<table>
<thead>
<tr>
<th>Title</th>
<th>Differential roles of hsp70 and hsp90 in the assembly of the replicase complex of a positive-strand RNA plant virus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mine, Akira; Hyodo, Kiwamu; Tajima, Yuri; Kusumanegara, Kusumawaty; Taniguchi, Takako; Kaido, Masanori; Mise, Kazuyuki; Taniguchi, Hisaaki; Okuno, Tetsuro</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of virology (2012), 86(22): 12091-12104</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/162959</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2012, American Society for Microbiology.</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
Differential Roles of Hsp70 and Hsp90 in the Assembly of the Replicase Complex
of a Positive-Strand RNA Plant Virus

Akira Mine, a* Kiwamu Hyodo, a Yuri Tajima, a Kusumawaty Kusumanegara, a Takako Taniguchi, b Masanori Kaido, a Kazuyuki Mise, a Hisaaki Taniguchi, b and Tetsuro Okuno a

Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Saky-ku, Kyoto 606-8502, Japan a; Institute for Enzyme Research, University of Tokushima, Tokushima 770-8503, Japan b

Address correspondence to Tetsuro Okuno, okuno@kais.kyoto-u.ac.jp.

*Present address: Department of Plant Microbe Interactions Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany.

Running Title: Chaperone-Assisted Assembly of Viral Replicase

.
Abstract

Assembly of viral replicase complexes of eukaryotic positive-strand RNA viruses is a regulated process: multiple viral and host components must be assembled on intracellular membranes and ordered into quaternary complexes capable of synthesizing viral RNAs. However, the molecular mechanisms underlying this process are poorly understood. In this study, we used a model virus, Red clover necrotic mosaic virus (RCNMV), whose replicase complex can be detected readily as the 480-kDa functional protein complex. We found that host heat shock proteins Hsp70 and Hsp90 are required for RCNMV RNA replication and that they interact with p27, a viral-encoded component of the 480-kDa replicase complex, on the endoplasmic reticulum membrane. Using a cell-free viral translation/replication system in combination with specific inhibitors of Hsp70 and Hsp90, we found that inhibition of p27-Hsp70 interaction inhibits the formation of 480-kDa complex but instead induces the accumulation of large complexes that is nonfunctional in viral RNA synthesis. In contrast, inhibition of p27-Hsp90 interaction did not induce such large complexes, but rendered p27 incapable of binding to a specific viral RNA element, which is a critical step for the assembly of the 480-kDa replicase complex and viral RNA replication. Together, our results suggest that Hsp70 and Hsp90 regulate different steps in the assembly of the RCNMV replicase complex.
INTRODUCTION

Most plant and animal viruses are positive-strand RNA viruses, which have single-stranded messenger-sense genomic RNAs. These viruses often induce host membrane rearrangements to form organelle-like compartments in which viral genomic RNAs are replicated via negative-strand RNA intermediates by the viral replicase complexes (10). Viral replicase complexes comprise multiple proteins, including viral auxiliary proteins, viral RNA-dependent RNA polymerase (RdRP), and host proteins (61). Viral replicase complexes have been studied extensively by characterizing their RdRP activities and the functions of the viral and host components of the complexes. These studies have provided important information about the mechanisms regulating genome replication (15, 19, 47, 90), viral pathogenicity (68, 69), and virus–host interactions (24, 25, 32, 33). However, an important question remains: how do multiple viral and host components assemble properly into the replicase complex?

Molecular chaperones are essential for cell viability by ensuring folding of newly synthesized proteins, refolding of misfolded or aggregated proteins, protein complex assembly and disassembly, membrane translocation of organellar and secretory proteins, protein degradation, and activities of regulatory proteins in signal transduction pathways (12, 18, 51). In eukaryotic cells, the abundant and highly conserved molecular chaperones heat shock proteins Hsp70 and Hsp90 play central roles in the biological processes mentioned above, and the activities of Hsp70 and Hsp90 are modulated by a variety of co-chaperones (37, 80). Considering their pivotal roles in cells, it is not surprising that Hsp70 and Hsp90 are involved together with their co-chaperones in virus infection (62). For instance, Hsp70 facilitates the assembly and disassembly of viral capsids (7, 26, 46), promotes the subcellular transport of tombusvirus replicase proteins and affects the activity or assembly of tombusvirus replicase complexes (71, 91),
controls potyvirus gene expression in cooperation with its co-chaperone CPIP (17), and
positively and negatively affects the genome replication of various viruses (5, 45, 87,
92). Hsp90 affects the early stages of Bamboo mosaic virus (BaMV) infection by
binding to the genomic RNA (20), increases the synthesis or stability of viral proteins (4,
8), supports the assembly and nuclear import of influenza A virus RNA polymerase
complex (59, 63), and tightly regulates hepatitis C virus replication in cooperation with
FKBP8 and hB-ind1 co-chaperones (67, 79, 89).

Hsp70 and Hsp90 sometimes work together in the activation or maturation of viral
and cellular proteins. For example, Hsp90 together with Hsp70 and a variety of
co-chaperones regulate the actions of steroid receptors and the responses to ligands (16).
It has been reported recently that Hsp70, Hsp90, and their co-chaperones facilitate the
incorporation of small RNAs into Argonaute proteins, which play central roles in
post-transcriptional gene silencing (22, 23, 31, 55). In the case of hepadnavirus reverse
transcriptase, Hsp70 and Hsp40 co-chaperone are essential for the specific binding of
the reverse transcriptase to pre-genomic RNA templates, and Hsp90 facilitates this step
(77, 78). However, the coordinate functions of these molecular chaperones in other
biological processes such as multicomponent complex assembly are poorly understood.

To elucidate the molecular mechanisms of the replication of positive-strand RNA
viruses, we used Red clover necrotic mosaic virus (RCNMV) as a model. RCNMV is a
positive-strand RNA plant virus and a member of the genus Dianthovirus in the family
Tombusviridae. The bipartite genomic RNAs, RNA1 and RNA2, possess neither a cap
structure at the 5′ end (58) nor a poly(A) tail at the 3′ end (48, 96). Instead, RNA1 and
RNA2 use distinct cap/poly(A)-independent mechanisms to produce all viral proteins
(30, 57, 58, 74). RNA1 encodes N-terminally overlapping replicase component proteins,
a 27-kDa auxiliary protein (p27), and an 88-kDa protein with an RdRP motif (p88). p88
is produced via programmed –1 position ribosomal frameshifting (81, 95). RNA1 also
encodes a coat protein (CP), which is translated from CP subgenomic RNA (76, 86). A
small noncoding RNA (SR1f) with a potential function in regulating RCNMV infection
is generated from RNA1. RNA2 encodes a movement protein that is required for viral
movement in plants (34, 36, 94).

We have developed a model to study the assembly processes of viral replicase
complexes by detecting the RCNMV replicase complex as a functional protein complex
with an apparent molecular mass of 480 kDa using blue native polyacrylamide gel
electrophoresis (BN-PAGE) (53). The 480-kDa replicase complexes are tightly
associated with the membrane of the endoplasmic reticulum (ER) and retain the ability
to synthesize complementary RNAs by specifically recognizing RCNMV RNAs (41,
53). The assembly of the 480-kDa replicase complex requires both p27–p27 and
p27–p88 interactions (52). In addition to p27 and p88, the 480-kDa complexes contain
several host proteins, whereas p27 and p88 seem to interact with both the host
components of the 480-kDa complex and many other host proteins including
chaperones, ribosomal proteins and cytoskeletal proteins, which are absent in the
complex (53).

The functions of p27 and p88 in viral RNA replication have been investigated. Both
p27 and p88 interact with RNA1 in a translation-coupled manner (27), and these
interactions are important for the cis-preferential replication of RNA1 (66). p27 but not
p88 binds specifically to the Y-shaped RNA element (YRE) of RNA2 in trans (27), and
this interaction is essential for the recruitment of RNA2 into replication (1, 21). By
contrast, the functions of host proteins in RCNMV RNA replication are currently
unknown.

In this study, we investigated the functions of two host molecular chaperones,
Hsp70 and Hsp90, in RCNMV RNA replication. Gene silencing and pharmacological
inhibition of Hsp70 and Hsp90 revealed that these molecular chaperones are required
for RCNMV RNA replication. A series of in vivo and in vitro protein interaction experiments showed that both Hsp70 and Hsp90 interact with p27 via protein–protein contacts on the ER membrane. Further studies using a cell-free viral translation/replication system showed that when p27-Hsp70 interaction is blocked, p27 form large complexes that are nonfunctional in viral RNA synthesis. In contrast, in the absence of p27-Hsp90 interaction, p27 was unable to bind to a viral RNA element, such as YRE, which is a critical step for the assembly of the 480-kDa replicase complexes. These results provide strong evidence that Hsp70 and Hsp90 have different functions in regulating the assembly of the RCNMV replicase complex.

MATERIALS AND METHODS

Molecular cloning and plasmid construction. pUCR1 (84) and pRC2|G (97) are full-length cDNA clones of RNA1 and RNA2 of RCNMV Australian strain, respectively. pBI_C-CY, pBI_C-NY, pBI_N-NY and pBI_N-CY were kind gifts from Dr. Takashi Araki (Kyoto University, Kyoto, Japan). Constructs described previously that used in this study include pBICp35 (83), pBICp19 (83), pBICB3aGFP (35), pBICRM5sG (36), pBICER:mCherry (34), pBICRC1 (84), pUBRC1 (84), pBICRC2 (84), pUBp35 (80), pUBp88 (81), pBICp27 (84), pBICp88 (84), pBICp27-FLAG (53), pBICp27-HA (51), pUCp27-FLAG (52), pUCp88-T7 (52), pBYL2 (52), pBINTRA6 (73), pTV00 (73), pPVX.NbHsp70c-1 (38) and pBE2113-GUS (54). pET42a and pUC118 were purchased from TAKARA Bio Inc. (Shiga, Japan). Escherichia coli DH5α was used for the construction of all plasmids, except that E. Coli Top10 (Invitrogen, Carlsbad, CA) was used for the construction of pBYLHsp70. All plasmids constructed in this study were verified by sequencing.

(i) pBYLHsp70 and pBYLHsp90. To isolate Tobacco BY-2 Hsp70 and Hsp90 cDNA fragments by reverse transcription-polymerase chain reaction (RT-PCR), we
used two sets of degenerate primers, Hsp70deg-F
(5'-AARAAYCARGTNGCNATGAA-3') plus Hsp70deg-R
(5'-CATNCGYTCDATYTCYTCTTY-3'), and Hsp90deg-F
(5'-AAGGCGCGCCATGGCGGABRCAGAGACGTTT-3') plus Hsp90deg-R
(5'-AAGGCGCGCCTTAGTCAACYTCTCCTCCATCTT-3'), respectively. Both 5'-rapid
amplification of cDNA ends (5'-RACE) and 3'-RACE techniques were carried out to
identify the both ends. Full-length Hsp70 and Hsp90 cDNAs were amplified with
RT-PCR using the primer pair sets, Ascl/Hsp70-F
(5'-AACCCTTGGCGCGCCATGGCAGGAAAAGGTGAAGG-3') plus
Ascl/Hsp70-R (5'-AACCCTTGGCGCGCCAACACCAACAGCTTAGTC-3'), and
Ascl/Hsp90-F (5'-AAGGCGCGCCATGGCGGACACAGACGTTTGC-3') plus
Ascl/Hsp90-R (5'-AAGGCGCGCCTTAGTCAACCTCCTCCATCTTGC3'),
respectively. The amplified DNAs were digested with Ascl and inserted into pBYL2
that had been cut with the same restriction enzyme.

(ii) pTVHsp70. The partial fragment of NbHsp70c-1 was amplified from
pPVX.NbHsp70c-1 (38) using SmaI/70-F
(5'-GGGGGGCCCGGGTAACGAGAAGGTGCAGG-3') and BamHI/70-R
(5'-CGCGGATCCATTGGCGTCGATGTCAAAG-3'). The amplified DNA was
digested with SmaI and BamHI, and inserted into pTV00 that had been cut with the
same restriction enzymes.

(iii) pBICAscII. An Ascl linker (5'-GATCTGGCGCCG-3') was treated with T4
polynucleotide kinase (New England Biolabs, Ipswich, MA), followed by annealing.
The annealed linker was then inserted into pBICp35, which had been digested with
BamHI.

(iv) pBICHsp70. The Hsp70 sequence was amplified from pBYLHsp70 using
BamHI/Hsp70-F
and BamHI-Hsp70-R (5’-ACGGGGATCCTTAGTCGACCCTCAATC-3’), digested with BamHI and inserted into pBICp35 that had been cut with the same restriction enzyme.

(v) pBICHsp90. pBYLHsp90 was cut with AscI. Then, the resulting 2.1 kilobase fragment was ligated with AscI-digested pBICascII.

(vi) pBICHA:cYFP and pBICmyc:nYFP. The sequence of HA-tagged cYFP or myc-tagged nYFP was amplified from pBICp27-HA:cYFP using StuI-HA/cYFP-F (5’-GAGAGGCCTACGGGGATCCAAGGAGATATAACCAATGTACCCATACGATGTTCC-3’) and KpnI-HA/cYFP-R, or from pBICp27-myc:nYFP using StuI-myc/nYFP-F (5’-GGAGAGGCCTACGGGGATCCAAGGAGATATAACAATGGAGCAAGCTGATCAGC-3’) and KpnI-myc/nYFP-R, respectively. The amplified DNA fragments were digested with StuI and KpnI, and inserted into StuI/KpnI-digested pBICp35 to construct pBICHA:cYFP and pBICmyc:nYFP.

(vii) pBICHA:cYFP-Hsp70 and pBICHA:cYFP-Hsp90. The sequence of HA-tagged cYFP was amplified from pBICHA-cYFP using StuI-HA/cYFP-F and StuI-HA/cYFP-R (5’-GTAGGCCTCTTGTACAGCTCGTCCATGCCGAG-3’). The amplified DNA was digested with StuI, and cloned into StuI-digested pBICHsp90 to construct pBICHA-cYFP:Hsp70 and pBIC HA-cYFP:Hsp90.

(viii) pBICmyc:nYFP-Hsp70 and pBICmyc:nYFP-Hsp90. The sequence of myc-tagged nYFP was amplified from pBICmyc-nYFP using StuI-myc/nYFP-F and StuI-myc/nYFP-R (5’-GTAGGCCTGCGCATGATAGACGTTGTGG-3’), respectively. The amplified DNA was digested with StuI, and cloned into StuI-digested pBICHsp70 to construct pBICHA-cYFP:Hsp70 and pBICmyc-nYFP:Hsp70.

(ix) pBICp27-HA:cYFP. The sequence of C-terminal half of YFP was amplified from pBI_C-CY using HA/cYFP-F
(5′-TACCCATACGATGCCCTTACTTGTACAGCTCGTCCATG-3′) and

KpnI-HA/eYFP-R (5′-AGCGGGGTACCTTACTTGTACAGCTCGTCCATG-3′). A

PCR fragment was then amplified from pBICp27 using p27-22R

(5′-AGCAGATGGGAACGTGTAG-3′) and HA/p27-R

(5′-AGCGTAATCTGGAAACATCGTATGGGTAAGATTGA-3′). Then, a recombinant PCR product was amplified from the mixture of these fragments using p27-22R and *KpnI-HA/eYFP-R*, digested with *EcoRI* and *KpnI*, and inserted into the corresponding region of pBICp27.

(x) **pBICp27-myc:nYFP**. The sequence of N-terminal half of YFP was amplified from pBI_C-NY using myc/nYFP-F

(5′-GAGCAGAAGCTGATCAGCGAGGAGGACCTGGCCGGTGGTGGAGGAGCGGC-3′) and *KpnI-myc/nYFP-R*

(5′-AGCGGGGTACCTTACTTGTACAGCTCGTCCATG-3′). A PCR fragment was then amplified from pBICp27 using p27-22R and myc/p27-R

(5′-CAGGTCCTCCTCCTGATCAGCTTCTGCTCAGACGTATAGACGTTG-3′). Then, a recombinant PCR product was amplified from the mixture of these fragments using p27-22R and *KpnI-myc/nYFP-R*, digested with *EcoRI* and *KpnI*, and inserted into the corresponding region of pBICp27.

(xi) **pBICp88-HA:cYFP**. The sequence of C-terminal half of YFP was amplified from pBI_C-CY using HA/eYFP-F and *KpnI-HA/eYFP-R*, and a PCR fragment was amplified from pBICp88 using p88-167R (5′-AGTGCAGCTCTCGTGG-3′) and

HA/p88-R

(5′-AGCGTAATCTGGAAACATCGTATGGGTAAGATTGATTAGATCTTTG-3′). Then, a recombinant PCR product was amplified from the mixture of these fragments using p88-167R and *KpnI-HA/eYFP-R*, digested with *XhoI* and *KpnI*, and inserted into the corresponding region of pBICp88.
(xii) **pBICp88-myc:nYFP.** The sequence of N-terminal half of YFP was amplified from pBI_C-NY using myc:nYFP-F and KpnI-myc/nYFP-R, and a PCR fragment was amplified from pBICp88 using p88-167R and myc/p88-R (5′-CAGGTTCCTCTCGTGATCAGCTTTCTGCTCTCGGGCTTTGATTAGATCTTTG-3′). Then, a recombinant PCR product was amplified from the mixture of these fragments using p88-167R and KpnI-myc/nYFP-R, digested with XhoI and KpnI, and inserted into the corresponding region of pBICp88.

(xiii) **pBICsGFP-Hsp70 and pBICsGFP-Hsp90.** The GFP sequence was amplified from pBICRMsG using StuI-sGFP-F (5′-GGAGAGGAGCCTACGGGGATCCAAGGAGATATAACAATGGTGAGCAAGGGCGAGGAGCTG-3′) and StuI-sGFP-R, digested with StuI and inserted into StuI-digested pBICHsp70 and pBICHsp90 to construct pBICsGFP-Hsp70 and pBICsGFP-Hsp90, respectively.

(xiv) **pBICDRm-p27.** A PCR fragment from pDsRed-monomer-Actin was amplified using Bam/DRm-F (5′-GGGGATCCGGATGGACAACACCGAGGACGTCATC-3′) and p27/DRm-R (5′-ATTTTATAAAACCATGCCCCCCTGGGAGCCGGAGTGGCGG-3′), and a PCR fragment from pUCR1 was amplified using DRm/p27-F (5′-CACTCCGGCTCCAGGGGGGCATGGGTGTTTATAAATCTTT-3′) and Kpn/p27-R (5′-GGGTACCTAAATCCTCAAGGGGATTT-3′). Then, a recombinant PCR product was amplified from the mixture of these two fragments by the use of Bam/DRm-F and Kpn/p27-R, digested with BamHI and KpnI, and inserted into the corresponding region of pBICp35.

(xv) **pBICp27-DRm.** A PCR fragment from pBICp27 was amplified using p27-47R (5′-AGATGACATGGGAAAGG-3′) and DRm-p27-R.
(5′-CCATGCCCAAAATCCTCAAGGGATTTGA-3′), and a PCR fragment from pBICER-DRm (35) was amplified using p27-DRm-F (5′-TTTTGGGGCATGGACAAACCGAGGACGT-3′) and KpnI-DRm-R (5′-CGGGGTACCTACTGGAGCGAGGAGTGGCGGG-3′). Then, a recombinant PCR product was amplified from the mixture of these two fragments by the use of p27-47R and KpnI-DRm-R, digested with EcoRI and KpnI, and inserted into the corresponding region of pBICp27.

(xvi) pUEGFP2. pBE2113-GUS (54) was cut with SacI, treated with T4 DNA polymerase, cut with SmaI, and self-ligated to eliminate GUS gene. The small HindIII/EcoRI fragment of the resultant plasmid was inserted into the HindIII/EcoRI site of pUC118 (Takara Bio), creating pUC2113. A GFP gene was PCR-amplified from pBICB3aGFP (35) using the Xba/5LGFP5’ primer (5′-GGTGGCTCTAGAAAGGAGATATAACAATGAGTAAAGGAGAAGAACT-3′) and the Bam/GFP3’ primer (5′-GGGGGGATCCTTATTTGTATAGTTCATCC-3′). The amplified fragment was cut with XbaI and BamHI and inserted into the XbaI/BamHI site of pUC2113, creating pUEGFP2.

(xvii) pUBp27-HA. A PCR fragment was amplified from pBICp27-HA using BamHI-p27-F (5′-GGAGAGGCCTACTCTAGAGGATCCGGATGGGTTTTATAATCTT-3′) and KpnI-p27-HA-R (5′-TTCAAGCGGGGTACCTACTTGGAACATCGATGGGTA-3′), digested with BamHI and KpnI, and inserted into corresponding region of pUBP35.

(xviii) pUBp88-HA. The sequence of p88 was amplified from pUBp88 using p88-XhoI-F (5′-CCTGTCGATGTACTCGAGAAGGTGGCGTTT-3′) and p88-H4-R (5′- TTAAGCGTAATCTGGAAACATCGATGGGTTGATTTGATTA-3′). And a PCR fragment from pUBp88 was amplified using p88-HA-F.
(5’-TACCATACGATGTTCCAGATTACGCTTAAGGTACCCCGCTGAA -3’) and M13-rev (5’-CAGGAAACAGCTATGACCATG-3’). Then, a recombinant PCR product was amplified from the mixture of these fragments using p88-XhoI-F and M13-rev, digested with XhoI and KpnI, and inserted into the corresponding region of pUBp88.

In vitro transcription. The plasmids with the prefixes ‘pUC’ or ‘pRC’ were digested with SmaI. The linearized plasmids were used as templates for in vitro transcription by T7 RNA polymerase as described previously (58). If required, capped transcripts were prepared using the ScriptCap m7G capping system according to the manufacturer’s instruction (Epicentre Biotechnologies, Madison, WI).

Inhibitor treatments. 2-phenylethynesulfonamide (PES), Methanesulfonamide (MS), geldanamycin (GDA) and MG132 were purchased from EMD Biochemicals, Inc. (Gibbstown, NJ), Wako (Osaka, Japan), Sigma-Aldrich (St. Louis, MO), and Merck (Darmstadt, Germany), respectively. The inhibitors were diluted from stock solutions in dimethyl sulfoxide (DMSO) (Sigma-Aldrich). For the control experiments, an equivalent concentration of DMSO was applied.

Protoplast experiments. Protoplasts were prepared from tobacco BY-2 suspension cultured cell as described previously (84). BY-2 protoplasts (~3 x 10^5) were inoculated with in vitro-transcribed RNA1 and RNA2 (1 µg each), or with RCNMV virion (2 µg), or with pUBRC1 and pUBRC2 (5 µg each), or with pUBp27-HA, pUBp88-HA, and in vitro-transcribed RNA2 (10 µg, 5 µg, and 500 ng, respectively) as described previously (21). The inoculated protoplasts were incubated at 17 °C for 16 h in the presence of PES, MS, or GDA. Viral RNAs were detected by northern blotting.

Agrobacterium infiltration. The plasmids containing the prefixes ‘pBIC’ and ‘pTV’ were introduced by electroporation into Agrobacterium tumefaciens GV3101 (pMP90) and A. tumefaciens GV3101 (pSoup), respectively. Agrobacterium suspensions were mixed at a final OD₆₀₀ of 0.2 each for Bimolecular fluorescence
complementation (BiFC) experiments, OD$_{600}$ of 0.4 each for subcellular localization assays, and OD$_{600}$ of 0.5 for gene silencing. *Agrobacterium* suspensions harboring an empty vector, pBICp35, were used as the filler. The mixtures were infiltrated into *N. benthamiana* leaves essentially as described by Takeda *et al.* (84).

Silencing of Hsp70 and Hsp90 in N. benthamiana plants. Appropriate combinations of silencing vectors were expressed by *Agrobacterium* infiltration in 3- to 4-weeks-old *N. benthamiana* plants as described previously (73). At 10 days post agroinfiltration (dai), the leaves above the agroinfiltrated leaves were inoculated with *in vitro* transcribed RNA1 and RNA2. The inoculated plants were incubated at 22 °C for 2 days. Total RNAs were extracted using TRIzol reagent (Invitrogen), treated with RQ1 RNase-free DNase (Promega, Madison, WI), purified by phenol/chloroform and chloroform extractions and precipitated with ethanol. Viral RNAs were detected by northern blotting. The mRNA levels of *NbHsp70c-1* (6, 38) were examined by semiquantitative RT-PCR using Nb70c-F (5′-CTAGAATCCCCAGGTGCAACAGC-3′) and Nb70c-R (5′-CTTCTCATCTTTCACTGTTTCCTC-3′). The mRNA levels of *NbHsp90* were examined as described previously (85). As a control to show the equal amounts of complementary DNA templates in each reaction, ribulose 1,5-biphosphate carboxylase small subunit gene (*RbcS*), a constitutively expressed gene, was amplified by RT-PCR using NbRbcS-F (5′-CCTCTGCAGTTGCCACC-3′) and NbRbcS-R (5′-CCTGTGGGTATGCCTTCTTC-3′).

BiFC and subcellular localization assays. Appropriate combinations of Yellow fluorescent protein (YFP) fragments-fused proteins or fluorescent protein-fused proteins were expressed in *N. benthamiana* leaves by *Agrobacterium* infiltration. Fluorescence of, YFP, green fluorescent protein (GFP), DsRed monomer (DRm), and mCherry were visualized with confocal microscopy at 3 days post infiltration (dpi) for subcellular
localization assay and at 4 dpi for BiFC. Protein expression was confirmed by western blotting. Accumulations of viral RNAs were analyzed by northern blotting.

Confocal microscopy. The fluorescence signals of GFP, YFP, DRm, and mCherry were observed using an Olympus FluoView FV500 confocal microscope (Olympus Optical Co., Tokyo, Japan) equipped with an argon laser, a He:Ne laser, and a 40× Plan Apo oil immersion objective lens. The samples were excited with the argon laser for GFP/YFP, and with the He:Ne laser for DsRed-monomer/mCherry. We used a dichroic mirror, DM488/543, a beam splitter, SDM560, and two emission filters, BA505-525 for GFP/YFP, and BA560IF for DsRed-monomer/mCherry. Scanning was performed in sequential mode to minimize signal bleed-through. Images were processed using Adobe Photoshop CS3 software.

Glutathione S-transferase (GST) pull-down assays. E. coli Rosetta 2 (DE3) (Invitrogen) transformed by pET42a, pET42a-Hsp70 or pET42a-Hsp90 was grown overnight at 37 °C in LB medium containing kanamycin (100 µg/ml). The overnight cultures of the transformed E. coli were diluted to 1:50 in LB medium containing kanamycin (100 µg/ml). After incubation for 2h at 37 °C, protein expression was induced by the addition of 0.3 mM isopropyl-β-D-thiogalactopyranoside. The cells expressing GST, GST-Hsp70 or GSR-Hsp90 were cultured at 28 °C for 1 h, 4h or 4h, respectively. The induced cells were harvested by centrifugation at 5,000×g for 5 min.

Cells collected from 5 ml (pET-42a) and 10 ml (pET42a-Hsp70 and pET42a-Hsp90) of medium were resuspended in 500 µl of phosphate buffer saline (140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 1.8 mM KH2PO4), and sonicated on ice to disrupt the cells. After sonication, Triton-X 100 was added at the final concentration of 0.5% and centrifuged at 15,000×g for 10 min at 4°C. The supernatant was added to 12.5 µl bed volume of equilibrated Glutathione Sepharose 4B (GE Healthcare, Little Chalfont, Buckinghamshire, UK), and incubated at 4°C for 1 h with gentle rotation. The resin was
washed three times with 1 ml of binding buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 10 mM 2-mercaptoethanol, and 0.5% Triton X-100). After washing, the resin was incubated for 2 h at 4°C in 200 μl of binding buffer containing 500 ng of the purified His-p27-FLAG (52). After incubation, the resin was washed three times with 500 μl of binding buffer. The bound proteins were eluted by addition of Laemmli sample buffer (42), followed by incubation for 3 min at 95°C. Protein samples were subjected to SDS–PAGE and then blotted onto a PVDF membrane. The separated proteins were analyzed by western blotting, and stained with Ponceau S.

Cell-free in vitro translation and replication experiments. The cell extracts of evacuolated BY-2 protoplasts (BYL) were prepared and the in vitro translation/replication reactions were performed essentially as described previously (28, 40, 52, 53). BN–PAGE analysis was performed as described previously (53), except that the total protein samples solubilized with 0.5% Triton X-100 were subjected to BN-PAGE. StreptoTag affinity purification was performed essentially as described previously (27). Immunopurification of p27-FLAG is described below.

Immunopurification of p27-FLAG. p27-FLAG was expressed in BYL by adding an in vitro transcript to a concentration of 20 nM. After 2 h of incubation, BYL expressing p27-FLAG was incubated on ice for 30 min with 500 μM of PES, MS or GDA. At this time, ADPβS or ATPγS, which stabilizes the binding of Hsp70 or Hsp90 to substrate proteins, respectively, was also added to concentrations of 2 mM. Then, 10 μl bed volume of ANTI-FLAG M2-Agarose Affinity Gel (Sigma-Aldrich) was added to the BYL and further incubated for 90 min with occasional mixing. The resin was washed three times with 200 μl of TR buffer (40) supplemented with 500 mM NaCl and 0.1% Triton-X-100 for the analysis of p27–Hsp70 interaction, or with TR buffer supplemented with 0.1% Triton X-100 for the analysis of p27–Hsp90 interaction. The bound proteins were eluted by addition of Laemmli sample buffer, followed by
incubation for 3 min at 95°C. Protein samples were subjected to SDS-PAGE, followed by western blotting with appropriate antibodies.

Northern blot analysis. Northern blot analysis was performed essentially as previously described (28). The digoxigenin-labelled RNA probes specific for the 3’ untranslated regions (UTRs) of RCNMV RNA1 and RNA2, and the full-length negative-strand RNA1 and RNA2 were described previously (56, 57). The RNA signals were detected with a luminescent-image analyzer (LAS-1000 plus; Fuji Photo Film, Japan), and the signal intensities were quantified using the NIH Image program.

Western blot analysis. Western blot analysis was performed essentially as described previously (53). Protein samples were subjected to SDS-PAGE or BN-PAGE and transferred to polyvinylidene difluoride (PVDF) membranes (Immobilon-P, Millipore, Bedford, MA). Anti-p27 rabbit polyclonal antibody (84), anti-NtHsp90 rabbit polyclonal antibody (82), anti-Hsp70/Hsc70 mouse monoclonal antibody (Stressgen, Victoria, BC, Canada), anti-c-myc mouse polyclonal antibody (Santa Cruz Biotechnology Inc., Santa Cruz, CA), anti-HA rat monoclonal antibody (Roche Diagnostics, Penzberg, Germany), and anti-FLAG M2 mouse monoclonal antibody (Sigma-Aldrich) were used as the primary antibodies. Alkaline phosphatase (AP)-conjugated anti-rabbit IgG antibody (Cell Signaling Technology, Beverley, MA), AP-conjugated anti-mouse IgG antibody (KPL, Gaithersburg, MD), AP-conjugated anti-rat IgG antibody (Santa Cruz Biotechnology Inc.), horseradish peroxidase (HRP)-conjugated anti-rabbit IgG antibody (Cell Signaling Technology), and HRP-conjugated anti-mouse IgG antibody (KPL) were used as the secondary antibodies. To detect p88-T7, AP-conjugated anti-T7 monoclonal antibody (Merck) was used. Signals were detected using a luminescent-image analyzer (LAS-1000 plus), and the signal intensities were quantified using the NIH Image program.

Accession numbers. The GenBank accession numbers for the *Nicotiana tabacum*
Hsp70 and Hsp90 cDNA sequences reported in this paper are AB689673 and AB689674, respectively.
RESULTS

Hsp70 and Hsp90 are host factors required for RCNMV RNA replication. In a previous study, we identified many host proteins that were co-purified with RCNMV replicase complexes from virus-infected Nicotiana benthamiana tissues. These included Hsp70- and Hsp90-related proteins (53). This led us to investigate whether Hsp70 and Hsp90 are involved in RCNMV infection. We applied Tobacco rattle virus (TRV)-based gene silencing to downregulate cytosolic Hsp70 and Hsp90 in N. benthamiana plants. The TRV vectors harboring the partial fragment of Hsp70 (TRV:Hsp70) (38) or Hsp90 (TRV:Hsp90) (85) were expressed by Agrobacterium-mediated expression. As a control, the empty TRV vector (TRV:00) (73) was expressed. The newly developed leaves were inoculated with in vitro transcribed RCNMV RNA1 and RNA2 at 10dai. Note that any morphological defects such as chlorotic and stunted phenotypes were not observed at this stage (Fig.1A), although such phenotypes became visible after 16 dpi (data not shown). Total RNA was extracted from the inoculated leaves two days after inoculation (at 12 dpi). Semiquantitative RT-PCR analysis confirmed the specific reduction of Hsp70 and Hsp90 mRNAs in plants infiltrated with TRV:Hsp70 and TRV:Hsp90, respectively (Fig. 1A and B, lower panels). Importantly, the accumulation of RCNMV RNAs was impaired in Hsp70- and Hsp90-silenced plants as assessed by northern blotting (Fig. 1A and B, upper panels). These results suggest that Hsp70 and Hsp90 play positive roles during RCNMV infection.

To test whether Hsp70 and Hsp90 function in RCNMV RNA replication in a single cell, we treated tobacco BY-2 protoplasts with specific inhibitors of Hsp70 or Hsp90, PES or GDA, respectively. These inhibitors have been used successfully to analyze the functions of Hsp70 and Hsp90 in plant and animal systems (22, 23, 31, 43, 44, 82). MS, an analogue of PES, was used as a negative control for PES. Protoplasts inoculated with
in vitro transcribed RNA1 and RNA2 were incubated in the presence of various amounts of the inhibitors. Northern blot analysis showed that PES had an inhibitory effect on the accumulation of RCNMV RNAs; 40 µM of PES inhibited viral RNA accumulation by about 95%, but MS had no effect (Fig. 2A and B). GDA had little effect on the accumulation of RCNMV RNAs (data not shown). However, GDA inhibited viral RNA accumulation when protoplasts were inoculated with the plasmids that transcribe RCNMV RNAs under the control of Cauliflower mosaic virus 35S promoter: 50 µM of GDA inhibited the accumulation of RCNMV RNAs by about 70% (Fig. 2C and D). Importantly, GDA did not reduce the accumulation of GFP mRNAs (Fig. 2C), indicating that the reduction of viral RNA accumulations was not caused by the inhibitory effect of GDA on CaMV 35S promoter-driven transcription under the assay condition. The inhibitory effect of GDA on viral RNA accumulations was also observed in protoplasts inoculated with RCNMV virionS (Fig. 2E and F). Overall, these data suggest that both Hsp70 and Hsp90 are required for RCNMV RNA replication in a single cell.

Hsp70 and Hsp90 interact with p27 within the virus-induced aggregated structures of the ER in the context of viral RNA replication. Because Hsp70 and Hsp90 are well-known protein chaperones, these chaperones might bind directly or indirectly to p27 or p88 or both. To characterize these interactions in living cells, we used a BiFC assay. We isolated cDNAs encoding Hsp70 and Hsp90 were isolated from tobacco BY-2 cultured cells as described in Materials and Methods. We first tested whether p27 interacts with Hsp70 and Hsp90. p27 fused to the N- or C-terminal half of YFP at the C-terminus was expressed together with Hsp70 or Hsp90 fused to the other halves of YFP at the N-terminus (e.g., p27-nYFP plus cYFP-Hsp70 or cYFP-Hsp90, p27-cYFP plus nYFP-Hsp70 or nYFP-Hsp90) in the presence of p88, RNA2, mCherry containing an ER targeting signal (ER-mCherry) (34), and the silencing suppressor p19.
of *Tomato bushy stunt virus* (TBSV) in *N. benthamiana* by *Agrobacterium* infiltration. At 4dai, large aggregated fluorescent structures of YFP were detected (Fig. 3A and B, left panels). This YFP fluorescence was merged with the large aggregated fluorescent structures of ER-mCherry (Fig. 3A and B, middle and right panels), a characteristic feature of morphological changes of ER induced by RCNMV infection (88) (Kusumawanegara et al., in press). Little or no YFP fluorescence was detected in control experiments, in which YFP fragments, p27, Hsp70, or Hsp90 were expressed separately instead of their fusion protein counterparts (Fig. 3C and D). Western blot analysis confirmed the accumulation of YFP fragment-fused proteins in *Agrobacterium*-infiltrated leaves (Fig. 3E and F). Northern blot analysis showed that p27-cYFP but not p27-nYFP supported the accumulation of positive- and negative-strand RNA2 (Fig. 3E and F), indicating that p27-cYFP participated in the replication of RNA2 under the assay conditions. Together, these results suggest that p27 interacts with Hsp70 and Hsp90 in planta in the absence and presence of viral RNA replication.

We also used BiFC to test whether p88 interacts with Hsp70 and Hsp90, but we failed to observe these interactions. Appropriate expression of C-terminally YFP fragment-fused p88 in combination with the other YFP fragment-fused Hsp70 or Hsp90 showed no or little YFP fluorescence (data not shown). We note that both p88 derivatives were functional in supporting the replication of RNA2, although C-terminally cYFP-fused p88 did not accumulate to detectable levels (data not shown). Thus, it appears that the interactions of p88 with Hsp70 and Hsp90 do not occur, or, if they occur, the interactions are too weak to be detected by BiFC.

Because the reconstitution of YFP is irreversible (49), the above BiFC experiments did not rule out the possibility that the reconstitution of YFP occurred only in the cytoplasm, and that the YFP signals detected in the aggregated ER structures reflected
artificial tethering of Hsp70 and Hsp90 to p27 localized to the ER. To check whether
Hsp70 and Hsp90 co-localize with p27 without the artificial tethering, we first
examined the subcellular localization of Hsp70 and Hsp90 in the absence of RCNMV
infection by expressing GFP-fused Hsp70 (GFP-Hsp70) or Hsp90 (GFP-Hsp90)
together with ER-mCherry in N. benthamiana. At 3 dai, fluorescence of GFP-Hsp70 and
GFP-Hsp90 was observed in the nucleus and cytoplasm (Fig. 4A and C, left panels).
Fluorescence of ER-mCherry showed an ER distribution that included the nuclear
envelope (Fig. 4A and C, middle panels). The fluorescence of GFP-Hsp70 and
GFP-Hsp90 was merged only partially with the fluorescence of ER-mCherry (Fig. 4A
and C, right panels), indicating that Hsp70 and Hsp90 hardly localized to the ER in the
absence of RCNMV infection. However, when co-expressed with C-terminally
DRm-fused p27 (p27-DRm), p88, and RNA2, the large aggregated fluorescence of
GFP-Hsp70 and GFP-Hsp90 was detected in addition to the cytoplasmic and nuclear
fluorescence (Fig. 4B and D, left panels), and it merged with the fluorescent aggregates
of p27-DRm (Fig. 4B and D, middle and right panels). These results show that
GFP-Hsp70 and GFP-Hsp90 co-localized with p27-DRm in the large aggregated
structures of the ER. We note that the p27-DRm was functional in supporting the
replication of RNA2 (data not shown). Together, these data suggest that Hsp70 and
Hsp90 are recruited by p27 to the large aggregate structures of the ER in the context of
viral RNA replication.

We used an in vitro GST pull-down assay to characterize further the interactions of
p27 with Hsp70 and Hsp90. We purified p27 with an N-terminal His-tag and a
C-terminal FLAG-tag (His-p27-FLAG), as described previously (52). N-terminally
GST-fused Hsp70 (GST-Hsp70) or Hsp90 (GST-Hsp90) captured on glutathione-bound
beads was incubated with purified His-p27-FLAG. After extensive washing, the bound
proteins were analyzed by western blotting with an anti-FLAG antibody.
His-p27-FLAG was pulled down by both GST-Hsp70 and GST-Hsp90, but not by GST alone, which was used as a negative control (Fig. 5A). Thus, like other substrate proteins, Hsp70 and Hsp90 bind to p27 via protein–protein contacts.

Hsp70 and Hsp90 promote the assembly of the 480-kDa replicase complex of RCNMV by binding to p27. Because PES and GDA block interactions of Hsp70 and Hsp90 with their client proteins, respectively (23, 31, 43, 44), we hypothesized that these chemicals inhibit RCNMV RNA replication by blocking the interactions of Hsp70 and Hsp90 with p27. To test this, we used BYL, an in vitro translation/replication system (40). BYL has been used successfully to recapitulate the RNA replication processes of RCNMV (1, 21, 27-29, 52, 53, 57, 74, 81). We first tested the effects of PES and GDA on the interactions of p27 with Hsp70 and Hsp90, respectively. BYL expressing C-terminally FLAG-tagged p27 (p27-FLAG), which is functional in RCNMV RNA replication (53), was subjected to immunopurification with anti-FLAG antibodies in the presence of inhibitors. Western blot analysis showed that PES and GDA blocked the co-purification of endogenous Hsp70 and Hsp90 with p27-FLAG, respectively (Fig. 5B and C). These results confirmed the inhibitory effects of PES and GDA on the interactions of p27 with Hsp70 and Hsp90, respectively.

Next, we tested the effects of PES and GDA on the negative-strand RNA synthesis of RCNMV RNAs. Both chemicals inhibited the accumulation of p27 and negative-strand RNAs in BYL (Fig. 6), suggesting that Hsp70 and Hsp90 are required for the translation/accumulation of p27 protein as well as the negative-strand RNA synthesis. We then designed an assay using BYL to investigate the roles of Hsp70 and Hsp90 in RCNMV RNA replication other than in protein translation and folding (Fig. 7A). This assay is based on the replication mechanism of RNA2 that exploits p27 and p88 supplied in trans in contrast to the translation-coupled replication of RNA1 (27, 66). This assay enabled us to monitor the assembly of the 480-kDa replicase complex and
the subsequent negative-strand synthesis of RNA2 after the completion of translation and folding of p27 and p88 proteins. In this assay, p27-FLAG and C-terminally T7-tagged p88 (p88-T7) were translated individually in BYL. These BYL were mixed together following the addition of the protein synthesis inhibitor cycloheximide. RNA2 was then added with PES or GDA to the mixed BYL, followed by further incubation. Northern blot analysis showed dose-dependent inhibition of the negative-strand RNA2 synthesis by PES and GDA (Fig. 7B, E and F). Western blot analysis on the protein complexes separated by BN-PAGE revealed that PES and GDA inhibited the formation of the 480-kDa replicase complex in a dose-dependent manner (Fig. 7B-D). Interestingly, PES but not GDA increased the accumulation of large complexes (~1024 kDa) (Fig. 7B-D). MS had no effects on the accumulation of the 480-kDa complexes and negative-strand RNA2 (Fig. 7B). PES affected the stability of p88-T7 (Fig. 7B-C). However, this reduction in p88-T7 was not the major reason for the inhibitory effect of PES on the negative-strand synthesis of RNA2 because more negative-strand RNA2 accumulated in the presence of MS than in the presence of PES even when the amount of p88-T7 in MS-treated BYL was adjusted to be similar to or even less than that of PES-treated BYL (Fig. 7G). Taken together, these results suggest that Hsp70 and Hsp90 facilitate the assembly of RCNMV replicase complex likely through interactions with p27 and thereby promote subsequent negative-strand RNA synthesis.

Hsp90 regulates the assembly of the 480-kDa replicase complex by promoting the specific binding of p27 to YRE. We have shown previously that the addition of RNA2 increases the accumulation of the 480-kDa complexes in BYL (53) and that mutations in p27 that compromise the binding activity of p27 to YRE of RNA2 affect the assembly of the 480-kDa complexes in BYL (21). An aptamer-based pull-down assay using p27 produced in BYL showed the interaction between p27 and YRE, whereas no such interaction was observed using purified recombinant p27 produced in
Escherichia coli in an electrophoretic mobility shift assay (27), suggesting that an unknown plant factor(s) is required for the binding of p27 to YRE. These findings led us to hypothesize that the interaction between p27 and YRE is a key step in the assembly of the 480-kDa replicase complex on RNA2 and that this step is regulated by Hsp70 and/or Hsp90.

To test this hypothesis, we first used an RNA2 mutant (RNA2 LM8) that is unable to interact with p27 (27) to evaluate its ability to support the assembly of the 480-kDa complex. After addition of cycloheximide, BYL expressing p27-FLAG was mixed with BYL expressing p88-T7, as illustrated in Fig. 7A. Wild-type RNA2 or RNA2 LM8 was then added to the mixed BYL, followed by further incubation. Northern blot analysis confirmed the requirement of p27-YRE interaction for the negative-strand synthesis of RNA2 (Fig. 8A) (1, 21, 27). Western blot analysis in combination with BN-PAGE showed that the accumulation of the 480-kDa complex was increased by the addition of wild-type RNA2, whereas little increase in the accumulation of the 480-kDa complex was observed when RNA2 LM8 was added (Fig. 8A). These results indicate that the binding of p27 to YRE is one of the key steps for the assembly of the 480-kDa replicase complex.

We next used a pull-down assay based on the high affinity of an RNA aptamer termed ‘STagT’ with streptomycin to test the effects of PES and GDA on the interaction between p27 and YRE (2, 9). This RNA-based pull-down assay in combination with the membrane-depleted BYL (BYLS20), which can support negative-strand synthesis of RCNMV RNAs, was used to analyze the interaction between p27 and YRE (21, 27). STagT-fused YRE was incubated with BYLS20 expressing p27-FLAG in the presence of the inhibitors. The p27-FLAG proteins interacting with STagT-fused YRE were pulled down by streptomycin-conjugated beads. Similar amounts of bait RNAs were purified and indicated by ethidium bromide staining. Interestingly, western blotting with
anti-FLAG antibodies showed that GDA but not PES inhibited the co-purification of p27-FLAG with STagT-fused YRE (Fig. 8B). These results suggest that the interaction of p27 with Hsp90, but not with Hsp70, is critical for the interaction between p27 and YRE of RNA2, which then promotes the formation of the 480-kDa replicase complex. These results also illustrate the differential contributions of Hsp70 and Hsp90 in the assembly of the 480-kDa replicase complex.

DISCUSSION

In this study, we showed that Hsp70 and Hsp90 play critical roles in different steps of the assembly of the RCNMV replicase complex likely through interactions with p27. Inhibition of the p27–Hsp70 interaction resulted in the assembly of p27 into large complexes that were nonfunctional in viral RNA synthesis. By contrast, inhibition of p27–Hsp90 interaction lost the ability of p27 to bind to viral genomic RNA2, which is critical for the assembly of the 480-kDa replicase complex. These findings reveal the regulatory mechanism for the assembly of viral replicase complexes and suggest the potential roles of Hsp70 and Hsp90 in controlling the assembly of ribonucleoprotein complexes.

Hsp70 regulates the correct assembly of the RCNMV replicase complex. Hsp70 interacts with viral replicase proteins of various eukaryotic positive-strand RNA viruses (5, 11, 64, 91). For example, Pogany *et al.* (71) successfully reconstituted the RdRP activities of TBSV replicase complexes using viral replicase proteins, p33 and p92, produced in *E. coli* with the membrane fractions of yeast extracts and purified yeast Hsp70. They suggested that Hsp70 plays an integral role in the early replication process of TBSV, including the assembly of TBSV replicase complexes.

In the present study, we analyzed the assembled RCNMV replicase complex itself and found that inhibition of p27–Hsp70 interaction by PES causes the formation of
large aggregates containing p27 and reduces accumulation of the 480-kDa replicase complex, which in turn impairs viral RNA synthesis (Fig. 7). These data lead us to propose that one of the major roles of Hsp70 in viral RNA replication is to control the proper assembly of viral replicase complexes.

How does Hsp70 regulate the assembly of the RCNMV replicase complex? Based on the accumulation of nonfunctional large complexes upon the inhibition of p27–Hsp70 interaction, it is possible that the Hsp70 prevents the aggregation of p27 protein and thereby facilitate the assembly of the RCNMV replicase complex. In fact, it has been reported that Hsp70 family proteins promote the assembly of cellular multiprotein complexes such as immunoglobulin G antibody and synaptic SNARE complex by preventing aggregations of their component proteins (13, 75). Alternatively, the large complexes could be intermediates for the assembly of the RCNMV replicase complex and Hsp70 might assist the assembly process from these complexes to functional replicase complexes. Such functions are reported for the chaperones dedicated to the assembly of proteasome (60). Further studies are needed to gain mechanistic insights into how Hsp70 regulates the assembly of RCNMV replicase complex.

Hsp90 regulates the key interaction between p27 and YRE, which is required for the assembly of the RCNMV replicase complex. Gene silencing in plants and pharmacological inhibition in protoplasts showed that Hsp70 and Hsp90 are host factors required for RCNMV replication (Figs. 1 and 2). Interestingly, however, an inhibitory effect of GDA in protoplast experiments was observed when RCNMV RNAs were supplied from plasmids or virions but not when in vitro synthesized RCNMV RNAs were directly introduced (Fig. 2C-F and data not shown). These results suggest that Hsp90 is required for plasmid or virion-dependent processes such as efficient transcription and virion uncoating. An alternative, but not mutually exclusive
interpretation is that Hsp90 plays a role in a very early step in the RCNMV replication process because time required for transcription from plasmids or virion uncoating must delay the initiation of viral RNA replication. The latter interpretation was supported by the finding that GDA inhibits two distinct steps in the early replication process of RCNMV in vitro (Figs. 6-8). The first step is the accumulation of p27 protein (Fig. 5).

Inhibitory effect of GDA on p27 accumulation as well as viral RNA accumulation was also observed when BY-2 protoplasts were inoculated with plasmids that express hemagglutinin (HA)-tagged p27 and p88 together with RNA2 (data not shown). The roles of Hsp90 in the accumulation of RCNMV replicase proteins are discussed later.

The second step is the binding of p27 to YRE of RNA2, which is a critical step in the assembly of the 480-kDa replicase complex (Fig. 8). A similar mode of assembly was proposed for TBSV replicase complexes: p33 auxiliary protein interacts with the internal replication element (IRE) located in the coding region of p92 RdRP (72), and this interaction is required for the RdRP activities of the TBSV replicase complexes in yeast and its cell-free extracts (70-72). However, unlike p27, p33 can bind to the IRE without other viral and host proteins (72). Thus, it appears that these two related viruses have evolved different strategies for the interactions of viral replicase proteins with replication templates and subsequent assembly of the viral replicase complexes.

Recently, Huang et al., (20) showed that Hsp90 of N. benthamiana binds to the 3'UTR of BaMV genomic RNA and is required for the efficient accumulation of the genomic RNA during the early stages of infection. This finding suggests a potential function of Hsp90 in regulating viral RNA replication through interaction with viral RNAs. However, it is unlikely that Hsp90 promotes the assembly of 480-kDa replicase complex by binding to RCNMV RNA2, because we failed to detect any interactions between Hsp90 and RNA2 in BYL based on StagT-aptamer pull-down assays (data not shown). It is still possible that Hsp90 binds to RNA1 as well as p27 and/or p88, which
may facilitate translation and subsequent assembly of the replicase complex. Interestingly, Lsm1-7 complex, which is involved in mRNA degradation in Processing Bodies, is required for translation and replication of *Brome mosaic virus* (BMV) genomic RNAs in yeast (3, 50, 65). Lsm1-7 complex binds directly to tRNA-like structures and the intergenic region of BMV RNA3 (14).

Roles of Hsp70 and Hsp90 in the translation/stability of RCNMV replicase proteins. PES and GDA decreased the accumulation of p27 in BYL when the inhibitors were present throughout the experiments (Fig. 6). However, the deleterious effects were not observed when these inhibitors were added after the addition of cycloheximide (Fig. 7B to D), suggesting that Hsp70 and Hsp90 are dispensable for the stability of p27 after translation. It is likely that Hsp70 and Hsp90 promote the synthesis of p27 as seen for the synthesis of flock house virus protein A (4, 92). Alternatively, it is possible that the translating p27 is protected from degradation by a ribosome-associated chaperone system, in which Hsp70 is thought to interact directly with nascent polypeptides emerging from ribosomes (37, 93). Co-translational binding of Hsp70 and/or Hsp90 might facilitate the subsequent function of these chaperones during the assembly of the RCNMV replicase complex.

By contrast, PES decreased the stability of p88 in BYL (Fig. 7B and D). The proteasome inhibitor MG132 did not restore the stability of p88 (data not shown), suggesting that Hsp70 might protect p88 from proteasome-independent degradation. However, it is also possible that the effect of PES on the stability of p88 is an artifact of the *in vitro* condition, in which p88 tends to form aggregates because of its overexpression (53). This situation never occurs during the actual infection process of RCNMV because p88 is translated by a programmed −1 ribosomal frameshifting at a quite low frequency (39, 81) and because the translation and accumulation of p88 are tightly coupled to viral RNA replication (27, 53, 66).
In conclusion, this study has demonstrated the multiple roles of Hsp70 and Hsp90 in the early replication process of RCNMV. These chaperones promote the translation of p27 and interact directly with p27. These interactions lead to the recruitment of Hsp70, Hsp90, and RNA2 to the ER membrane (Figs. 3, 4 and 8) (21, 27), where Hsp70 and Hsp90 regulate the assembly of the 480-kDa replicase complex (Figs. 7 and 8). Finally, the properly assembled 480-kDa replicase complex initiates viral RNA replication via complementary RNA synthesis (53).

ACKNOWLEDGEMENTS

The authors thank Dr. Ryohei Terauchi for pPVX.NbHsp70c-1, Dr. Takashi Araki for BiFC constructs, Drs. Ichiro Mitsuhara and Yuko Ohashi for the anti-NtHsp90 antibody and pBE2113-GUS, and Dr. David C. Baulcombe for TRV vectors. The authors are also grateful to Dr. Hiro-oki Iwakawa for helpful discussion. This work was supported in part by Grants-in-Aid for Scientific Research (A) (22248002) from the Japan Society for the Promotion of Science.

REFERENCES

associated satellite RNA. PLoS Pathog. 8:e1002726.

42. **Laemmli, U. K.** 1970. Cleavage of structural proteins during assembly of head

50. Mas, A., I. Alves-Rodrigues, A. Noueiry, P. Ahlquist, and J. Diez. 2006. Host deadenylation-dependent mRNA decapping factors are required for a key step in

66. Okamoto, K., H. Nagano, H. Iwakawa, H. Mizumoto, A. Takeda, M. Kaido,

78. Stahl, M., M. Retzlaff, M. Nassal, and J. R. Beck. 2007. Chaperone activation of the hepadnaviral reverse transcriptase for template RNA binding is established by the Hsp70 and stimulated by the Hsp90 system. Nucleic Acids Res. **35**:6124-6136.

FIGURE LEGENDS

Fig. 1. Knock-down of Hsp70 or Hsp90 mRNA levels via gene silencing inhibits accumulation of RCNMV RNAs in *N. benthamiana* plants. (A) The *Tobacco rattle virus* (TRV) vector harboring the partial fragment of *N. benthamiana Hsp70c-1* (TRV:Hsp70) or *Hsp90* (TRV:Hsp90) was expressed in *N. benthamiana* by *Agrobacterium* infiltration. The empty TRV vector (TRV:00) was used as a control. Pictures were taken at 10 days after agroinfiltration (dai). Note that the infiltrated plants show no morphological defects at this stage. (B and C) The newly developed leaves were inoculated with RCNMV RNA1 and RNA2 10 days after agroinfiltration. Total RNAs were extracted from the inoculated leaves 2 days after inoculation. Accumulation of RCNMV RNAs was analyzed by northern blotting. Ethidium bromide (EtBr)-stained ribosomal RNAs (rRNA) are shown below the northern blots as loading controls. Hsp70 and Hsp90 mRNA levels were assessed by RT-PCR with primers that allow the amplification of the regions of Hsp70 and Hsp90 not present in the TRV:Hsp70 and TRV:Hsp90, respectively. RT-PCR results of the ribulose 1,5-biphosphate carboxylase small subunit gene (*RbcS*) gene demonstrate equal amounts of total RNAs used for the RT and the equal efficiency of RT-reaction in the samples.

Fig. 2. Inhibitors of Hsp70 or Hsp90 impair RCNMV RNA replication in a single cell. (A and B) Tobacco BY-2 protoplasts were inoculated with *in vitro* transcribed RNA1 and RNA2. The inoculated protoplasts were incubated for 16 h at 17 ºC in the presence of various concentrations of 2-phenylethynesulfonamide (PES), a specific inhibitor of Hsp70. Methanesulfonamide (MS) is a non-functional analogue of PES. Total RNAs were analyzed by northern blotting. EtBr-stained rRNAs as loading controls are shown below the northern blots (A). The accumulation levels of RNA1 and RNA2 from three separate experiments using PES were quantified using NIH Image and are plotted in the...
graphs (B). (C and D) BY-2 protoplasts were inoculated with pUBRC1 and pUBRC2, which transcribe RNA1 and RNA2, respectively, under the control of the *cauliflower mosaic virus* (CaMV) 35S promoter. pUEGFP, which expresses GFP mRNA driven by the CaMV 35S promoter, was also inoculated as an internal control. The inoculated protoplasts were incubated for 16 h at 17 °C in the presence of various concentrations of geldanamycin (GDA), a specific inhibitor of Hsp90. Total RNAs were analyzed by northern blotting. EtBr-stained rRNAs are shown as loading controls (C). The accumulation levels of RNA1 and RNA2 from three separate experiments were quantified using NIH Image and are plotted in the graphs (D). (E and F) BY-2 protoplasts were inoculated with RCNMV virions, and incubated with GDA as described above. Total RNAs were analyzed by northern blotting. EtBr-stained rRNAs are shown as loading controls (E). The accumulation levels of RNA1 and RNA2 from three separate experiments were quantified using NIH Image and are plotted in the graphs (F).

Fig. 3. p27 interacts with Hsp70 and Hsp90 *in planta*. (A and B) Bimolecular fluorescence complementation (BiFC) analysis of the interactions of p27 with Hsp70 and Hsp90. p27 fused to the N- or C-terminal half of YFP at the C-terminus (p27-nYFP and p27-cYFP) was expressed together with Hsp70 or Hsp90 fused to the other half of YFP at the N-terminus (cYFP-Hsp70, nYFP-Hsp70, cYFP-Hsp90, and nYFP-Hsp90) in the presence of p88, RNA2, ER-mCherry, and the suppressor p19 of *Tomato bushy stunt virus*, in *N. benthamiana* leaves by *Agrobacterium* infiltration. Right panels show the merging of mCherry and YFP as yellow color. White arrowheads indicate the large fluorescent aggregates. Bars, 20 μm. (C and D) Control experiments for the BiFC analysis. YFP fragments and p27, Hsp70 or Hsp90 were separately expressed instead of their fusion protein counterparts in the presence of p88, RNA2, ER-mCherry and p19 in
N. benthamiana leaves by Agrobacterium infiltration. Merged images of the YFP and ER-mCherry visualized by confocal microscopy at 4 days post agroinfiltration are shown. White arrowheads indicate the large fluorescent aggregates. Bars, 20µm. (E and F) Functional analysis of YFP fragment-fused p27 in viral RNA replication. Total RNAs and proteins extracted from agroinfiltrated leaves were analyzed by northern and western blotting, respectively. EtBr-stained rRNAs as loading controls were shown below northern blots.

Fig. 4. RCNMV RNA replication affects the subcellular localization of Hsp70 and Hsp90. Green fluorescent protein (GFP)-fused Hsp70 (GFP-Hsp70) plus ER-mCherry (A), GFP-Hsp70 plus C-terminally DsRed monomer-fused p27 (p27-DRm) plus p88 plus RNA2 (B), GFP-fused-Hsp90 (GFP-Hsp90) plus ER-mCherry (C), and GFP-Hsp90 plus p27-DRm plus p88 plus RNA2 (D) were expressed in N. benthamiana leaves by Agrobacterium infiltration. Fluorescence was visualized by confocal microscopy. The merging of the green and red fluorescence is shown as yellow color. Bars, 20 µm.

Fig. 5. p27 interacts with Hsp70 and Hsp90 in vitro. (A) Glutathione resin-bound GST-fused Hsp70 (GST-Hsp70) or GST-Hsp90 was incubated with the purified recombinant N-terminally His and C-terminally FLAG-tagged p27 (His-p27-FLAG). After washing, pulled-down complexes were subjected to SDS-PAGE and blotted onto a membrane. Pulled down His-p27-FLAG was detected by western blotting with anti-FLAG antibody. After detection, the separated proteins on the membrane were visualized with Ponceau S staining (Ponceau S). (B and C) A capped transcript that expresses p27-FLAG (20 nM) was added to BYL. After 2 h of incubation at 17 °C, BYL expressing p27-FLAG was incubated for 30 min at 17 °C with DMSO, PES (500
µM), or MS (500 µM) in the presence of 2 mM of a non-hydrolysable analogue of ADP (ADPβS) for the analysis of p27–Hsp70 interaction (B). Alternatively, BYL expressing p27-FLAG was incubated for 30 min at 17 °C with DMSO or GDA (500 µM) in the presence of 2 mM of a non-hydrolysable analogue of ATP (ATPγS) and 3 mM of MgCl₂ for the analysis of p27–Hsp90 interaction (C). The BYL was then mixed with a 10 µl bed volume of anti-FLAG M2 antibody agarose, and incubated further on ice for 90 min. After washing, Hsp70 and Hsp90 co-purified with p27-FLAG were analyzed by western blotting with appropriate antibodies.

Fig. 6. PES and GDA inhibit accumulations of p27 and negative-strand RNAs in BYL. BYL was incubated for 4 h at 17 °C with in vitro synthesized RNA1 (7.5 nM) and RNA2 (20 nM) in the presence of various concentrations of inhibitors. Accumulations of negative-strand RNA1 and RNA2 were detected by northern blotting. Accumulations of p27 were analyzed by western blotting with anti-p27 antisera. EtBr-stained rRNAs and CBB-stained cellular proteins are shown as loading controls.

Fig. 7. Hsp70 and Hsp90 promote the assembly of the RCNMV replicase complex. (A) Depiction of the assay system using BYL to monitor the assembly of the 480-kDa replicase complex and the synthesis of negative-strand RNA2 independently of the translation and folding of p27 and p88 replicase proteins. [1] Capped transcripts expressing p27-FLAG (20 nM) or p88-T7 (20 nM) were incubated separately in BYL for 2 h at 17 °C. [2] After the addition of cycloheximide at a concentration of 100 µg/ml, BYL expressing p27-FLAG and BYL expressing p88-T7 were mixed at 2:1 ratio. [3] RNA2 (20 nM) was added together with DMSO, PES, MS, or GDA to the mixed BYL, and incubated for an additional 2 h at 17 °C. (B) Effects of PES (500 µM) and GDA (100 µM) on the accumulation of 480-kDa complexes and the negative-strand synthesis
of RNA2. Accumulation of negative-strand RNA2 was analyzed by northern blotting. EtBr-stained rRNAs are shown below the northern blots as loading controls. Accumulation of the 480-kDa replicase complexes were analyzed by western blotting with anti-p27 antisera after the separation of protein complexes by blue native polyacrylamide gel electrophoresis (BN-PAGE). Accumulation of p27-FLAG and p88-T7 was analyzed by western blotting with anti-FLAG and anti-T7 antibodies, respectively, after separation of the denatured proteins by SDS-PAGE. CBB-stained cellular proteins are shown below the western blots as loading controls. (C-F) Dose-dependent effects of PES and GDA on the accumulation of the 480-kDa replicase complex and negative-strand RNA synthesis. BYL expressing p27-FLAG and p88-T7 were prepared and mixed as described in (A). Then, the mixed BYL was incubated with RNA2 (20 nM) for 2 h at 17 °C in the presence of increasing amounts of PES (C and D) or GDA (D and E). Western blots with anti-FLAG antibodies in combination with BN-PAGE detected the 480-kDa replicase complexes and nonfunctional large complexes. Western blots in combination with SDS-PAGE detected p27-FLAG and p88-T7 components. CBB-stained cellular proteins are shown as loading controls. Northern blots showed accumulations of negative-strand RNA2. EtBr-stained rRNAs are shown below the northern blots as loading controls. (G) Effects of the reduced accumulation of p88 on the negative-strand RNA2 synthesis. BYL expressing p27-FLAG, BYL expressing p88-T7, and mock-treated BYL were mixed at 2:1:0, 2:0.67:0.33, 2:0.5:0.5, and 2:0.33:0.67 in the presence of MS, and BYL expressing p27-FLAG and BYL expressing p88-T7 were mixed at 2:1 in the presence of PES (from left to right). Accumulation of viral RNAs and proteins were analyzed by northern and western blotting, respectively. EtBr-stained rRNAs and CBB-stained cellular proteins are shown below the northern and western blots as loading controls, respectively.
Fig. 8. Hsp90 regulates the specific binding of p27 to the Y-shaped RNA element (YRE) of RNA2, which is critical for the assembly of the RCNMV replicase complex. (A) Effects of a mutation in YRE that inhibits the interaction between p27 and YRE on the assembly of the 480-kDa complex. BYL expressing p27-FLAG and BYL expressing p88-T7 were mixed as shown in Fig. 7A. RNA2 or its mutant, LM8, which cannot interact with p27 (27), was added to the mixed BYL and the mixture was incubated for 2 h. Accumulation of viral RNAs was analyzed by northern blotting. Accumulation of the 480-kDa complexes and its viral components was analyzed by western blotting in combination with BN-PAGE and SDS-PAGE, respectively. (B) Effects of inhibitors on the binding of p27 with YRE. Membrane-depleted BYL (BYLS20) expressing p27-FLAG was incubated for 20 min on ice with StagT-fused YRE in the presence of PES, MS or GDA (500 µM each). Heparin was added to the BYLS20 at a final concentration of 20 µg/ml and the mixture was incubated for 40 min. The BYLS20 was subjected to Strepto-tag affinity purification, followed by western blotting with anti-FLAG antibody. The affinity-purified YRE was detected with EtBr staining.
Figure 2

A and C: Gel images showing RNA accumulation with different concentrations of DMSO and GDA. The graphs on the right show the relative RNA accumulation (%). The x-axis represents the concentration of DMSO or GDA, and the y-axis represents the relative RNA accumulation. The bars indicate the standard error of the mean.

B and D: Graphs showing the relative RNA accumulation for RNA1 and RNA2 with different concentrations of PES or GDA. The x-axis represents the concentration of PES or GDA, and the y-axis represents the relative RNA accumulation. The error bars indicate the standard error of the mean.

E and F: Similar to A and C, but for RNA1 and RNA2 with different concentrations of GDA. The graphs on the right show the relative RNA accumulation (%).
Figure 3

(A) p27-nYFP + cYFP-Hsp70

(B) p27-cYFP + nYFP-Hsp70

(C) p27-nYFP + free cYFP + Hsp70

(D) p27-cYFP + free nYFP + Hsp90

(E) + p88 + RNA2 + p19 + ER-mCherry

(F) + p88 + RNA2 + p19 + ER-mCherry
A. GFP-Hsp70 + ER-mCherry

B. GFP-Hsp70 + p27-DRm + p88 + RNA2

C. GFP-Hsp90 + ER-mCherry

D. GFP-Hsp90 + p27-DRm + p88 + RNA2

Figure 4
Figure 5
<table>
<thead>
<tr>
<th>DMSO</th>
<th>PES</th>
<th>MS</th>
<th>GDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>250</td>
<td>500</td>
<td>10</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

- **RNA1**
- **RNA2**
- **rRNA**
- **p27**
- **CBB**

Figure 6
Figure 7

Panel A: Assembly of 480-kDa replicase complex

Panel B: Northern analysis of RNA2(-) and rRNA

Panel C: Western analysis of p27-FLAG and p88-T7

Panel D: BN-PAGE of 480-kDa complexes

Panel E: SDS-PAGE of p88-T7 and p27-FLAG

Panel F: BN-PAGE of p88-T7 and p27-FLAG

Panel G: SDS-PAGE of RNA2(-) and rRNA
Figure 8

A

Northern

BN-PAGE

SDS-PAGE

1024 kDa

720 kDa

480 kDa

242 kDa

146 kDa

66 kDa

The 480-kDa complexes

Mock

LM8

RNA2

RNA2(+)

RNA2(-)

rRNA

1024 kDa

720 kDa

480 kDa

242 kDa

146 kDa

66 kDa

p88-T7

p27-FLAG

CBB

B

DMSO

PES

MS

GDA

Input

Purified

p27-FLAG

StagT-fused YRE

Mock

LM8

RNA2

RNA2(+)

RNA2(-)

rRNA

p88-T7

p27-FLAG

CBB

p27-FLAG

StagT-fused YRE