cardinalities. Shelah and Hart showed the necessity of the assumption by constructing some example ([6]). This example is adapted by Baldwin and Kolesnikov ([1],[2]).

We can not recall the definition of it and details here.

Theorem 26 ([1],[2]) For each $k < \omega$, there is a $L_{\omega_1,\omega}$-sentence ϕ_{k+2} such that:

- ϕ_{k+2} is categorical in μ if $\mu \leq \aleph_k$, and
- ϕ_{k+2} is not categorical in any μ with $\mu > \aleph_k$.

And they proved the next proposition in [2].

Proposition 27 ([2]) Let M be the standard model of ϕ_{k+2} of size \aleph_k.

Then there are 2^{\aleph_k} Galois types over M.

This structure is expanded to be an atomic model. And we can check the next fact.

Fact 28 Let M and ϕ_{k+2} be the $L_{\omega_1,\omega}$-sentence in the Proposition 27 above. Then M has an infinite splitting chain (in the expanded language).
References

[6] B. Hart and S. Shelah, *Categoricity over P for first order T or categoricity for $\phi \in L_{\omega_1,\omega}$ can stop at \aleph_k while holding for $\aleph_0, \cdots, \aleph_{k-1}$*, Israel J. of math, vol. 70, pp. 219-235, 1990