Numerical Study of Spin-1/2 XXZ Model on Square Lattice from Tensor Product States (New Development of Numerical Simulations in Low-Dimensional Quantum Systems: From Density Matrix Renormalization Group to Tensor Network Formulations)

Author(s): Chen, Pochung; Lai, Chen-Yen; Yang, Min-Fong

Citation: 物性研究 (2011), 95(6): 630-630

Issue Date: 2011-03-05

URL: http://hdl.handle.net/2433/169438

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Numerical Study of Spin-1/2 XXZ Model on Square Lattice from Tensor Product States

Pochung Chen1, Chen-Yen Lai1, and Min-Fong Yang2

1 Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
2 Department of Physics, Tunghai University, Taichung 40704, Taiwan

By means of the recently proposed algorithm \cite{1,2} based on the tensor product states, the magnetization process of the spin-1/2 anti-ferromagnetic XXZ model on a square lattice is investigated \cite{3}. In the large spin-anisotropy limit, clear evidence of a first-order spin-flip transition is observed as an external magnetic field is increased. Our findings of the critical field and the discrete jumps in various local order parameters are in good agreement with the quantum Monte Carlo data in the literature. Our results imply that this algorithm can be an accurate and efficient numerical approach in studying first-order quantum phase transitions in two dimensions.

Recently, this algorithm has been applied with success to several quantum spin systems \cite{1,2,4,5} including even frustrated ones \cite{6}. It shows that this numerical approach can be a useful tool with wide applications.

References

\cite{5} W. Li, S.-S. Gong, Y. Zhao, and G. Su, Phys. Rev. B \textbf{81}, 184427 (2010).