<table>
<thead>
<tr>
<th>Title</th>
<th>AN UNSATURATED GENERIC STRUCTURE (Model theoretic aspects of the notion of independence and dimension)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>IKEDA, KOICHIRO; KIKYO, HIROTAKA</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2011), 1741: 9-12</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/170914</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
AN UNSATURATED GENERIC STRUCTURE

KOICHIRO IKEDA
FACULTY OF BUSINESS ADMINISTRATION, HOSEI UNIVERSITY

HIROTAKA KIKYO
DEPARTMENT OF INFORMATICS, KOBE UNIVERSITY

ABSTRACT. We construct an ab initio generic structure for a predimension function with a positive rational coefficient strictly less than 1 which is unsaturated and has a non-\(\omega\)-stable theory. Superstability of the theory will be discussed in a sequel paper.

1. INTRODUCTION

We consider graph structures. A graph structure has one binary relation as a first order structure. \(X \subseteq_{\text{fin}} Y\) means that \(X\) is a finite subset of \(Y\).

For a graph structure \(A\), let

\[\delta_{\alpha}(A) = |A| - \alpha e(A). \]

Here, \(\alpha\) is a rational number such that \(0 < \alpha < 1\), \(|A|\) the number of points in \(A\), and \(e(A)\) the number of edges in \(A\). \(\delta_{\alpha}(A)\) is called a predimension function.

Suppose \(A \subseteq_{\text{fin}} B\) (substructure = induced subgraph).

\(A \leq B\) (\(A\) is a strong substructure of \(B\) or \(A\) is closed in \(B\)) if

\[A \subseteq X \subseteq_{\text{fin}} B \Rightarrow \delta_{\alpha}(A) \leq \delta_{\alpha}(X). \]

In this case, if \(A = \{a\}\) (a singleton) then \(a\) is called a closed point in \(B\).

We say that \(A \leq B\) is minimal if \(A \leq B\), \(A \neq B\), and \(A \leq X \leq B\) implies \(X = A\) or \(X = B\).

With this notation, let

\[K_{\alpha} = \{A : \text{finite : } A \geq \emptyset\}. \]

Definition 1.1. Suppose \(K \subseteq K_{\alpha}\). A countable graph \(M\) is a generic structure of \(K\) if

- \(A \subseteq_{\text{fin}} M\) \(\Rightarrow\) there exists \(B\) such that \(A \subseteq B \subseteq_{\text{fin}} M\) and \(B \leq M\);
- \(A \subseteq_{\text{fin}} M\) \(\Rightarrow\) \(A \in K\);
- for any \(A, B \in K\),

\[
\begin{array}{c}
\forall \mathcal{L} \\
\downarrow \\
\downarrow \\
A \\
\leq \\
\end{array}
\]

\[
\begin{array}{c}
\leq \\
M \\
\end{array}
\]

\(\leq \)
Definition 1.2. A class K has the amalgamation property (AP, in short) if for any $A, B, C \in K$,

![Diagram of amalgamation property](image)

Fact 1.3. Suppose $K \subseteq K_\alpha$,

1. $\emptyset \in K$,
2. K has the AP_{f},
3. $A \subset B \in K$ implies $A \in K$.

Then K has a generic structure.

Definition 1.4. Suppose $K \subseteq K_\alpha$. K has thrifty amalgamation if whenever $A \leq B$ is minimal, $A \leq C$ with $A, B, C \in K$ then either $B \oplus_A C \in K$ or there is a strong embedding of B into C over A.

2. An Amalgamation Class

Definition 2.1. A graph A is a minimal 1-component (in K_α) if $|A| \geq 2$, $\delta_\alpha(A) = 1$, and $\delta_\alpha(X) > 1$ for any $X \subset A$ such that $1 < |X| < |A|$.

The following are examples of a minimal 1-component in the case $\alpha = 2/3$.

In the rest of the paper, we fix $\alpha = 2/3$ and δ_α will be written δ.

![Diagram of minimal 1-component](image)

Let S_A be the set of connected substructures of (A, a, b), i.e., the connected substructures of A containing a and b. Let S_B be the set of connected substructures of (B, a, b). Let $S_0 = S_A \cup S_B$.

Let S_1 be the smallest class with thrifty amalgamation containing S_0.

Lemma 2.2. (1) If $(X, a, b) \in S_0$, then (X, a, b) is (A, a, b), (B, a, b), or $(Y, a, b) \leq (X, a, b)$ for some proper substructure (Y, a, b) of (B, a, b).

(2) If $(X, a, b) \in S_0$ with $1 < \delta(X) < 2$ then $\delta(X) = 4/3$ or $5/3$ and there is $(Y, a, b) \in S_0$ such that $X \leq Y$ and $\delta(Y) \geq 2$.

Definition 2.3. Let S be a class of structures (X, a, b) where X is a graph and a, b are two distinguished points in X.

Suppose that there are graphs A_1, A_2, \ldots, A_n and points $a_{i-1}, a_i \in A_i$ such that (A_i, a_{i-1}, a_i) is isomorphic to some element of S for each i, and

$$Y = A_1 \oplus_{a_1} A_2 \oplus_{a_2} \cdots \oplus_{a_{n-1}} A_n.$$
We call \(Y \) a \(S \)-chain. \(n \) is called the length of the \(S \)-chain \(Y \). Each \(A_i \) is called an amalgamand of \(Y \). With such \(Y \), if we can write

\[
X = Y/(a_0 = a_n)
\]

then we call \(X \) a \(S \)-cycle. \(n \) is called the length of the \(S \)-cycle \(X \). Each amalgamand of \(Y \) is also called an amalgamand of \(X \).

If \(S \) consists of one graph with two points and one edge, we simply call an \(S \)-chain a chain, and an \(S \)-cycle a cycle.

Let \(K_0 \) be the set of \(S_1 \)-cycles of length greater than \(|B| \).

Proposition 2.4. Suppose \(X \in K_0 \).

1. \(\delta(X) = 0 \) if and only if every amalgamand of \(X \) is isomorphic to \((A, a, b)\) or \((B, a, b)\).
2. \(\delta(X) = 1/3 \) if and only if exactly one amalgamand of \(X \) is isomorphic to a proper substructure of \((A, a, b)\) or \((B, a, b)\) with \(\delta = 4/3 \) and each of the remaining amalgamands is isomorphic to \((A, a, b)\) or \((B, a, b)\).
3. \(\delta(X) = 2/3 \) if and only if either exactly one amalgamand of \(X \) is isomorphic to a proper substructure of \((A, a, b)\) or \((B, a, b)\) with \(\delta = 5/3 \) or exactly two amalgamands of \(X \) are isomorphic to a proper substructure of \((A, a, b)\) or \((B, a, b)\) with \(\delta = 4/3 \), and each of the remaining amalgamands is isomorphic to \((A, a, b)\) or \((B, a, b)\).
4. \(0 < \delta(X) < 1 \) if and only if \(\delta(X) = 1/3 \) or \(\delta(X) = 2/3 \).

Proposition 2.5. Suppose \(X \in K_0 \).

1. If \(\delta(X) = 0 \) then there is no proper substructure of \(X \) closed in \(X \).
2. If \(\delta(C) \geq 2 \) for exactly one amalgamand \(C \) of \(X \), and each of the remaining amalgamands of \(X \) is isomorphic to \((A, a, b)\) or \((B, a, b)\), then there is a closed point of \(X \) in \(C \), and all the closed points of \(X \) are in \(C \).
3. If \(\delta(C), \delta(D) \geq 2 \) for exactly two amalgamands \(C \), \(D \) of \(X \), and each of the remaining amalgamands of \(X \) is isomorphic to \((A, a, b)\) or \((B, a, b)\), then there is a closed point of \(X \) in \(C \), and also in \(D \), and all the closed points of \(X \) are in \(C \) or \(D \).

Let \(K_1 \) be the set of \(S_1 \)-chains and its substructures.

Let \(K_2 \) be the smallest set with thrifty amalgamation containing \(K_0 \) and \(K_1 \).

Proposition 2.6. Suppose \(X \in K_2 \) and \(X \) is connected. If \(\delta(X) < 1 \) then \(X \in K_0 \).

Proposition 2.7. Suppose \(c_1 \) and \(c_2 \) are two closed points in \(X \in K_2 \). Then there is \(Y \in K_2 \) such that \(X \leq Y \) and \(c_1 \) and \(c_2 \) are connected in \(Y \).

Proof. If \(c_1 \) and \(c_2 \) are connected then there is nothing to prove. Suppose \(c_1 \) and \(c_2 \) are not connected in \(X \in K_2 \). Let \(X_1 \) be the connected component of \(X \) containing \(c_1 \) and \(X_2 \) the connected component of \(X \) containing \(c_2 \). If \(c_1, c_2 \in U \subset X \), then

\[
\delta(U) \geq \delta(U \cap X_1) + \delta(U \cap X_2) \geq 1 + 1 = 2
\]

since \(c_i \leq U \cap X_i \) for \(i = 1, 2 \). Hence, \(\{c_1, c_2\} \leq X \). Consider a chain \(C_3 \) of length 3 with end points \(c_1 \) and \(c_2 \). then \(\{c_1, c_2\} \leq C_3 \in K_2 \). Hence there is \(Y \in K_2 \) such that \(X \) and \(C_3 \) are strongly embedded in \(Y \) over \(\{c_1, c_2\} \).

\(\square \)
K. IKEDA AND H. KIKYO

3. An Unsaturated Generic Structure

Let M be the generic structure of K_2.

Proposition 3.1. M has only one connected component with closed points. The other connected components are exactly $\{A, B\}$-cycles.

Proposition 3.2. $Th(M)$ is not ω-stable.

Proof. In a saturated model of $Th(M)$, we have all $\{A, B\}$-chains of countable length by compactness. Therefore, there are continuumly many types over \emptyset. \qed

We will discuss superstability of $Th(M)$ in a sequel paper.

REFERENCES