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Stochastic Source Seeking by Mobile Robots
Shun-ichi Azuma,Member, IEEE,Mahmut Selman Sakar,Member, IEEE,and George J. Pappas,Fellow, IEEE

Abstract— We consider the problem of designing controllers
to steer mobile robots to the source (the minimizer) of a signal
field. In addition to the mobility constraints, e.g., posed by the
nonholonomic dynamics, we assume that the field is completely
unknown to the robot and the robot has no knowledge of
its own position. Furthermore, the unknown field is randomly
switching. In the case where the information of the field (e.g.,
the gradient) is completely known, standard motion planning
techniques for mobile robots would converge to the known
source. In the absence of mobility constraints, convergence to
the minimum of unknown fields can be pursued using the
framework of numerical optimization. By considering these facts,
this paper exploits an idea of the stochastic approximation for
solving the problem mentioned in the beginning and proposes a
source seeking controller which sequentially generates the next
waypoints such that the resulting discrete trajectory converges
to the unknown source and which steers the robot along the
waypoints, under the assumption that the robot can move to
any point in the body fixed coordinate frame. To this end, we
develop a rotation-invariant and forward-sided version of the
simultaneous-perturbation stochastic approximation algorithm as
a method to generate the next waypoints. Based on this algorithm,
we design source seeking controllers. Furthermore, it is proven
that the robot converges to a small set including the source in
a probabilistic sense if the signal field switches periodically and
sufficiently fast. The proposed controllers are demonstrated by
numerical simulations.

Index Terms— source seeking, simultaneous-perturbation
stochastic approximation, mobile robots, nonholonomic systems.

I. I NTRODUCTION

SOURCE seeking is a mixed problem ofsearch and
navigation as shown in Fig. 1: when a mobile robot is

placed in an environment where anunknownsignal field, i.e.,
an unknown spatial profile of the signal, is introduced, find
a controller to steer the robot to the source (the unknown
minimizer)withoutusing the position information. The field is
given by a scalar-valued function, denoted byf(x) in Fig. 1,
which could express the spatial distribution of magnetic force,
heat, or chemical concentration. The robot is navigated by only
using the measurements of the signal at the positions.

This topic will have great potential for a wide range of fu-
ture applications, including wireless communication, medical
science, security engineering, and natural resource develop-
ment. For example, the robotic suspect search is considered for
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Fig. 1. Source seeking problem.

the concentration field of a smell substance, and the landmine
search is done for a magnetic field (where the strongest signal
point is regarded as the minimizer of a function quantifying
the weakness field). Another possible application is therobotic
pinpoint dosefor avoiding side effects, where, instead of
diffusing a medicine in the body, the medicine is directly sent
to invisible tumor cells by a micro robot. In this case, a protein
concentration field is used (related techniques are found in e.g.,
[1], [2]).

Currently, there are three main approaches to the problem.
In [3]–[5], mathematical programming based methods have
been provided, where a gradient type controller and a hybrid
controller have been given. An approach based on random
walk has been proposed in [6]. There, it has been shown that
the probability distribution on the robot position converges
to a desired function. The extremum seeking technique [7],
originally developed for adaptive control, has been applied
in [8]–[14]. Apart from these approaches, related problems
have been discussed in [15]–[20], where, unlike the situation
considered here, it is assumed that the position information is
available for the navigation, or the problems do not include
any control issue of mobile robots.

Here, we are interested in thestochasticsource seeking,
which involves a randomly switching field. This is motivated
by the following fact. Although switching fields appear in
many applications, such a situation has never been handled
so far, except for a mathematically similar case with noisy
signal fields [13]. An example with a switching field is the
base station placement for wireless communication, which is
to find the best location in terms of the terminal density. In this
case, the signal field corresponds to the radio field made by a
number of terminal units, which randomly switches depending
on their usage, and the source is, for example, the strongest
signal point in an expectation sense. This example is closely
related to sensor networks, which is an actively studied topic
in recent years, where the terminal units correspond to sensor
nodes, and each node switches its own state between the active
mode and the sleep mode for energy saving.

This paper thus establishes a framework of stochastic source
seeking by mobile robots. Our approach is to find a controller
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which sequentially generates the next waypoints such that
the resulting discrete trajectory converges to the unknown
source and which steers the robot along the waypoints, under
the assumption that the robot can move to any point in the
body fixed coordinate frame. Here, the idea of a stochastic
approximation technique, called thesimultaneous-perturbation
stochastic approximation (SPSA)[21], is utilized to obtain the
waypoints. The contributions of this paper are summarized as
follows.

First, we extend the SPSA algorithm to an appropriate
form for the source seeking by mobile robots. Since the
original algorithm generates the waypoints based on the world
coordinate frame, it is impossible to drive the robot along
the waypoints without a position sensor. In contrast, the new
algorithm provides the waypoints in a time-varying coordinate
frame, which fits the sensor-free navigation. Based on this, we
present source seeking controllers composed of point-to-point
controllers. It is then proven that the controllers drive the robot
to a small set including the source with probability 1 if the
field switches periodically and faster than the measurement
period of the signal.

Second, simple source seeking controllers are presented for
two- and three-dimensional nonholonomic robots by exploiting
a special structure. This shows that the stochastic source
seeking is achieved by repeating two actions: a random turn
and a forward/backward move.

It should be stressed that this paper does not just apply an
existing optimization method to the source seeking problem.
In fact, it is not true that any optimization method can be
employed, because the optimization method for our problem
must have the following properties: (i) the method uses the
measurements of the functionf , instead of the explicit form
of f and∇f (see Fig. 1), (ii) the number of measurements has
to be small for efficiency, (iii) the method can handle stochastic
switching fields, and (iv) the waypoints given by the method
can be followed by the robot with no position sensor. In
this paper, by focusing on these points, the SPSA algorithm
[21] is picked from a number of optimization techniques,
and is extended to a suitable version for the source seeking.
It is also noted that, as a first step to the source seeking
with stochastically switching fields, we mainly consider a
somewhat limited case, where the fields switch periodically
and sufficiently fast. This may limit possible applications,
but the paper will be a basis in developing stochastic source
seeking methods for more general cases.

This paper is organized as follows. In Section II, the
stochastic source seeking problem is formulated and the idea
for the solution is outlined. Next, a generalized version of the
SPSA algorithm is provided in Section III, and our source
seeking controllers are presented in Section IV. Section V
concludes this paper.

This paper is based on our earlier preliminary version [22],
and contains full explanations and proofs omitted there.
Notation: Let R, R+, R0+, and N be the real number
field, the set of positive real numbers, the set of nonnegative
real numbers, the set of nonnegative integers, respectively.
We denote by0n×m and In (or for simplicity of notation,
0 and I) the n × m zero matrix and then × n identity

matrix. For the vectorx ∈ Rn, we use∥x∥ and sign(x)
to express the Euclidian norm and the signum vector. If the
vector x is composed of nonzero elements, letx(−1) be the
vector composed of the elementwise inverse, i.e.,x(−1) =
[x−1

1 x−1
2 · · · x−1

n ]⊤ ∈ Rn wherexi is the ith element ofx.
The vectorization of the matrixM is expressed byvec(M).
For the numberθ ∈ R, R2(θ) is the two-dimensional rotation
matrix defined as

R2(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
.

Furthermore,R3(ψ) expresses the three-dimensional rotation
matrix with the yaw, pitch, and roll specified by the vector
ψ := [ψ1 ψ2 ψ3]

⊤ ∈ R3 in radians. Note that the matrices
are orthogonal, e.g.,R2(θ)R

⊤
2 (θ) = I2, which plays an

important role in this paper. For the numbera ∈ R, let
⌊a⌋ be the maximum integer less than or equal toa. The
scalar/vector/function sequence{xl, xl+1, . . . , xm} is denoted
by {xi}mi=l and, for simplicity, it is denoted by{xi} if l = 0
and m = ∞. The gradient of the scalar-valued function
f : Rn → R is denoted by∇f(x), i.e.,

∇f(x) :=
[
∂f(x)

∂x1

∂f(x)

∂x2
· · · ∂f(x)

∂xn

]⊤
∈ Rn

wherexi is the ith element of the vectorx ∈ Rn. Finally,
S1⊕S2 represents the Minkowski sum of the setsS1 andS2.

II. STOCHASTIC SOURCESEEKING PROBLEM

A. Problem Formulation

Consider the feedback system in Fig. 2, composed of
the mobile robotP , the signal fieldS, and the controllerK.

The robotP is given by

P :

 ẋ(t)θ̇(t)

ϕ̇(t)

 = G(x(t), θ(t), ϕ(t))u(t) (1)

where x(t) ∈ Rn1 and θ(t) ∈ Rn2 are the translational
and orientational positions in the world coordinate frame,
ϕ(t) ∈ Rn3 is the other state variable defined relative to
the absolute position(x(t), θ(t)) and is called theinternal
posture, u(t) ∈ Rm is the control input, andG : Rn1×Rn2×
Rn3 → R(n1+n2+n3)×m is a nonlinear function describing the
dynamics. We assume thatP is in a two- or three-dimensional
space, i.e.,(n1, n2) ∈ {(2, 1), (3, 3)}. It is well-known that
many drift-free mobile robots can be expressed by (1) [23].
An example ofP is the Kinematic model of the nonholonomic
unicycle in Fig. 3 (a), which is described by ẋ1(t)ẋ2(t)

θ̇(t)

 =

 cos θ(t) 0

sin θ(t) 0

0 1

u(t) (2)

wherex1(t) ∈ R, x2(t) ∈ R, θ(t) ∈ R, andu(t) ∈ R2. The
state variableϕ for the internal posture is not required for the
unicycle but will be used for more complicated robots such
as the four-wheeled vehicle in Fig. 3 (b) where the steering
angle is expressed byϕ.
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Fig. 2. Control system for source seeking.

x1

x
2

θ

x1

2

θ

x

φ

(a) Unicycle. (b) Four-wheeled vehicle.

Fig. 3. Examples of mobile robots.

The signal fieldS is a transducer from the information on
x to a scalar signal, which is of the randomly switching form

S : y(t) = fσ(t)(x(t)) (3)

wherey(t) ∈ R expresses the signal strength andfσ : Rn1 →
R are thrice differentiable functions with respect tox. Further-
more,σ(t) ∈ {1, 2, . . . , N} is the piecewise constant random
signal given asσ(t) = σi on the time interval[iη, (i + 1)η)
wherei ∈ N, σi are the i.i.d. random variables from the prob-
ability distributiong : {1, 2, . . . , N} → [0, 1], andη ∈ R+ is
the switching time period. An example ofS is shown in Sec-
tion IV-C. We denote byE[fσ(x)|x] the conditional expected
value

∑N
σ=1 g(σ)fσ(x), i.e.,E[fσ(x)|x] =

∑N
σ=1 g(σ)fσ(x),

and we call the local minimizer(s) ofE[fσ(x)|x] thesource(s),
where note thatσ corresponds to just a random variable drawn
from the probability distributiong. For example, ifn1 := 2,
N := 2, f1(x) := x⊤x, f2(x) := (x− [0 1]⊤)⊤(x− [0 1]⊤),
g(σ) = 0.5 for σ ∈ {1, 2}, and g(σ) = 0 for σ /∈ {1, 2},
thenE[fσ(x)|x] = 0.5x⊤x+0.5(x− [0 1]⊤)⊤(x− [0 1]⊤) =
x⊤x− [0 1]x+ 0.5 and the source isx = [0 0.5]⊤.

The controllerK is a (causal) dynamical system which
could be a continuous-time system or a discrete-time system
with a sampler and a holder. The inputs areϕ and y, which
means that the information on the internal postureϕ is
available by some internal sensors ofP (e.g., potentiometers)
but the absolute position(x, θ) is not.

Then we consider the following problem.
Problem 1 (Stochastic Source Seeking):For the feed-

back system in Fig. 2, suppose thatP , S, and a positive
numberr ∈ R+ are given, but assume thatS is unknown
(i.e., the functionsfσ (σ = 1, 2, . . . , N ) and the probability
distributiong are unknown). Then find a controllerK seeking
a source, i.e., aK such that there exists an initial state set
X0 ∈ Rn1 satisfying
(i) X0 is a nonzero-measure set including a source in its

interior,
(ii) for every (x0, t) ∈ X0 ×R0+, ∥x(t)∥ < ∞ w.p.1 under
x(0) = x0,
(iii) for each x(0) = x0 ∈ X0, there exists a time instant
ts ∈ R+ satisfying

∥x(t)− x∗∥ ≤ r

for every t ∈ [ts,∞) w.p.1 wherex∗ ∈ X0 is the source.
Several remarks on this problem are given.
First, (iii) is the condition on the convergence not to a source

but to a closed ball including a source. This is fairly standard
for source seeking problems, since the trajectories of the robot
P are often restricted by the mobility constraints (such as
nonzero velocity constraints and nonholonomic constraints)
and the convergence to a single point is often impossible. Note
here that, if the givenr is smaller than a value depending upon
the mobility constraint, then it is concluded that the problem
is infeasible, i.e., there is no solution to this problem.

Next, we haveno information onS except for a few assump-
tions, which poses two challenging issues in this problem.
First, even if we focus on only the static optimization problem

min
x∈Rn1

E[fσ(x)|x], (4)

typical methods, using the explicit form ofE[fσ(x)|x] or
its gradient, cannot be employed (because we do not have
the expression ofE[fσ(x)|x]). Namely, our attention has to
be restricted to methods only using the measurements of
fσ(t)(x(t)). Second, in the feedback system in Fig. 2, it is
impossible to estimate the absolute position ofP through
the measurements ofy. ThusK has to generate the control
input without using the position information, which prevents
us from applying position control methods based on the world
coordinate frame.

Finally, it is assumed in the problem that the robotP has a
single sensor to measure the signal strength (i.e.,y(t) ∈ R) of
the signal fieldS. On the other hand, ifP has multiple sensors
appropriately embedded, the gradient information ofS can be
directly obtained and utilized for source seeking. Nevertheless,
this paper does not deal with such a situation, because we are
interested in the source seeking with the minimum number of
sensors.

B. Solution Idea and Preparation

The idea to solve Problem 1 is outlined as follows. As easily
imagined, Problem 1 raises two issues: theexplorationof the
solution to the static problem (4), and thecontrol of the robot.
As a solution to the former, we first present a set of stochastic
discrete trajectories (almost surely) converging to a solution
to (4). Next, we pick an appropriate stochastic trajectory from
the set and give a controllerK to steer the robot along the
trajectory, which solves the latter. These will be respectively
detailed in the next two sections.

In considering the approach, some symbols are prepared
at this point. For the robotP , we often use the body fixed
coordinate frame. The frame at timeτ is denoted byΣ(τ),
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i.e.,

Σ(τ) :

 z(t)ψ(t)
φ(t)

 =

Rn1(−θ(τ))(x(t)− x(τ))
θ(t)− θ(τ)

ϕ(t)

 (5)

where t expresses a future time afterτ , (z(t), ψ(t), φ(t)) ∈
Rn1 ×Rn2 ×Rn3 are the new coordinates, andRn1(−θ(τ))
is then1-dimensional rotation matrix defined in Section I. If

(P1) for each(∆z,∆ψ) ∈ Rn1 × Rn2 , there exists a
control inputu such that

(a) ∥z(t)∥ ≤ r1∥∆z∥ + r2∥∆ψ∥ + r3 for every
t ∈ [τ, τ +∆τ ],
(b) z(τ +∆τ) = ∆z andψ(τ +∆τ) = ∆ψ

under the conditionsz(τ) = 0 andψ(τ) = 0

holds for some∆τ ∈ R+ and (r1, r2, r3) ∈ R0+ × R0+ ×
R0+, we denote by

v

(
t, ∆τ, 0 →

[
∆z
∆ψ

]
, r1, r2, r3

)
(6)

a control input (function) fort ∈ [τ, τ +∆τ ] to steer the robot
P as stated in (P1). Note that (P1) corresponds to a kind of
controllability assumption, which guarantees the existence of a
point-to-point controller to steerP from the current position to
[(∆z)⊤ (∆ψ)⊤]⊤ keeping the boundedness ofz(t) on the time
interval [τ, τ +∆τ ]. Note also that applyingv to P results in[
x(τ+∆τ)

θ(τ+∆τ)

]
=

[
x(τ)

θ(τ)

]
+

[
Rn1

(θ(τ))∆z

∆ψ

]
, (7)

∥x(t)−x(τ)∥ ≤ r1∥∆z∥+ r2∥∆ψ∥+ r3 (∀t ∈ [τ, τ+∆τ ])

(8)

in the world coordinate frame. A typical method to obtain the
input v is to utilize the so-called Lie bracket motion based on
periodic inputs and the accessibility distribution1 of P (see,
e.g., [24]).

III. STOCHASTIC DISCRETETRAJECTORIES FOR

STOCHASTIC SOURCESEEKING

To obtain stochastic discrete trajectories for the source
seeking, we employ the idea of a stochastic approximation
technique, called thesimultaneous-perturbation stochastic ap-
proximation (SPSA)[21]. Since the original SPSA algorithm
is not applicable to our source seeking problem as stated in
Section I (which will be detailed in Remark 2), we extend the
original algorithm to a more suitable version.

A. Generalized Simultaneous-Perturbation Stochastic Approx-
imation

A general form of the stochastic approximation algorithm
is given by

xk+1 = xk − akd(xk, ck, ξk, δk) (9)

wherexk ∈ Rn is the state,ak ∈ R+ and ck ∈ Rl
+ are the

gains,ξk ∈ Rp is the random variable introduced for solving

1The linear combination of the all Lie brackets for the column vectors of
G(x, θ, ϕ).

a problem,δk ∈ Rq is the variable expressing noise and
uncertainty, andd : Rn×Rl

+×Rp×Rq → Rn is the search
direction. This algorithm is closely related to the steepest
descent, which corresponds to the cased(xk, ck, ξk, δk) =
∇f(xk) for the functionf : Rn → R to be minimized.

For the algorithm in (9), we propose the search direction

d(xk, ck, ξk, δk) :=

Tk
(f(xk+ck1Tkξk)+εk+)−(f(xk−ck2Tkξk)+εk−)

(ck1 + ck2)
ξ
(−1)
k

(10)

for ck := [ck1 ck2]
⊤ and δk := [εk+ εk− vec(Tk)]

⊤,
where f : Rn → R is the function to be minimized,
ck1, ck2 ∈ {0} ∪ R+ are the gains,ξk ∈ Rn (p = n) is
the random variable,ξ(−1)

k is the elementwise inverse ofξk as
defined in Section I,εk+, εk− ∈ R are the random noise, and
Tk ∈ Rn×n is the uncertain time-varying matrix (which will
be treated as an uncertain time-varying “rotation” matrix in
Section IV). To appropriately define (10), it is assumed that
∥ck∥ > 0, i.e., ck1 > 0 or ck2 > 0. We also assume that
Tk ∈ T for the uncertain matrix setT ⊆ Rn×n and assume
that the random variableξk follows the probability distribution
Ξk : Rn → [0, 1]. In the algorithm given by (9) and (10), the
problem parameters (given in advance) are the functionf , the
probability distributions of{εk+}, {εk−}, and the uncertain
matrix setT, while the design parameters of the algorithm
are the gain sequences{ak}, {ck1}, {ck2} and the probability
distribution sequence{Ξk}. We call the algorithm given by (9)
and (10) thegeneralized simultaneous-perturbation stochastic
approximation algorithmor simply theG-SPSA algorithm.

For the algorithm, we discuss here the robust stability, i.e.,
the convergence for every possible uncertain matrices. In the
following part of this section, the conditions and propositions
on the solutionxk of the G-SPSA algorithm are assumed to be
those satisfied for every{Tk} ∈

∏∞
k=1 T, though the universal

quantification for the uncertain matrix is omitted for simplicity
of notation.

Under several conditions, the G-SPSA algorithm solves the
static optimization problem

min
x∈Rn

f(x) (11)

by using noisy measurements off(x). This is formalized in
Propositions 1 and 2.

Proposition 1: Consider the search direction
d(xk, ck, ξk, δk) in (10) and let ξki ∈ R be the ith
element of the random vectorξk. If

• the conditions on the problem parameters:

(A1) f is thrice differentiable,
(A2) E[ εk+ − εk− | {x0, x1, . . . , xk}, ξk ] = 0 w.p.1

for all k ∈ N,
(A3) each element ofT is an orthogonal matrix,

• the conditions on the design parameters:

(B1) (a) for eachk ∈ N, ξk is integrable, the prob-
ability distributionΞk is symmetric about zero
(i.e., E[ξk] = 0), and there exists aβ1 ∈ R+

such that|ξki| ≤ β1 and |ξ−1
ki | ≤ β1 w.p.1 for
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all i ∈ {1, 2, . . . , n},
(b) for eachk ∈ N, ξki (i = 1, 2, . . . , n) are
mutually independent

hold, then

E[ d(xk, ck, ξk, δk) |xk ] = ∇f(xk) +O(∥ck∥ 2) (as ck → 0)

(12)

for every Tk ∈ T, where the left hand side expresses the
expected value with respect toξk, εk+, andεk−.

Proof: See Appendix I.
Proposition 1 implies that, under several assumptions, the

expected value ofd(xk, ck, ξk, δk) is nearly equal to the
gradient off(xk). So the algorithm given by (9) and (10) can
be regarded as an approximation of the so-called fixed-point
iteration for finding a root of∇f(x) = 0.

Next, the following result is obtained from Proposition 1.
Proposition 2: For the G-SPSA algorithm given by (9) and

(10), suppose that a setT̂ ⊂ Rn×n satisfyingT ⊆ T̂ is given,
and assume that there exists a rootx∗ ∈ Rn of the equation
∇f(x) = 0. Let x̂k denote the state of the modified G-SPSA
algorithm so thatT is replaced withT̂. If

• the conditions on the problem parameters: (A1)–(A3) and

(A4) x∗ is an asymptotically stable equilibrium of
ẋ(t) = −∇f(x(t)) (in the Lyapunov sense),

(A5) there exists anα5 ∈ R+ such thatE[ ε2k+ ] ≤ α5

andE[ ε2k− ] ≤ α5 for all k ∈ N,
(A6) T is a finite set,

• the conditions on the design parameters: (B1) and

(B2) limk→∞ ak = 0,
∑∞

k=0 ak = ∞, limk→∞ ck =
0, and

∑∞
k=0 a

2
k/∥ck∥2 <∞,

(B3) the random vectorsξk (k = 0, 1, . . .) are mutu-
ally independent,

(B4) there exists aβ4 ∈ R+ such thatE[ ξ−2
ki ] ≤ β4

for all (k, i) ∈ N× {0, 1, . . . , n},

• the conditions for the modified G-SPSA algorithm:

(C1) there exists a compact stability regionS ⊆
Rn for ẋ(t) = −∇f(x(t)) (which is nonzero-
measure and for whicḣx(t) = −∇f(x(t)) with
x(0) ∈ S results in x(∞) = x∗) such that
x̂k ∈ S occurs infinitely often for everyx0 ∈ S
and almost all sample points,

(C2) supk∈N ∥x̂k∥<∞ holds w.p.1 for everyx0 ∈ S,
(C3) there exists aγ4 ∈ R+ such thatE[ f(x̂k +

ck1Tkξk)
2 ] ≤ γ4 andE[ f(x̂k − ck2Tkξk)

2 ] ≤
γ4 for everyx0 ∈ S andk ∈ N,

hold, then

lim
k→∞

xk = x∗ (13)

holds w.p.1 for everyx0 ∈ S.
Proof: See Appendix II.

From Proposition 2, it turns out that a local solution to
the problem in (11) is given by the G-SPSA algorithm under
several conditions. In particular, it should be noted that the
conditions for the convergence do not heavily depend on the
information of the uncertain matrix setT as seen in (A3) and
(A6) and thus this result is useful for the case where we do

not have precise information aboutT but have an estimation
T̂ of T.

Most of the conditions in Proposition 2 are fairly standard
in stochastic approximation [21], [25]. Conditions (A1)–(A6)
are concerned with the functionf , the noiseεk+, εk−, and the
uncertain time-varying matrixTk. (A1) means thatf is smooth
enough and (A4) is common for descent-type algorithms,
saying thatx∗ is a local minimum point off . (A2) resembles
the common martingale difference noise assumption appearing
in standard stochastic approximation algorithms (see e.g.,
[30]). This plays an important role to make the search direction
d(xk, ck, ξk, δk) be a gradient approximation as in (12) and to
prove that a partial sum process associated with the difference
d(xk, ck, ξk, δk) − E[d(xk, ck, ξk, δk)|xk] is martingale (see
the proof of Proposition 2). In our source seeking problem,
the condition holds if the field switches sufficiently fast. (A5)
prescribes the second-order moment of the noise terms. (A3)
implies T0T⊤

0 = T1T
⊤
1 = · · · = T∞T

⊤
∞ = I and (A6) is a

technical assumption to prove the convergence in probability
by reducing the G-SPSA algorithm into the Robbins-Monro
Algorithm in Appendix II-A. Next, (B1)–(B4) are imposed
for the parameters designed by the users, and they will be
a guideline to design. A typical parameter choice of{ak},
{ck1}, and{ck2} is

ak :=
a

(k + 1)α
, ck1 :=

c

(k + 1)γ
, ck2 := ck1,

wherea, α, c, γ ∈ R+ are arbitrarily given so thatα ≤ 1 and
α − γ > 0.5. It may be reasonable to set large numbers to
ak, ck1, andck2 in the initial phase and let them be gradually
smaller withk so as to search the minimizer roughly at the
beginning and search it precisely near the minimizer. On the
other hand, a typical probability distributionΞk of ξk is based
on the elementwise Bernoulli trial with outcome±1 and equal
probabilities (i.e.,ξki = −1 or ξki = 1 occurs the same
probability). The condition thatΞk be Bernoulli-type is not
necessary but it has been proven in [26] that the Bernoulli type
is optimal in many cases. Other possible choices are found in
[27]. The last (C1)–(C3) are technical conditions to guarantee
the convergence. (C1) and (C2) are challenging to check, but
it is known that they are not restrictive conditions in practice,
as addressed in [21], [25]. This fact has been demonstrated by
a number of examples (a great list of the existing results is
provided in [28]). In addition, it has been explained in [25]
that these can be ignored by replacing the algorithm in (9)
with a projected version (like the projected gradient method
for constrained optimization problems). A projected version
is given by xk+1 = ΠX(xk − akd(xk, ck, ξk, δk)) where
X ⊂ Rn is a closed hyperrectangle in whichxk has to be
constrained andΠX : Rn → Rn is the projection onto the
set X. Meanwhile, it should be noted that (C1) holds iff
is convex and (C2) holds, and a simple sufficient condition2

for (C2) is given in [30]. Also, a weaker condition of (C2),

2(C2) holds if (i) ∇f(x) is Lipschitz, (ii) the conditions in Proposition 1
hold, (iii) the first and second conditions of (B2) hold, and (iv) for∇fc(x) :=
∇f(cx)/c, ∇fc(x) → ∇f∞(x) as c → ∞ and ẋ = ∇f∞(x) has the
origin as its unique globally asymptotically stable equilibrium. This is just
a sufficient condition for (C2) (i.e., (C2) covers more cases) but may be the
most practical for directly checking (C2). See [30] for further details.
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which is for a more general class of stochastic approximation
algorithms, has been given in [29]. (C3) is related to the
second-order moment off with randomly perturbed inputs
and is not so restrictive if (C2) holds.

Similar to the original SPSA algorithm [21], the G-SPSA
algorithm has the following two features. First, the algo-
rithm solves the problem in (11) when neitherf nor ∇f
is known, and instead, only noisy measurements off are
available. In fact, it can be seen that the search direction
d(xk, ck, ξk, δk) in (10) contains the noisy measurements
f(xk+ ck1Tkξk)+εk+ andf(xk− ck2Tkξk)+εk−. Next, the
number of measurements to determine the search direction
is only two and is independent of the dimensionn of the
variablex. This merit can be understood by the fact that the
number of measurements for the difference approximation of
∇f (= [∂f(x)/∂x1 · · · ∂f(x)/∂xn]⊤) grows withn.

The proposed algorithm is equivalent to the original SPSA
algorithm in [21] if

ck1 ≡ ck2, T = {In} (14)

for (10). Basically, the proposed algorithm is an extention by
the coordinate transformation, while the following differences
should be stressed:

• the search direction (10) is based on unequal two-sided
perturbationsck1Tkξk ̸= ck2Tkξk, while the original
version is of equal perturbationsck1Tkξk = ck2Tkξk.

• the direction (10) is regarded as a time-varying function
of xk, ck1, ck2, ξk, εk+, andεk− (by the time-dependent
matricesTk) unlike the time-invariant original one.

These properties play a key role for solving the source seeking
problem. Note that, though one may consider that the former
is just an excess of generality, (12) is not straightforwardly
obtained by [21] in the case whereck1Tkξk ̸= ck2Tkξk,
because we need a different formula (the latter equation of
(39)) to derive it. Note also that the latter, i.e., the idea of the
time-varyingcoordinate transformation byTk, is not standard
in static optimization methods. These imply that the proposed
algorithm will be a special technique for the source seeking
by mobile robots.

B. G-SPSA Based Stochastic Discrete Trajectories for Source
Seeking

Based on the G-SPSA algorithm, we provide a set of
stochastic discrete trajectories for source seeking.

For the signal fieldS, let us introduce the random variable

ε(t) := fσ(t)(x(t))− E[ fσ(t)(x(t)) |x(t) ]. (15)

Its conditional expected value is zero, i.e.,

E[ ε(t) |x(t) ] = 0 ∀(t, x(t)) ∈ R0+ ×Rn1 . (16)

By (3) and (15),S is expressed as

y(t) = E[ fσ(t)(x(t)) |x(t) ] + ε(t). (17)

Then by respectively regardingx(t), E[fσ(t)(x(t))|x(t)], and
ε(t) asxk, f(x), andεk± in the G-SPSA algorithm, we obtain
the following result.

Theorem 1: For the signal fieldS, assume that there exists
a sourcex∗ ∈ Rn1 . Suppose that the uncertain matrix set
T ⊆ Rn1×n1 and the design parameters{ak}, {ck1}, {ck2},
{Ξk} of the G-SPSA algorithm are given so as to satisfy (A3),
(A6), and (B1)–(B4) (note that (A1), (A2), (A4), and (A5)
automatically hold, which will be shown in the proof), and
let {x01, x02, x10, x11, x12, x20, x21, x22, . . .} be the stochastic
process given by

xk1 = xk0 + ck1Tkξk,
xk2 = xk0 − ck2Tkξk,

x(k+1)0 = xk0−akTkd̂(yk1, yk2, (ck1+ck2), ξk)
(18)

wherex00 ∈ Rn1 is the initial state,Tk ∈ T is the uncertain
time-varying matrix,

d̂(yk1, yk2, (ck1 + ck2), ξk) :=
yk1 − yk2
(ck1 + ck2)

ξ
(−1)
k , (19)

yki := fσki
(xki), (20)

and σki are the i.i.d. random variables from the probability
distributiong in Section II-A. If (C1)–(C3) hold for the mod-
ified G-SPSA algorithm withf(x) := E[ fσ(x) |x ], εk+ :=
fσk1

(x)−E[ fσ(x) |x ], εk− := fσk2
(x)−E[ fσ(x) |x ], some

T̂ ⊆ Rn1×n1 including T, {ak}, {ck1}, {ck2}, {Ξk}, x00,
andx∗, then

lim
k→∞

xki = x∗ (∀{Tk} ∈
∏∞

k=0 T) (21)

w.p.1 for everyx00 ∈ S and i ∈ {0, 1, 2} (whereS is given
in (C1)).

Proof: For f(x) := E[fσ(x)|x] and εki := fσki
(xki) −

E[fσ(xki)|xki] (i = 1, 2), we haveyki = f(xki) + εki in a
similar way to (17). This and the first two equations of (18)
provide yk1 = f(xk0 + ck1Tkξk) + εk1 and yk2 = f(xk0 −
ck2Tkξk) + εk2. So it follows underxk = xk0, εk+ = εk1,
andεk− = εk2 that the third equation of (18) is equivalent to
a G-SPSA algorithm. Then, (A3), (A6), (B1)–(B4), and (C1)–
(C3) hold for the G-SPSA algorithm as stated, and also (A1),
(A2), (A4), and (A5) hold by the thrice differentiability offσ,
the i.i.d. sample condition forσki (which implies thatxki is
independent of{σki, σ(k+1)i, . . .}), the definitions ofεki and
the source, (C2), and (16). So it turns out from Proposition 2
that (21) withi = 0 holds for everyx00 ∈ S. Moreover, since
ξk andTk are bounded as stated in (B1) (a) and (A3), the first
two equations of (18) and (B2) implylimk→∞ ∥xki−xk0∥ = 0
for i ∈ {1, 2}. This and (21) fori = 0 prove that (21) with
i ∈ {1, 2} holds for everyx00 ∈ S.

Theorem 1 presents a set of stochastic trajectories converg-
ing to a source almost surely (in which each trajectory is
specified by{ak}, {ck1}, {ck2}, and{Ξk}). The trajectories
are given by fully exploiting the advantages of the G-SPSA
algorithm: they only use the measurementsyki (i = 1, 2) of
fσki

for finding a source, and the measurements to determine
the search direction are collected by the onlytwo auxiliary
movements to the positionsxk1 andxk2.

IV. STOCHASTIC SOURCESEEKING CONTROLLERS

A. Source Seeking Controllers in A General Form

Now, we derive a controllerK which sequentially generates
the next waypoints as a part of a stochastic trajectory in the
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form of (18) and steers the robotP along the trajectory.
SinceP does not have the position information in the world

coordinate frame,P cannot follow some trajectories in the
form of (18). So, in order to obtain an appropriate trajectory
in the sensor-free situation, we transform the condition (18)
into that in the body fixed frameΣ(tk0):
zk1 = ck1Rn1(−θ(tk0))Tkξk,
zk2 = −ck2Rn1(−θ(tk0))Tkξk,
z(k+1)0 = −akRn1(−θ(tk0))Tkd̂(yk1, yk2, (ck1+ck2), ξk)

(22)

wherex(tk0) = xk0 and θ(tk0) is the rotational position of
P at time tk0. Here, if ck1 = 0 and Tk = Rn1

(θ(tk0))
(k = 1, 2, . . .), we havezk1 = 0, zk2 = −ck2ξk, andz(k+1)0 =

−akd̂(yk1, yk2, ck2, ξk). This is a condition excluding the
position information ofθ(tk0) in the world coordinate frame
and thus is suitable in the sensor-free situation. This idea
provides a solution to Problem 1.

Theorem 2: For the feedback system in Fig. 2, assume that
(P1) holds for∆τ ∈ R+ and (r1, r2, r3) ∈ R3

0+ and there
exists a sourcex∗ ∈ Rn1 . Let t00 := 0 and suppose that the
tuning parameters:

• the discrete time sequence{t02, t10, t12, . . .} such that
tk2 − tk0 > max{η,∆τ} and t(k+1)0 − tk2 >
max{η,∆τ} for everyk ∈ {0, 1, . . .},

• {ak}, {ck2}, and {Ξk} satisfying (B1)–(B4) under the
conditionck1 ≡ 0,

• the positive integerN and the desirable rotation angle
∆ψki ∈ ΦN (k = 0, 1, . . . ,∞, i = 0, 2)

are given, where ΦN := {0,±π/N,±2π/N,
. . . ,±(N − 1)π/N, π}n2 (e.g., Φ3 = {−2π/3,−π/3,
0, π/3, 2π/3, π}n2). If (C1)–(C3) hold for the modified G-
SPSA algorithm with the samef , εk+, εk− as in Theorem 1,
T̂ := {L ∈ Rn1×n1 |∃φ ∈ [−π, π)n2 s.t. L = Rn1(φ)} (the
set of n1-dimensional rotation matrices),{ak}, ck1 ≡ 0,
{ck2}, {Ξk}, x0 := x(0), and x∗, then the controllerK
satisfying (23) (at the top of the next page) fork = 0, 1, . . .
is a solution to Problem 1 for anyr > r2π

√
n2 + r3.

Proof: Let x(t) (also x(tki)) denote the translational
position of the robotP for the controllerK satisfying (23).
Then this theorem is a direct consequence of the following
three facts:

(i) The setS, which is given by (C1), is nonzero-measure and
includes the sourcex∗ in its interior.
(ii) For every (x0, t) ∈ S × R0+, ∥x(t)∥ < ∞ w.p.1 under
x(0) = x0.
(iii) For every x0 ∈ S and i ∈ {0, 2}, limk→∞ x(tki) = x∗

w.p.1 underx(0) = x0.
(iv) For eachx0 ∈ S and ν ∈ R+, there exists akmin ∈ N
such that the following two conditions hold for everyk ∈
{kmin, kmin+1, . . .}: (a) ∥x(t)−x(tk0)∥ ≤ ν+r2π

√
n2+r3

for everyt ∈ [tk0, tk2], (b) ∥x(t)−x(tk2)∥ ≤ ν+r2π
√
n2+r3

for every t ∈ [tk2, t(k+1)0].

Fact (i) is trivial. So we next prove the other facts in the order
of (iii), (ii), and (iv).
(iii) By the definition of the point-to-point control inputv (see

(6) and (7)), the controllerK steers the robotP as

x(tk2) = x(tk0)−Rn1(θ(tk0))(ck2ξk), (24)

x(t(k+1)0) = x(tk2) +Rn1(θ(tk2))Rn1(−∆ψk0)

×(ck2ξk − akd̂(y(tk0), y(tk2), ck2, ξk))

= x(tk0)

− akRn1(θ(tk0))d̂(y(tk0), y(tk2), ck2, ξk). (25)

Then the conditions on the discrete time sequence, especially,
tk2 − tk0 > η and t(k+1)0 − tk2 > η, imply that the
corresponding noise signalsε0+, ε0−, ε1+, ε1−, . . . are not
correlated and so (A2) holds. Thus it turns out from (3) and
(20) that the stochastic process{x(t00), x(t02), x(t10), x(t10),
x(t12), . . .} is equivalent to that in Theorem 1 withT :=
{L ∈ Rn1×n1 |∃φ ∈ {θ(tk0)} ⊕ΦN s.t. L = Rn1(φ)}, {ak},
ck1 ≡ 0, {ck2}, and {Ξk}, and it is obvious that (A3) and
(A6) hold for T. In addition, (B1)–(B4) hold for the given
{ak}, {ck2}, {Ξk} and ck1 ≡ 0, and (C1)–(C3) hold for the
modified G-SPSA algorithm as stated. So (iii) follows from
Theorem 1.
(ii) Suppose thatx0 ∈ S is given and letx(0) = x0. From
(23) and the definition ofv, we have∥z(t)∥ ≤ r1∥ck2ξk∥ +
r2∥∆ψk0∥ + r3 for t ∈ [tk0, tk2] and ∥z(t) + ck2ξk∥ ≤
r1∥Rn1(−∆ψk0)(ck2ξk − akd̂(y(tk0), y(tk2), ck2, ξk))∥ +
r2∥∆ψk2∥+ r3 = r1∥ck2ξk − akd̂(y(tk0), y(tk2), ck2, ξk)∥+
r2∥∆ψk2∥ + r3 for t ∈ [tk2, t(k+1)0] in the body fixed
coordinate frameΣ(tk0), which are rewritten as

∥x(t)− x(tk0)∥ ≤ r1∥ck2ξk∥+ r2∥∆ψk0∥+ r3

(∀t ∈ [tk0, tk2]), (26)

∥x(t)− x(tk2)∥ ≤ r1∥ck2ξk − akd̂(y(tk0), y(tk2), ck2, ξk)∥
+ r2∥∆ψk2∥+ r3

(∀t ∈ [tk2, t(k+1)0]) (27)

in the world coordinate frame (see (8)). Then,

∥∆ψki∥ ≤ π
√
n2 (28)

by the definition ofΦN (which implies∆ψki ∈ [−π, π)n2).
Furthermore, as shown in the proof of (iii), the stochastic pro-
cess{x(t00), x(t02), x(t10), x(t10), x(t12), . . .} is equivalent
to that in Theorem 1, which, together with (B1) and (B2),
implies that x(tki), ck2ξk, and akd̂(y(tk0), y(tk2), ck2, ξk)
(k = 0, 1, . . ., i = 0, 1, 2) are bounded w.p.1. So we have (ii).
(iv) Applying (24), (25), and (28) to (26) and (27) gives

∥x(t)− x(tk0)∥ ≤ r1∥x(tk2)− x(tk0)∥+ r2π
√
n2 + r3

(∀t ∈ [tk0, tk2]),

∥x(t)− x(tk2)∥ ≤ r1∥x(t(k+1)0)− x(tk2)∥+ r2π
√
n2 + r3

(∀t ∈ [tk2, t(k+1)0]).

Then (iii) implies that, for eachx0 ∈ S and ν ∈ R+, there
exists akmin ∈ N such that∥x(tk2) − x(tk0)∥ ≤ ν/r1 and
∥x(t(k+1)0) − x(tk2)∥ ≤ ν/r1 for every k ∈ {kmin, kmin +
1, . . .} w.p.1. This completes the proof of (iv).

Theorem 2 presents stochastic source seeking controllers
composed of two point-to-point controllers. The controllers is
given by the G-SPSA algorithm and it executes the G-SPSA
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u(t)=


v

(
t, tk2 − tk0, 0 →

[
−ck2ξk
∆ψk0

]
, r1, r2, r3

)
if t ∈ [tk0, tk2],

v

(
t, t(k+1)0 − tk2, 0→

[
Rn1(−∆ψk0)(ck2ξk − akd̂(y(tk0), y(tk2), ck2, ξk))

∆ψk2

]
, r1, r2, r3

)
if t ∈ [tk2, t(k+1)0]

(23)

algorithm step by step: afterP obtains a measurement at the
current position, the first inputv movesP to a point to collect
another measurement and the second inputv steersP to a
point indicated by the search direction, which is iterated. Then
the values about the mobility ofP , i.e., ∆τ and (r1, r2, r3),
are related to the convergence property:∆τ corresponds to
the possible convergence speed as shown in the condition for
the discrete time sequence{t02, t10, t12, . . .}, while (r1, r2, r3)
has the relation to the smoothness of the paths connecting
the waypoints given in Theorem 1, and alsor2 and r3 are
numbers characterizing the radiusr of the closed ball to which
P converges.

Remark 1: It is assumed in Theorem 2 thattk2 − tk0 >
max{η,∆τ} andt(k+1)0− tk2 > max{η,∆τ}. The condition
on ∆τ is related to the mobility of the robotP . On the other
hand, the condition onη is reasonable in finding the source
of the “expected” signal field. In fact, in our source seeking
method, the source is sought by sampling the value of the
stochastically switching signal field, and then the condition
guarantees that the number of samples is large. Ifη is greater
than tk2 − tk0 or t(k+1)0 − tk2, it is a practical option that
the discrete time sequence{t02, t10, t12, . . .} is reset so as to
satisfy the condition. Note that the control designer usually
has the flexibility in choosing the time sequence.

Remark 2: It should be clarified why the original SPSA
algorithm [21], given by (9), (10), and (14), is not suitable
for our source seeking problem. First, the discrete trajectories
given by the original SPSA algorithm cannot be followed by
P in practice. In fact, (14) and (18) specify a robot moving
trajectory in the body fixed frameΣ(tk0) (see (5)) as

zk1 = ck1Rn1(−θ(tk0))ξk,
zk2 = −ck1Rn1(−θ(tk0))ξk,
z(k+1)0 = −akRn1(−θ(tk0))d̂(yk1, yk2, 2ck1, ξk),

(29)

in which the three destinations depend on the positionθ(tk0) in
the world coordinate frame. However, the position information
is not available inK as shown in Fig. 2. Thus, in general, it is
impossible to moveP along the trajectory. The only case that
P can follow the trajectory is when the trajectory is given
based on the coordinate frame whose origin is(x(0), θ(0))
and a feedforward estimator, that is, a solver of the differential
equation (1) with the initial state and the input history, is used
to estimate the robot position on the time interval[0,∞). In
this case, the rotational position in the frame can be estimated
only with the model of (1), the zero initial position, and the
input history. However, it is obvious that such feedforward
estimation produces an accumulative error in the real world
and is unrealistic. Second, unlike the proposed controllers in
(23),K has to be a feedforward motion controller driving the
robot P to three points. That is, as seen in (29), to execute

one step of the SPSA algorithm,P has to visit two points to
collect measurements and move to a point indicated by the
search direction. Then, in our problem, this movement must
be achieved without using the position information. Clearly,
in the presence of uncertainty, such three-point feedforward
control is less desirable than the two-point feedforward control
in (23).

Remark 3: As a variant of the SPSA algorithm [21], the
one-measurement type, which requires the only one measure-
ment to determine the search direction, has been developed
in [31]. This can be also extended to an appropriate form for
the source seeking. However, as pointed out in [31], the one-
measurement algorithm is less efficient in many cases.

Remark 4: The controllers proposed in Theorem 2 are
given without explicitly considering the mobility of the robot
P . This implies that the controllers may lead to some unnatural
behavior. On the other hand, as shown in the next subsection,
if P is the unicycle robot, the resulting movement is similar
(not completely-consistent) to a well-known biological phe-
nomenon, the bacterial chemotaxis, that is, the phenomenon
that bacteria in an environment sense a chemical concentration
and move to a more favorable position [32]. In fact, it is
known that the mobility of the bacteria is the almost same
as that of the unicycle and the movement of the chemotaxis is
composed of a random turn and a forward move. Meanwhile,
the proposed controller let the unicycle robotP perform the
random turn and the feedforward/backward move. In this
sense, the movement by the proposed controllers may not be
unnatural for some class ofP . In relation to this, it should
be remarked that a source seeking method that mimics the
bacterial chemotaxis has been proposed in [6].

Remark 5: Though the boundedness and the convergence
of x(t) is guaranteed for the proposed controller,P might drift
far away on the way to the source even when the robotP starts
near the source. This is because the gainsak, which are relative
to the moving distance on the time intervals[tk0, t(k+1)0], have
to be large numbers in the early iterations to avoid the sluggish
performance and so the value ofE[ fσ(tk0)(x(tk0)) |x(tk0) ]
does not always decrease even if the initial positionx(0) is
near the source. In exchange for the undesirable transient, such
a policy contributes to good performance forx(0) far from the
source. Generally, in the optimization using a gradient-free
descent method (such as the finite-difference approximation),
such a phenomenon is unavoidable because the step size
sequence which guarantees monotonically decreasing behavior
cannot be determined without the information of the gradient.
These points imply that the possibility of the drift is a
theoretical limitation of our method. However, it should be
noted that our method yields a certain result for switching
fields despite of such a limitation.
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B. Source Seeking Controllers for Some Specific Robots

Next, we focus on two- and three-dimensional nonholo-
nomic robots and show that there exist very simple source
seeking controllers.

1) 2D Nonholonomic Robot Case:We first prepare the
following result.

Lemma 1: Consider the search directiond(xk, ck, ξk, δk)
in (10). If ξk ∈ {−ρ, ρ}n for ρ ∈ R+, then the vectorsTkξk
and d(xk, ck, ξk, δk) are linearly dependent. More precisely,
the relation

d(xk, ck, ξk, δk) = (ωkρ
−2)Tkξk (30)

holds for the scalar

ωk :=
(f(xk+ck1Tkξk)+εk+)−(f(xk−ck2Tkξk)+εk−)

(ck1 + ck2)
.

Proof: For ξk ∈ {−ρ, ρ}n, we haveξk = ρ sign(ξk). So
it follows that Tkξk = ρTk sign(ξk) and d(xk, ck, ξk, δk) =

ωkTkξ
(−1)
k = ρ−1ωkTk(sign(ξk))

(−1) = ρ−1ωkTk sign(ξk).
This proves (30).

Lemma 1 shows that, ifΞk (i = 0, 1, . . .) are the probability
distributions based on the elementwise Bernoulli trial shown
in Section III-A, the vectors in (18),xk1, xk2, andx(k+1)0,
are on a line segment inRn1 . So to execute one step of
the G-SPSA algorithm, it is enough to driveP on a line
segment. This property presents a very simple controller for
the nonholonomic unicycle (2).

Theorem 3: For the feedback system in Fig. 2, assume that
P is the unicycle (2) and there exists a sourcex∗ ∈ R2. Let
K be the discrete-time controller with the zero-order hold:

ypre[s+1] = y[s],

u[s]=



[
0

1
hζ[s]

]
if s=0, 3, 6, . . . ,[

−λ
hc⌊s/3⌋2
0

]
if s=1, 4, 7, . . . ,[

λ
h

(
c⌊s/3⌋2 − a⌊s/3⌋

ypre[s]−y[s]
c⌊s/3⌋2

)
0

]
if s=2, 5, 8, . . .

(31)

whereh ∈ (η,∞) is the sampling period,s ∈ N is the discrete
time (s = ⌊t/h⌋), ypre[s] ∈ R is the state to savey[s − 1]
(= y((s− 1)h)), ζ[s] ∈ R is the i.i.d random variable drawn
from the uniform distribution on{

π

4
,
3π

4
, −3π

4
, −π

4

}
, (32)

λ :=
√
2, and{ak} ∈

∏∞
k=0 R+ and {ck2} ∈

∏∞
k=0 R+ are

arbitrarily given so as to satisfy (B2) forck1 ≡ 0 (note that
a⌊s/3⌋ andc⌊s/3⌋2 expressak andck2 for k = ⌊s/3⌋). If (C1)–
(C3) hold for the G-SPSA algorithm with the samef , εk+,
εk−, T̂ as in Theorem 2,{ak}, ck1 ≡ 0, {ck2}, the Bernoulli-
trial based distribution{Ξk}, x0 := x(0), andx∗, thenK is
a solution to Problem 1 for anyr > 0.

Proof: The unicycle in (2) can move forward and turn at
the same position; that is,P can be steered straightforwardly
to any translational position. Thus (P1) holds for∆τ := h

and(r1, r2, r3) := (1, 0, 0). Thenu[s] in (31) is composed of
the control inputs for forward move and for turn at the same
position, which can be related to (23) as follows. From (2)
and the definition of the point-to-point control inputv, the
combination of the first and second inputs in (31) corresponds
to

v

t, 2h, 0 →

−c⌊s/3⌋2λ [cos(ζ[s])sin(ζ[s])

]
ζ[s]

 , 1, 0, 0
 . (33)

On the other hand, sinceR2(−ζ[s])[cos(ζ[s]) sin(ζ[s])]⊤ =
[1 0]⊤ and λ[cos(ζ[s]) sin(ζ[s])]⊤ =
(λ[cos(ζ[s]) sin(ζ[s])]⊤)(−1) (the latter is related to
Lemma 1 and it holds only forζ[s] on the set in (32)), the
third input corresponds to (34) at the top of the next page. We
see from (33) and (34) that the controllerK satisfies (23) for
{t02, t10, t12, t20, . . .} := {2h, 3h, 5h, 6h, . . .}, {ak}, {ck2},
ξk := λ[cos(ζ[3k]) sin(ζ[3k])]⊤, ∆ψk0 := ζ[3k] ∈ Φ4,
and ∆ψk2 := 0 ∈ Φ4. Here, (B2) holds for{ak},
{ck2}, and ck1 ≡ 0. Furthermore, by noting that the
probability distributions of ζ[s], the random vectors
λ[cos(ζ[3k]) sin(ζ[3k])]⊤ (k = 0, 1, . . .) are equivalent
to that from the elementwise Bernoulli trial shown in
Section III-A, i.e., which satisfies (B1), (B3), and (B4).
Therefore, this theorem follows from Theorem 1.

The proposed controllerK steers the robotP as shown in
Fig. 4. Three steps on a line segment are repeated: the random
turn, the forward move, and the forward or backward move.

2) 3D Nonholonomic Robot Case:In a similar way to
the above, we can obtain a simple controller for a three-
dimensional nonholonomic mobile robot.

Consider the robot in Fig. 5, which is described by

P :


ẋ1(t)

ẋ2(t)

ẋ3(t)

θ̇(t)

 =


cos θ1(t) cos θ2(t) 0

cos θ1(t) sin θ2(t) 0

sin θ1(t) 0

0 I3

u(t) (35)

wherex(t) := [x1(t) x2(t) x3(t)]
⊤ ∈ R3 is the translational

position,θ(t) := [θ1(t) θ2(t) θ3(t)]
⊤ ∈ R3 is the orientational

position (yaw, pitch, and roll), andu(t) ∈ R4 is the control
input. This robot is the same as considered in [9].

For this, the following result is obtained.
Theorem 4: For the feedback system in Fig. 2, assume that

P is the three-dimensional robot in (35) and there exists a
sourcex∗ ∈ R3. Let K be the modified version of (31) so
that u[s] ∈ R4, ζ[s] ∈ R3 is the i.i.d random vector drawn
from the uniform distribution on{
− tan−1 1√

2
, tan−1 1√

2

}
×
{
π

4
,
3π

4
, −3π

4
, −π

4

}
×{0},

the two 0s fors = 1, 4, 7, . . . ands = 2, 5, 8, . . . are the three-
dimensional zero vectors, andλ := 1/ sin(tan−1(1/

√
2)). If

the same conditions in Theorem 3 hold,K is a solution to
Problem 1 for anyr > 0.

This can be derived in the same way to Theorem 3.
Let ζi[s] denote theith element of ζ[s]. Then, from the
relation sin(tan−1(1/

√
2)) = (1/

√
2) cos(tan−1(1/

√
2)) and
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v

t, h, 0 →

λ(c⌊s/3⌋2 − a⌊s/3⌋
ypre[s]−y[s]

c⌊s/3⌋2

)[ 1
0

]
0

 , 1, 0, 0


= v

t, h, 0 →

R2(−ζ[s])
(
c⌊s/3⌋2λ

[
cos(ζ[s])
sin(ζ[s])

]
− a⌊s/3⌋d̂

(
y[s−1], y[s], c⌊s/3⌋2, λ

[
cos(ζ[s])
sin(ζ[s])

]))
0

, 1, 0, 0
 (34)

x1

x
2

x1

x
2

(a) Step 0: Current position. (b) Step 1: Random turn.

x1

x
2

x1

x
2

(c) Step 2: Forward move. (d) Step 3: Forward or backward move.

Fig. 4. Robot motion by the proposed controller in Theorem 3 (by repeating
these steps, the robot is guided to the source).

x1

3
x

θ1

θ2

θ3

x2

Fig. 5. 3D nonholonomic mobile robot.

the probability distribution ofζ[s], it can be shown that the
vectors

λ

 cos(ζ1[s]) cos(ζ2[s])
cos(ζ1[s]) sin(ζ2[s])

sin(ζ1[s])



(s = 0, 3, 6, . . .), which correspond toξk (more precisely,
ξ⌊s/3⌋) in (23), are equivalent to the random vectors from the
elementwise Bernoulli trial. This is the main idea of the proof.

C. Example

Consider Problem 1, where the robotP is the unicycle (2)
and the signal fieldS is given by the functions

f1(x)=

([
x1
x2

]
−
[
110
80

])⊤[
0.01 −0.005

−0.005 0.01

]([
x1
x2

]
−
[
110
80

])
,

f2(x)=

([
x1
x2

]
−
[
90
90

])⊤[
0.01 0.001
0.001 0.003

]([
x1
x2

]
−
[
90
90

])
,

f3(x)=

([
x1
x2

]
−
[
109
110

])⊤[
0.02 0.003
0.003 0.01

]([
x1
x2

]
−
[
109
110

])
and the probability distributiong(1) = 0.15, g(2) = 0.15,
and g(3) = 0.7. Its source isargminx∈R2E[fσ(x)|x] =

argminx∈R2

∑3
σ=1 g(σ)fσ(x) ≃ [109.13 103.54]⊤. The con-

troller K is given by Theorem 3 forh := 1, ak := 15/(k +
1)0.55, andck2 := 10/(k + 1)0.03.

Fig. 6 illustrates the contour plot ofE[fσ(x)|x] and the
moving trajectory ofP from the initial state(x(0), θ(0)) :=
([182 41]⊤, 10), where the isosceles triangles express
(x(tki), θ(tki)) (k = 0, 1, . . . ,∞, i = 0, 2). Fig. 7 depicts
the time evolution of the distance to the source, i.e.,∥x(t)−
argminx∈R2E[fσ(x)|x]∥. We see that the robotP is guided
to the source by the simple controller.

Remark 6: As pointed out for the original SPSA algorithm
[33], the choice of the gains{ak} and {ck2} is critical
to the performance, in particular, the convergence speed, of
the G-SPSA based controllers. A practical way to determine
these gains is the Monte Carlo method with randomly chosen
S based on some prior knowledge. There may be suitable
selection for the stochastic source seeking, and such a topic is
one of future works. Also, the best probabilistic distribution
{Ξk} should be clarified in the future, though the Bernoulli-
type distribution has been mainly employed in this paper,
by considering the optimality proven in [26] and the good
property given by Lemma 1.

Remark 7: The above controllers are based on the turn and
the forward/backward move. Even if the robotP does not have
such simple mobility, the source seeking can be achieved as
long as (P1) holds.

Remark 8: Four limitations of the proposed method are
noted. First, the signal fieldsfσ(x) have to be thrice differ-
entiable as assumed in Section II-A. This guarantees that the
expected value ofd(xk, ck, ξk, δk) (in (10)) is nearly equal to
the gradient off(xk), from which the source seeking problem
is solved. If this assumption does not hold (and the signal
field S does not switch), the method in [5] can be used as
an alternative. Second, our source seeking controllers have
been presented for periodic switching fields. The periodic
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Fig. 6. Moving trajectory of unicycle by the proposed controller.
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Fig. 7. Time evolution of the distance to the source.

switch is reasonable in some cases, e.g., in the base station
placement, mentioned in Section I, with a large number of
synchronized terminal units. Note, however, that the all results
in this paper hold even for aperiodic fields which switch before
discrete timestki (k = 0, 1, . . ., i = 0, 2) w.p.1. On the other
hand, our result should be extended to more practical switches
such as the Poisson switch. For the extention to the Poisson
switch case, our result may be a basis because it is well-
known that the Bimodal distribution, which is used as the
switching model considered here, has a close relationship to
the Poisson distribution [34]. Third, the proposed controllers
cannot be applied to robots with nonzero constant velocity,
such as aircrafts. On the other hand, the methods in [4], [5],
[10] can be used for such robots. Finally, even when the
robot can take the measurements continuously along the whole
trajectory, the proposed controllers do not utilize the all of the
data. If they are adopted for the gradient estimation, a better
result could be obtained. It is however pointed out that the
time for measurement is not always short, e.g., for chemical

substances. Thus one cannot always utilize the measurements
along the whole trajectory.

Remark 9: We note the difference to other source seeking
methods. First, a source seeking method for noisy environment
has been developed in [13]. By using this result, a solution to
Problem 1 may be obtained. The method, however, is based on
the extremum seeking and can be applied to the only integrator
and nonholonomic unicycles at present. On the other hand, the
proposed method is given for robots satisfying (P1). Next, a
method based on stochastic motion has been recently presented
in [14]. Although it is similar to our method in the sense of
taking stochastic motion, the method in [14] is a solution for
non-switching fields and thus the performance for switching
fields is unclear. Similarly to this, as mentioned in Section I,
there are a number of source seeking methods and some of
them might be useful for switching fields. However, there has
been no theoretical result for switching fields.

V. CONCLUSION

A stochastic source seeking problem has been studied. By
extending the SPSA algorithm in [21], we have developed
source seeking controllers for randomly switching signal field.
The key idea is to find a stochastic trajectory (i) converging to
the unknown source with probability 1 and (ii) followed by the
robot without a position sensor. The trajectory is given by a
generalized version of the SPSA algorithm. In addition, simple
source seeking controllers have been provided for two types
of nonholonomic robots, for which it has been shown that
the source seeking is attained by the combination of simple
movements.

As a first step for the switching source seeking, somewhat
limited cases have been treated. In particular, the convergence
of the proposed controllers is guaranteed for periodic and
sufficiently fast switching fields. In the future, more general
switching fields should be addressed. In addition, the proposed
controllers cannot be used for robots with drift (i.e., movement
under the zero control input), as stated in Remark 8. Solving
this problem is left as a future work. Also, for various
applications, the proposed framework should be extended to
the case where the robot is disturbed by the environment (e.g.,
fluid environment) and to the stochastic source seeking by
multiple robots.
Acknowledgments: The first author would like to thank Prof.
James C. Spall, Johns Hopkins University, for his valuable
information on one-sided SPSA algorithms. He also would like
to thank Prof. Toshiharu Sugie, Kyoto University, for giving
the opportunity to study at University of Pennsylvania.

APPENDIX I
PROOF OFPROPOSITION1

A. Notation

We denote byei the ith standard basis ofRn. The Kro-
necker product of the vectorsy1 andy2 is expressed asy1⊗y2.
For the row vectorz ∈ R1×n, diagm(z) expresses the block
diagonal matrix whosem diagonal blocks arez. Using this,
we have the vector equality

(zx)y = diagm(z)(y ⊗ x) (36)
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for x ∈ Rn, y ∈ Rm, and z ∈ R1×n. For the thrice
differentiable functionf : Rn → R and j = 2, 3, let

f (1)(x) := (∇f(x))⊤,

f (j)(x) :=

[
∂f (j−1)(x)

∂x1

∂f (j−1)(x)

∂x2
· · · ∂f (j−1)(x)

∂xn

]
.

Note thatf (j)(x) is a row vector of dimensionnj . Using this,
the functionf(x + y) (thrice differentiable) is expressed by
Taylor’s theorem as

f(x+ y) = f(x) + f (1)(x)y +
1

2
f (2)(x)(y ⊗ y)

+
1

6
f (3)(x̄)(y ⊗ y ⊗ y) (37)

wherex̄ is a vector on the line segment betweenx andx+ y.

B. Proof

By noting (A1), we apply Taylor’s theorem in (37) to the
termsf(xk + ck1Tkξk) and f(xk − ck2Tkξk) in (10), which
gives

f(xk+ck1Tkξk)− f(xk−ck2Tkξk)
= (ck1+ck2)f

(1)(xk)Tkξk

+
(c2k1−c2k2)

2
f (2)(xk)(Tk ⊗ Tk)(ξk ⊗ ξk)

+

(
c3k1
6
f (3)(x̄k1)+

c3k2
6
f (3)(x̄k2)

)
(Tk⊗Tk⊗Tk)(ξk⊗ξk⊗ξk)

wherex̄k1 and x̄k2 are vectors on the line segments between
xk and xk + ck1Tkξk and betweenxk and xk − ck2Tkξk,
respectively. It follows from (10) and (36) that

d(xk, ck, ξk, δk)

= Tk(f
(1)(xk)Tkξk)ξ

(−1)
k

+
(ck1−ck2)

2
Tk(f

(2)(xk)(Tk ⊗ Tk)(ξk ⊗ ξk))ξ
(−1)
k

+
1

6
Tk

((
c3k1

ck1+ck2
f (3)(x̄k1) +

c3k2
ck1+ck2

f (3)(x̄k2)

)
× (Tk⊗Tk⊗Tk)(ξk⊗ξk⊗ξk)

)
ξ
(−1)
k

+ Tk
εk+ − εk−
(ck1 + ck2)

ξ
(−1)
k

= Tkdiagn(f
(1)(xk)Tk)(ξ

(−1)
k ⊗ ξk)

+
(ck1−ck2)

2
Tkdiagn(f

(2)(xk)(Tk ⊗ Tk))

× (ξ
(−1)
k ⊗ (ξk ⊗ ξk))

+
1

6
Tk

((
c3k1

ck1+ck2
f (3)(x̄k1) +

c3k2
ck1+ck2

f (3)(x̄k2)

)
× (Tk⊗Tk⊗Tk)(ξk⊗ξk⊗ξk)

)
ξ
(−1)
k

+ Tk
εk+ − εk−
(ck1 + ck2)

ξ
(−1)
k . (38)

Here, from (B1), the relations

E

[
ξkj
ξki

∣∣∣∣xk ] = { 0 if i ̸= j,
1 if i = j,

E

[
ξkjξkl
ξki

∣∣∣∣xk ] = 0

hold for every(i, j, k, l) ∈ {1, 2, . . . , n}4 (note that (B1) (a)
impliesE[ξki] = 0 andE[ξ−1

ki ] = 0), from which we have

E[ξ
(−1)
k ⊗ ξk|xk ] = [e⊤1 e⊤2 · · · e⊤n ]

⊤, (39)

E[ξ
(−1)
k ⊗ (ξk ⊗ ξk)|xk ] = 0n3×1. (40)

Moreover,

c3ki
ck1+ck2

≤ c3ki
max{ck1, ck2}

≤ c2ki = O(∥ck∥2) (i = 1, 2)

(41)

in (38). From (A2), (B1) (a), (38), (39), (40), and (41), we
have

E[d(xk, ck, ξk, δk) |xk ]
= Tkdiagn(f

(1)(xk)Tk)E[ξ
(−1)
k ⊗ ξk|xk ] +O(∥ck∥2)

= Tk


f (1)(xk)Tke1
f (1)(xk)Tke2

...
f (1)(xk)Tken

+O(∥ck∥2)

= Tk


e⊤1 T

⊤
k ∇f(xk)

e⊤2 T
⊤
k ∇f(xk)

...
e⊤n T

⊤
k ∇f(xk)

+O(∥ck∥2)

asck → 0. This, together with (A3), implies (12).

APPENDIX II
PROOF OFPROPOSITION2

In a similar way to [21], Proposition 2 is proven via the
Robbins-Monro Algorithm.

A. Robbins-Monro Algorithm

The Robbins-Monro Algorithm has the form

xk+1 = xk − ak(g(xk) + bk + ek) (42)

wherexk ∈ Rn is the state,ak ∈ R+ is the gain,g : Rn →
Rn is the function whose root is to be found, andbk ∈ (R ∪
{∞})n andek ∈ Rn are the random variables.

A result on the convergence is given by the following
theorem (see, e.g., [25] for further details).

Proposition 3: Consider the algorithm in (42). Assume that
there exists a rootx∗ ∈ Rn of the equationg(x) = 0. If

(D1) limk→∞ ak = 0 and
∑∞

k=0 ak = ∞,
(D2) limk→∞ bk = 0 and supk∈N ∥bk∥ <∞ w.p.1,
(D3) for everyx0 ∈ S andκ ∈ R+,

lim
k→∞

Prob

[
sup

l∈[k,∞)

∥∥∥∥∥
l∑

i=k

aiei

∥∥∥∥∥ ≥ κ

]
= 0 (43)

whereS is a set defined in (D5),
(D4) x∗ is an asymptotically stable equilibrium ofẋ(t) =

−g(x(t)),
(D5) there exists a compact stability regionS ⊆ Rn for

ẋ(t) = −g(x(t)) (which is nonzero-measure and for
which ẋ(t) = −g(x(t)) with x(0) = x0 results in



13

x(∞) = x∗) such thatxk ∈ S infinitely often for
everyx0 ∈ S and almost all sample points,

(D6) supk∈N ∥xk∥ <∞ w.p.1 for everyx0 ∈ S,

then

lim
k→∞

xk = x∗ w.p.1 (44)

for everyx0 ∈ S.

B. Proof of Proposition 2

By Proposition 1 and the relation

d(xk, ck, ξk, δk) = E[d(xk, ck, ξk, δk)|xk] + d(xk, ck, ξk, δk)

− E[d(xk, ck, ξk, δk)|xk],

the G-SPSA algorithm given by (9) and (10) is represented as

xk+1 = xk − ak
(
∇f(xk) +O(∥ck∥2)
+ d(xk, ck, ξk, δk)−E[d(xk, ck, ξk, δk)|xk]

)
under (A1)–(A3) and (B1). Therefore, the G-SPSA algorithm
with a fixed sequence{Tk} is equivalent to (42) for

g(xk) = ∇f(xk), (45)

bk = O(∥ck∥2), (46)

ek = d(xk, ck, ξk, δk)− E[d(xk, ck, ξk, δk)|xk]. (47)

Furthermore, under (A6), the statement

(⋆) for each sequence{Tk} ∈
∏∞

k=0 T, “ limk→∞ xk = x∗

w.p.1” holds

implies the main statement in the theorem (“(13) holds for
every{Tk} ∈

∏∞
k=0 T ” holds w.p.1), since (A6) means that∏∞

k=0 T is a countable set.
So in the following part, to prove (⋆), we show under (45)–

(47) that (A2)–(A5), (B2)–(B4), and (C1)–(C3) imply (D1)–
(D6) for any{Tk} ∈

∏∞
i=0 T.

First, it is trivial that (B2) implies (D1) and (D2) and that
(A4), (C1), and (C2) imply (D4)–(D6) becauseT ⊆ T̂.

Next, we prove that (D3) holds under (A2), (A3), (A5),
(B2)–(B4), and (C3). Suppose that a sequence{Tk} ∈∏∞

k=0 T is arbitrarily given and consider the stochastic pro-
cess {

∑β
i=k aiei}∞β=k with the filtration Fβ generated by

{(xk, ξk)}βi=0. From Jensen’s inequality and the fact that
E[e⊤i ej ] = 0 for i ̸= j, we have(
E

[∥∥∥∥∥
β∑

i=k

aiei

∥∥∥∥∥
])2

≤ E

∥∥∥∥∥
β∑

i=k

aiei

∥∥∥∥∥
2
= β∑

i=k

E
[
∥aiei∥2

]
.

(48)

Furthermore, under (A3), (A5), (B2), (B4), and (C3), it can
be shown in a similar way to [21] that

∞∑
k=0

E
[
∥akek∥2

]
≤ µ

∞∑
k=0

a2k
∥ck∥2

<∞ (49)

whereµ is a constant that does not depend onk. Equations
(48) and (49) meanE[∥

∑β
i=k aiei∥ ] < ∞ for every β ∈

{k, k+1, . . .}. It follows that the sequences{
∑β

i=k aiei}∞β=k

and{∥
∑β

i=k aiei∥}∞β=k are integrable. Thus, if the martingale

difference assumption (A2) and the independence assump-
tion (B3) hold, the sequence{

∑β
i=k aiei}∞β=k is martingale

in the filtration Fβ and further{∥
∑β

i=k aiei∥}∞β=k is sub-
martingale inFβ (by the Jensen’s inequality). This follows
from the relationE[

∑β+1
i=k aiei −

∑β
i=k aiei|

∑β
i=k aiei ] =

aβ+1E[E[ eβ+1|x0, x1, . . . , xβ , ξβ ,
∑β

i=k aiei ]|
∑β

i=k aiei ]

= aβ+1E[E[ eβ+1|x0, x1, . . . , xβ , ξβ ]|
∑β

i=k aiei ] = 0 sub-
ject to (A2) and the fact that

∑β
i=k aiei is determined by

{(xk, ξk)}βi=0. The submartingale property enables us to apply
Doob’s martingale inequality to the probability part of the left
hand side of (43), which gives

Prob

[
sup

β∈[k,∞)

∥∥∥∥∥
β∑

i=k

aiei

∥∥∥∥∥≥ κ

]
≤ lim

β→∞
κ−2E

∥∥∥∥∥
β∑

i=k

aiei

∥∥∥∥∥
2
 .

(50)

Equations (48)–(50) imply

Prob

[
sup

β∈[k,∞)

∥∥∥∥∥
β∑

i=k

aiei

∥∥∥∥∥ ≥ κ

]
≤ κ−2µ

∞∑
i=k

a2i
∥ci∥2

.

This and (B2) prove (D3).

REFERENCES

[1] A.A. Julius, M.S. Sakar, E. Steager, M.J. Kim, V. Kumar, and G.J.
Pappas, “Harnessing bacterial power for micro scale manipulation and
locomotion,” Proceedings of 2009 IEEE International Conference on
Robotics and Automation, pp. 1004–1009, 2009.

[2] S.D. Nathanson, “Insights into the mechanisms of lymph node metasta-
sis,” Cancer, Vol. 98, No. 2, pp. 413–423, 2003.

[3] E. Burian, D. Yoerger, A. Bradley, and H. Singh, “Gradient search
with autonomous underwater vehicles using scalar measurements,”
Proceedings of IEEE Symposium on Autonomous Underwater Vehicle
Technology, pp. 86–98, 1996.

[4] C.G. Mayhew, R.G. Sanfelice, and A.R. Teel, “Robust source-seeking
hybrid controllers for nonholonomic vehicles,”Proceedings of 2007
American Control Conference, pp. 1185–1190, 2007.

[5] C.G. Mayhew, R.G. Sanfelice, and A.R. Teel, “Robust hybrid source-
seeking algorithms based on directional derivatives and their approxima-
tions,” Proceedings of 47th IEEE Conference on Decision and Control,
pp. 1735–1740, 2008.

[6] A.R. Mesquita, J.P. Hespanha, and K.Åström, “Optimotaxis: A stochas-
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