<table>
<thead>
<tr>
<th>Title</th>
<th>Critical points parameters for triply connected Belldomains (Extensions of the historical calculus transforms in the geometric function theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Karima, Mohaby</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2010), 1717: 19-28</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/170330</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Critical points parameters for triply connected Bell domains

Mohaby Karima

Graduate School of Humanities and Sciences,
Nara Women’s University

1 Introduction

The fundamental problem in the geometric function theory is to find a family of canonical domains. Recently, S. Bell proposed a new family of domains which admit canonically a simple proper holomorphic map to the unit disc U. Actually, they are enough.

Theorem 1 ([1]). Every non-degenerate d-ply connected planar domain W with $d > 1$ is mapped biholomorphically (or, conformally) onto a domain $W_{a, b}$, defined by

$$W_{a, b} = \left\{ z \in \mathbb{C} : \left| z + \sum_{k=1}^{d-1} \frac{a_k}{z-b_k} \right| < 1 \right\}$$

with suitable complex vectors

$$a = (a_1, a_2, \cdots, a_{d-1}), \quad b = (b_1, b_2, \cdots, b_{d-1}).$$

This theorem can be considered as a natural generalization of the classical Riemann mapping theorem for simply connected planar domains.

We call such a domain $W_{a, b}$ as in Theorem 1.1 a Bell representation of W. The function $f_{a, b}$ defined by

$$f_{a, b}(z) = z + \sum_{k=1}^{d-1} \frac{a_k}{z-b_k}$$
is a proper holomorphic map from $W_{a,b}$ onto U. Set B_d be the set of all vectors (a, b) in \mathbb{C}^{2d-2} such that $W_{a,b}$ is a Bell representation of d-ply connected planar domains, and we call B_d the coefficient body of degree d. (Cf. [2].)

Now, from a well-known fact on the theory of moduli, we can conclude that d-ply connected non-degenerate planar domains have real $3d - 6$ moduli (or Teichmüller) parameters if $d \geq 3$. First we state this fact more precisely.

Definition 1. Let $d \geq 2$. We call a d-ply connected non-degenerate planar domain W equipped with an order of boundary components of W a boundary-marked planar domain of type d.

Two marked planar domains W_1 and W_2 of type d are conformally equivalent if there is a conformal mapping $f : W_1 \to W_2$ which preserves the boundary-markings.

Let D_d be the set of all equivalence classes of boundary-marked planar domains of type d. We call D_d the deformation space of a boundary-marked planar domain of type d.

Then the following fact is classical.

Proposition 2. If $d \geq 3$, then D_d can be considered as a domain in \mathbb{R}^{3d-6}.

Proof. By Koebe's theorem ([3]), every d-ply connected non-degenerate planar domain can be mapped conformally onto a Koebe circle domain.

On the other hand, it is easy to see that boundary-marked Koebe circle domains have real $3d - 6$ real global parameters up to Möbius transformations. \(\square\)

In the case of triply connected planar domains, there always exists a canonical symmetry for every such one. Moreover, it is believed that the intersection of the coefficient body B_3 with each one of the following families gives an explicit model of D_3. We will discuss about it.

Definition 2. Set

$$B^+ = \{(a, b, d) \in \mathbb{R}^3 \mid a > 0, b > 0, d > 0\},$$

and

$$B^- = \{(a, b, d) \in \mathbb{R}^3 \mid a > 0, b < 0, d < 0\}.$$

We assume that B^\pm are naturally embedded in \mathbb{C}^3. Also in the sequel, we write as

$$W_{a,b,d} = \{z \in \mathbb{C} \mid |f_{a,b,d}(z)| < 1\},$$

where

$$f_{a,b,d}(z) = z + \frac{b}{z - a} + \frac{d}{z + a}.$$
2 Main results

First, we clarify the correspondence of \((a, b, d)\) with the set of critical points and the phase transition of the covering structures of \(f_{a,b,d}\) for the case of \(B^+\).

First note the following

Lemma 3. For every \(f = f_{a,b,d}\) with \((a, b, d) \in B^+\), either

1) \(f\) has for real critical points \(\{r, p, s, t\}\), or
2) \(f\) has two real critical points \(\{r, t\}\) and two others \(\{p + si, p - si\}\). Here we may assume that

1) \(r < p \leq s < t\), or 2) \(r < t, s > 0\), respectively.

For every \(f = f_{a,b,d}\) with \((a, b, d) \in B^-\), \(f\) has two pair of complex conjugates \(\{r + it, r - it\}\) and \(\{p + si, p - si\}\). Here we assume that

\[r \leq p, t > 0, s > 0. \]

In the case of \(B^+\), the phase transition occurs at the locus \(\text{Discr}(F) = 0\), where \(\text{Discr}(F)\) is the constant times

\[bda^2((4a^2 - b - d)^3 - 108bda^2) \]

\[F(z) = (z - a)^2(z + a)^2 - b(z + a)^2 - d(z - a)^2. \]

Here, we include the figures which show the typical manner of the phase transition.
Figure 1: $a = 0.05$, $b = 0.001$, $c = 0.00155$
Figure 2: \(a = 0.05, \ b = 0.001, \ c = 0.00153853756925731479 \)
Figure 3: $a = 0.05$, $b = 0.001$, $c = 0.0015$
Next, recall that $F(z)$ is represented also as

$$F(z) = z^4 + \sigma_1 z^3 + \sigma_2 z^2 + \sigma_3 z + \sigma_4.$$

Clearly, $\sigma_1 = 0$ and the vectors $(\sigma_2, \sigma_3, \sigma_4)$ correspond to the sets $\{r, s, t\}$ bijectively, which is called the relations between solutions and coefficients. Also a direct computation gives

Lemma 4. The Jacobian

$$\frac{\partial(\sigma_2, \sigma_3, \sigma_4)}{\partial(a, b, d)}$$

is

$$-8a^2(4a^2 - b - d).$$

Now, the main theorems are the following

Theorem 5. In the case of B^-, the set of three real parameters

$$(r, s, t)$$

gives the set of global coordinates of B^-. In other words, the map Π^- of B^- to $(r, s, t) \in \mathbb{R}^3$ is a homeomorphism onto the image.

Proof. First, the map

$$\phi : (a, b, d) \mapsto (\sigma_2, \sigma_3, \sigma_4)$$

is locally homeomorphic by Lemma 4 and the assumptions that $b < 0$ and $d < 0$. Also ϕ is injective. Indeed, a^2 is a positive solution of

$$3x^2 + \sigma_2 x - \sigma_4 = 0.$$

And since $\sigma_4 > 0$, it has exactly one positive solution.

Next, we can show by a direct computation that the Jacobian

$$\frac{\partial(\sigma_2, \sigma_3, \sigma_4)}{\partial(r, s, t)} = 4st \left(2(t^2 - s^2)^2 + 16r^2(2r^2 + s^2 + t^2)\right)$$

$$= 8st \left(4r^2 + (s-t)^2\right) \left(4r^2 + (s+t)^2\right),$$

which is non-negative, and equals 0 if and only if $r = 0, s = t$. But these conditions imply that $a = b = d = 0$, and hence can not occur. Thus we conclude that

$$\psi : (r, s, t) \mapsto (\sigma_2, \sigma_3, \sigma_4)$$

is also locally homeomorphism and clearly ψ^{-1} is injective.

Thus we can show that the map Π^- of B^- to $(r, s, t) \in \mathbb{R}^3$ is injective and locally homeomorphic, and hence is a homeomorphism onto the image. \qed
Theorem 6. In the case B^+, the map $\Pi^+: (a, b, d) \mapsto (r, s, t)$ is locally homeomorphic except for the degenerate locus

$$E_1 = \{(a, b, d) \mid 4a^2 - b - d = 0\},$$

The bifurcation locus is

$$E_2 = \{(a, b, d) \mid \text{Discr}(F) = (4a^2 - b - d)^3 - 108bda^2 = 0\}.$$

Proof. The first assertion follows from Lemma 4. And the second assertion is already stated before Lemma 4. \qed

Remark 1. On the subset of B^+ where $s^2 - b - d > 0$, Π^+ is injective.

Finally we include the figures of

$$(4a^2 - b - d)^3 - 108bda^2 = 0,$$

which are symmetric with respect to $\{a = 0\}$ and $\{b = c\}$. The planes in the figures are a-, b-, c-planes.
References

