<table>
<thead>
<tr>
<th>Title</th>
<th>β-expansion's Attractors Observed in A/D converters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kohda, Tohru; Horio, Yoshihiko; Aihara, Kazuyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>IUTAM Symposium on 50 Years of Chaos : Applied and Theoretical (2011): 90-91</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/163115</td>
</tr>
<tr>
<td>Type</td>
<td>Book</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
\textbf{\textbeta\text{-expansion}'s Attractors Observed in A/D converters}

Tohru Kohda1, Yoshihiko Horio2, and Kazuyuki Aihara3

1Department of Informatics, Kyushu University, Motooka 744,Nishi-ku,Fukuoka, 819-0395, Japan, kohda@inf.kyushu-u.ac.jp

2Department of Electrical and Electronic Eng., Tokyo Denki University, Tokyo, 101-8457, Japan, horio@eee.dendai.ac.jp

3Institute of Industrial Science, The University of Tokyo, 4-6-1,Komaba Meguro-ku, Tokyo, 153-8505, Japan, aihara@sat.t.u-tokyo.ac.jp

A new class of analog-to-digital (A/D) and digital-to-analog (D/A) converters using a flaky quantiser, called the β-encoder, as shown in Fig. 1 [1, 2, 3] has been shown to have exponential bit rate accuracy while possessing a self-correction property for fluctuations of the amplifier factor β and the quantiser threshold ν. Motivated by the close relationships [4, 5, 6] between β-transformations and β-expansion, we have recently observed [9, 10] that (1) such a flaky quantiser is exactly realized by the "multi-valued Rényi-Parry map", defined here so that probabilistic behavior in the "flaky region" is completely explained using dynamical systems theory; (2) a sample x is always confined to a subinterval of the contracted interval while the successive approximation of x is stably performed using β-expansion even if ν may vary at each iteration (i.e. a small real-valued quantity, approximately proportional to the quantisation error, does not necessarily converge to any fixed value, e.g., 0 but may oscillate without diverging. Such a phenomenon is precisely the kind of "chaos"; (3) such a subinterval enables us to obtain the decoded sample easily, as it is equal to the midpoint of the subinterval and to prove two classic β-expansions, known as the greedy and lazy expansions [7, 8] are perfectly symmetrical in terms of their quantisation errors. The subinterval further suggests that ν should be set to around the midpoint of its associated greedy and lazy values. A switched-capacitor (SC) circuit technique [11, 12] has been proposed for implementing A/D converter circuit based on several types of β-encoders and SPICE simulations have been given to verify the validity of these circuits against deviations and mismatches of circuit parameters. Our review

Figure 1: A typical β-encoder with its input $z_0 = y \in [0,1)$ and output (b_i,β).

Figure 2: The scale-adjusted β-map: $S_{\beta,\nu,s}(x)$ and its eventually onto map in which an attractor can be observed.

Figure 3: The scale-adjusted negative β-map: $R_{\beta,\nu,s}(x)$ and its eventually onto map in which an attractor can be observed.

is twofold. First, the β-encoder leads us to naturally define the "multi-valued Rényi-Parry map" [4, 5] with its eventually onto map, as it is identical to the Parry's (β,α)-map [6]. Second, chaos, called "β-expansion's attractors" can be observed on the onto-map. Two types of β-expansion's attractors are as follows:

1. \textbf{Scale-Adjusted β-Map}[9, 11]: Daubechies et al. [1, 2] introduced a "flaky" version of an imperfect quantiser, defined as

\begin{equation}
Q^{\nu}_{\Delta_\beta}(z) = \begin{cases} 0, & \text{if } z \leq \nu_0, \\ 1, & \text{if } z \geq \nu_1, \\ 0 \text{ or } 1, & \text{if } z \in \Delta_\beta = [\nu_0, \nu_1], \nu_0 < \nu_1, \end{cases}
\end{equation}

which is a ν-varying model of a quantiser $Q_{\nu}(z) = \begin{cases} 0, & \text{if } z \leq \nu, \\ 1, & \text{if } z \geq \nu, \end{cases}$ $\nu \in [\nu_0, \nu_1], \nu_0 < \nu_1$. We obtain:

\textbf{Lemma 1}[9]: Let $S_{\beta,\nu,s}(x)$ be the scale-adjusted map with a scale s, defined by

\begin{equation}
S_{\beta,\nu,s}(x) = \beta x - s(\beta - 1)Q^{\nu}_{\Delta_\beta}(x) = \begin{cases} \beta x, & x \in [0, \gamma \nu), \\ \beta x - s(\beta - 1), & x \in [\gamma \nu, s), \nu \in (s(\beta - 1), s), s > 0 \end{cases}
\end{equation}
which is referred to as the “multi-valued Rényi-Parry map” on the flaky region \(\Delta_\beta = [s(\beta - 1), s] \) and has its eventually onto Parry’s \((\beta, \alpha)\)-map \([6]\) with the subinterval \([\nu - s(\beta - 1), \nu] \) as shown in Fig.2. This map realises the flaky quantiser \(Q_f^{\ell}[s(1 - \gamma), \gamma]() \). Let \(b_i, s, \nu, \gamma, \) be its associated bit sequence for the threshold sequence \(\nu^i = \nu_1\nu_2 \ldots \nu_L \), defined by

\[
b_i, s, \nu, \gamma = Q_{\gamma \nu}(s^{\nu} - 1, s(x)) = \begin{cases} 0, & s^{\nu} - 1, s(x) \in [0, \gamma \nu_i), \\ 1, & s^{\nu} - 1, s(x) \in [\gamma \nu_i, s). \end{cases}
\]

Then we get \(x = s(\beta - 1) \sum_{i=1}^{L} b_i, s, \nu, \gamma \), \(\gamma + \gamma^{L} s^{(\nu \gamma)^{L}}(x) \) and its decoded value \(\hat{x}_L, s, \nu, \gamma \) defined by

\[
\hat{x}_L, s, \nu, \gamma = s(\beta - 1) \sum_{i=1}^{L} b_i, s, \nu, \gamma \), \(\gamma + \gamma^{L} s^{(\nu \gamma)^{L}}(x) \) and its decoded value \(\hat{x}_L, s, \nu, \gamma \) defined by

\[
\hat{x}_L, s, \nu, \gamma = s(\beta - 1) \sum_{i=1}^{L} b_i, s, \nu, \gamma \), \(\gamma + \gamma^{L} s^{(\nu \gamma)^{L}}(x) \) and its decoded value \(\hat{x}_L, s, \nu, \gamma \) defined by

2. Negative \(\beta \)-Map \([10, 12] \) : We get

\[R_{\beta, \nu, \gamma}(x) = -\beta x + s[1 + (\beta - 1) Q_{\nu}(x)] = \begin{cases} s - \beta x, & x \in [0, \gamma \nu), \\ \beta s - \beta x, & x \in [\gamma \nu, s). \end{cases} \]

which is another “multi-valued Rényi-Parry map” on the flaky region \(\Delta_\beta = [s(\beta - 1), s] \) realising \(Q_f^{\ell}[s(1 - \gamma), \gamma]() \) and has its eventually onto Parry’s \((\beta, \alpha)\)-map \([6]\) with the subinterval \([\nu - s, \beta - \nu] \) as shown in Fig. 3. Let \(b_i, R_{\beta, \nu, \gamma}, \) be the associated bit sequence for the threshold sequence \(\nu^i \), defined by

\[
b_i, R_{\beta, \nu, \gamma} = Q_{\gamma \nu}(R_{\beta, \nu}^{\nu} - 1, s(x)) = \begin{cases} 0, & R_{\beta, \nu}^{\nu} - 1, s(x) \in [0, \gamma \nu_i), \\ 1, & R_{\beta, \nu}^{\nu} - 1, s(x) \in [\gamma \nu_i, s). \end{cases}
\]

Then we get \(x = -(\gamma)^{L} s^{(\nu \gamma)^{L}}(x) - s L \sum_{i=1}^{L} f_i, R_{\beta, \nu}, (\gamma)^{L}, \) where \(f_i, R_{\beta, \nu}^{\nu} = 1 + b_i, R_{\beta, \nu}^{\nu}, (\beta - 1) \). Such a negative \(\beta \)-expansion defines a new A/D converter called a negative \(\beta \)-encoder which facilitates the implementation of stable analog circuits. Figures 2 \([11, 12] \) and 3 \([11, 12] \) show a typical \(\beta \)-expansion’s attractor of Eqs. (2) and (4), respectively.

Acknowledgments

This research is supported by the Japan Society for the Promotion of Science (JSPS) through its "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)".

References

