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Stochastic Source Seeking by Mobile Robots

Shun-ichi AzumaMember, IEEE, Mahmut Selman Sakakember, IEEEand George J. Pappdasllow, IEEE

Abstract—We consider the problem of designing controllers
to steer mobile robots to the source (the minimizer) of a signal
field. In addition to the mobility constraints, e.g., posed by the
nonholonomic dynamics, we assume that the field is completely
unknown to the robot and the robot has no knowledge of
its own position. Furthermore, the unknown field is randomly
switching. In the case where the information of the field (e.g.,
the gradient) is completely known, standard motion planning
techniques for mobile robots would converge to the known PRV s
source. In the absence of mobility constraints, convergence to £ 4 f & “Source
the minimum of unknown fields can be pursued using the
framework of numerical optimization. By considering these facts,
this paper exploits an idea of the stochastic approximation for . ) .
solving the problem mentioned in the beginning and proposes a the concentration field of a smell substance, and the landmine

source seeking controller which sequentially generates the next search is done for a magnetic field (where the strongest signal
waypoints such that the resulting discrete trajectory converges point is regarded as the minimizer of a function quantifying
to the unknown source and which steers the robot along the the weakness field). Another possible application isrdhetic

waypoints, under the assumption that the robot can move to . . - . .
any point in the body fixed coordinate frame. To this end, we pinpoint dosefor avoiding side effects, where, instead of

develop a rotation-invariant and forward-sided version of the diffusing a medicine in the body, the medicine is directly sent
simultaneous-perturbation stochastic approximation algorithm as  to invisible tumor cells by a micro robot. In this case, a protein

amethod to generate the next waypoints. Based on this algorithm, concentration field is used (related techniques are found in e.g.,
we design source seeking controllers. Furthermore, it is proven 111, [20)

that the robot converges to a small set including the source in .
a probabilistic sense if the signal field switches periodically and ~ Currently, there are three main approaches to the problem.
sufficiently fast. The proposed controllers are demonstrated by In [3]-[5], mathematical programming based methods have

numerical simulations. been provided, where a gradient type controller and a hybrid
Index Terms—source seeking, simultaneous-perturbation controller have been given. An approach based on random
stochastic approximation, mobile robots, nonholonomic systems. walk has been proposed in [6]. There, it has been shown that
the probability distribution on the robot position converges

to a desired function. The extremum seeking technique [7],

I. INTRODUCTION originally developed for adaptive control, has been applied

OURCE seeking is a mixed problem afearch and in [8]-[14]. Apart from these approaches, related problems
Snavigation as shown in Fig. 1: when a mobile robot idhave been discussed in [15]-[20], where, unlike the situation
placed in an environment where anknownsignal field, i.e. considered here, it is assumed that the position information is
an unknown spatial profile of the signal, is introduced, fingvailable for the navigation, or the problems do not include
a controller to steer the robot to the source (the unknov@y control issue of mobile robots. ' .
minimizer) withoutusing the position information. The field is Here, we are interested in thetochasticsource seeking,
given by a scalar-valued function, denoted i) in Fig. 1, which involves a randomly switching field. This is motivated
which could express the spatial distribution of magnetic forcBy the following fact. Although switching fields appear in
heat, or chemical concentration. The robot is navigated by oljany applications, such a situation has never been handled
using the measurements of the signal at the positions. SO far, except for a mathematically similar case with noisy

This topic will have great potential for a wide range of fusignal fields [13]. An example with a switching field is the
ture applications, including wireless communication, medicBRSe station placement for wireless communication, which is
science, security engineering, and natural resource develpfind the best location in terms of the terminal density. In this
ment. For example, the robotic suspect search is consideredd@$e. the signal field corresponds to the radio field made by a

" o submitted: March. 2010 number of terminal units, which randomly switches depending
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pasg@seas.upenn.edu). seeking by mobile robots. Our approach is to find a controller

Fig. 1. Source seeking problem.



which sequentially generates the next waypoints such thmatrix. For the vectorz € R™, we use|z| and sign(z)
the resulting discrete trajectory converges to the unknowm express the Euclidian norm and the signum vector. If the
source and which steers the robot along the waypoints, undector z is composed of nonzero elements, 4#t!) be the
the assumption that the robot can move to any point in thector composed of the elementwise inverse, ié5) =
body fixed coordinate frame. Here, the idea of a stochastic * z;* --- 2,;!]T € R™ wherex; is theith element ofz.
approximation technique, called teenultaneous-perturbation The vectorization of the matrid/ is expressed byec(M).
stochastic approximation (SPSE1], is utilized to obtain the For the numbef € R, Ry (0) is the two-dimensional rotation
waypoints. The contributions of this paper are summarized estrix defined as
follows.
First, we extend the SPSA algorithm to an appropriate Ry(0) := {
form for the source seeking by mobile robots. Since the
original algorithm generates the waypoints based on the woftdrthermore,2;(1)) expresses the three-dimensional rotation
coordinate frame, it is impossible to drive the robot alongpatrix with the yaw, pitch, and roll specified by the vector
the waypoints without a position sensor. In contrast, the nélv:= [¢1 ¥2 ¥3]" € R? in radians. Note that the matrices
algorithm provides the waypoints in a time-varying coordina@'e orthogonal, e.g.Ra2(0)R, (§) = I, which plays an
frame, which fits the sensor-free navigation. Based on this, Weportant role in this paper. For the number € R, let
present source seeking controllers composed of point-to-poifit Pe the maximum integer less than or equalatoThe
controllers. It is then proven that the controllers drive the rob§galar/vector/function sequen¢e;, x;+1, ...,z } is denoted
to a small set including the source with probability 1 if th®y {z:};Z, and, for simplicity, it is denoted byz;} if I =0
field switches periodically and faster than the measuremeéiitd m = oco. The gradient of the scalar-valued function
period of the signal. f:R"™ — R is denoted byV f(z), i.e.,
Second, simple source seeking controllers are presented for T
two- and three-dimensional nonholonomic robots by exploiting Vf(z) := 0f(z) 9f(x) 0f(@)
a special structure. This shows that the stochastic source Oy Oz Oxn
seeking is achieved by repeating two actions: a random tumhere z; is the ith element of the vector € R”™. Finally,
and a forward/backward move. S1 @ S, represents the Minkowski sum of the sBtsandS..
It should be stressed that this paper does not just apply an
existing optimization method to the source seeking problem.
In fact, it is not true that any optimization method can be
employed, because the optimization method for our problefn Problem Formulation

must have the following properties: (I) the method uses theCOnSider the feedback system in F|g 2, Composed of

measurements of the functiof) instead of the explicit form the mobile robotP, the signal fieldS, and the controllers.
of fandV f (see Fig. 1), (ii) the number of measurements has The robotP is given by
to be small for efficiency, (iii) the method can handle stochastic

cosf) —sind
sin 6 cosf |’

eR"”

Il. STOCHASTIC SOURCE SEEKING PROBLEM

switching fields, and (iv) the waypoints given by the method (1)
can be followed by the robot with no position sensor. In Poo | 0(t) | =G(x(t),0(t), 6()) u(t) (1)
this paper, by focusing on these points, the SPSA algorithm o(t)

[21] is picked from a number of optimization techniques, i

and is extended to a suitable version for the source seekilifjere z(1) € R™ and #(t) € R" are the translational

It is also noted that, as a first step to the source seekiﬂ?d orlentathnal positions in the _world co_ordmate frame,

with stochastically switching fields, we mainly consider &(1) € R"™ is the other state variable defined relative to

somewhat limited case, where the fields switch periodicalf)® absolute positiorix(¢), 6(¢)) and is called thenternal

and sufficiently fast. This may limit possible applicationg?@Sturé u(t) € R™ is the control input, andr : R"™ x R" x

but the paper will be a basis in developing stochastic sourBe* — R{" et is a nonlinear function describing the

seeking methods for more general cases. dynamu_:s. We assume thatis in a two- or three-dimensional
This paper is organized as follows. In Section II, th§Pace: i-e.{n1,n2) € {(2,1),(3,3)}. It is well-known that

stochastic source seeking problem is formulated and the idg@any drift-free mobile robots can be expressed by (1) [23].

for the solution is outlined. Next, a generalized version of tHeh €xample off is the Kinematic model of the nonholonomic

SPSA algorithm is provided in Section Ill, and our sourcdNcycle in Fig. 3 (a), which is described by

seeking controllers are presented in Section IV. Section V a1 (t) cosf(t) 0
concl_udes th|§ paper. _ o _ Zo(t) | = | sinB(t) 0 | u(t) 2
This paper is based on our earlier preliminary version [22], 0(t) 0 1

and contains full explanations and proofs omitted there.

Notation: Let R, R., Ros, and N be the real number wherez(t) € R, z2(t) € R, (t) € R, andu(t) € R% The
field, the set of positive real numbers, the set of nonnegatistate variablep for the internal posture is not required for the
real numbers, the set of nonnegative integers, respectivelgicycle but will be used for more complicated robots such
We denote by0,,«,, and I,, (or for simplicity of notation, as the four-wheeled vehicle in Fig. 3 (b) where the steering
0 and I) the n x m zero matrix and then x n identity angle is expressed hy.



interior,

Robot . Signal ﬁeldy (ii) for every (zo,t) € Xo x Roy, ||z(t)|| < oo w.p.1 under
N > s > 2(0) = m,
(iii) for each z(0) = zp € Xy, there exists a time instant
| ts € R, satisfying
K |
= Ja(t) =" < v
ontroller

for everyt € [ts,00) w.p.1 wherez* € X is the source. B

Several remarks on this problem are given.

First, (iii) is the condition on the convergence not to a source
but to a closed ball including a source. This is fairly standard
for source seeking problems, since the trajectories of the robot

\9 P are often restricted by the mobility constraints (such as
nonzero velocity constraints and nonholonomic constraints)
and the convergence to a single point is often impossible. Note
here that, if the givem is smaller than a value depending upon
the mobility constraint, then it is concluded that the problem

Fig. 2. Control system for source seeking.

X, A X 4

/
\

_ o %1 is infeasible, i.e., there is no solution to this problem.
(&) Unicycle. (b) Four-wheeled vehicle. Next, we havenoinformation onS except for a few assump-
Fig. 3. Examples of mobile robots. tions, which poses two challenging issues in this problem.
First, even if we focus on only the static optimization problem
The signal fieldS is a transducer from the information on min E[f,(z)|z], (4)

x to a scalar signal, which is of the randomly switching form veRr™

. typical methods, using the explicit form af[f,(z)|x] or
St y(t) = forn(x(t) ®) its gradient, cannot be employed (because we do not have

wherey(t) € R expresses the signal strength giad R™ —  the expression of[f,(x)|z]). Namely, our attention has to

R are thrice differentiable functions with respectitarurther- P€ restricted to methods only using the measurements of
more,o(t) € {1,2,..., N} is the piecewise constant random/o (1) (z(t)). Second, in the feedback system in Fig. 2, it is
signal given asr(t) = o; on the time intervalin, (i + 1)n) impossible to estimate the absolute position Rfthrough
wherei € N, o, are the i.i.d. random variables from the probth® measurements of. Thus K" has to generate the control
ability distributiong : {1,2,..., N} — [0,1], andn € R, is Input without using the position information, which prevents
the switching time period. An example 6fis shown in Sec- US from applying position control methods based on the world
tion IV-C. We denote by[f, («)|z] the conditional expected coordinate frame.

value Zi\’:l 9(0) (), i.e., Blf,(z)|z] = for\le 9(0) f(2), Finally, it is assumed in the problem that the rolbdhas a

and we call the local minimizer(s) df[f, (z)|2] thesource(s) Single sensor to measure the signal strength (j(¢),< R) of
where note that corresponds to just a random variable drawte signal fieldS. On the other hand, i has multiple sensors
from the probability distributiory. For example, ifn, := 2, @appropriately embedded, the gradient informatiorbafan be
N:=2, fi(z) =2z, folx) :=(x—[01]7)T(z—[0 1]T), directlyobtained and utilized for source seeking. Nevertheless,
g(o) = 0.5 for o € {1,2}, andg(o) = 0 for o ¢ {1,2}, this paper does not deal with such a situation, because we are
then E[f,(z)|z] = 0.52 Tz +0.5(z—[01]7)T(z—[01]T) = interested in the source seeking with the minimum number of

T2 — [0 1]z + 0.5 and the source is = [0 0.5] . sensors.
The controller K is a (causal) dynamical system which

could be a continuous-time system or a discrete-time syst

with a sampler and a holder. The inputs a&reand y, which

means that the information on the internal postyreis The idea to solve Problem 1 is outlined as follows. As easily

available by some internal sensorsif(e.g., potentiometers) imagined, Problem 1 raises two issues: &xplorationof the

but the absolute positiofi:, 6) is not. solution to the static problem (4), and tbentrol of the robot.
Then we consider the following problem. As a solution to the former, we first present a set of stochastic
Problem 1 (Stochastic Source Seeking)For the feed- discrete trajectories (almost surely) converging to a solution

back system in Fig. 2, suppose thRt S, and a positive to (4). Next, we pick an appropriate stochastic trajectory from

numberr € R, are given, but assume that is unknown the set and give a controllék’ to steer the robot along the

(i.e., the functionsf, (¢ = 1,2,...,N) and the probability trajectory, which solves the latter. These will be respectively

distributiong are unknown). Then find a controlléf seeking detailed in the next two sections.

a source i.e., a K such that there exists an initial state set In considering the approach, some symbols are prepared

Xy € R™ satisfying at this point. For the robof, we often use the body fixed

(i) X, is a nonzero-measure set including a source in it®ordinate frame. The frame at timeis denoted byX(7),

%ﬁ.n Solution Idea and Preparation



ie., a problem,d; € R? is the variable expressing noise and

i . n 1 p q n
()] [ Roy(—0(0)(a(t) — (7)) uncertainty, and.: R x R, x RY x Rt - R is the search
S(r): | () | = o(t) — 6(7) ) irection. This algorithm is closely related to the steepes
©(t) o(t) descent, which corresponds to the cale,ck, &k, 0k) =

V f(xy) for the functionf : R — R to be minimized.

wheret expresses a future time after (z(¢),4(t),¢(t)) €  For the algorithm in (9), we propose the search direction
R™ x R™ x R"s are the new coordinates, att},, (—0(7))

is the ny-dimensional rotation matrix defined in Section |I. If d(zk, ck, &k, Ok)
(P1) for each(Az,Ay) € R™ x R™, there exists a (f (@r+ 1 Thék) +er+) — (f (@r — craThék) +er-) o(-1)
k

control inputu such that (cr1 + cr2)
@) [|z(t)] < ril|Az| + rolA¢| + rg for every (10)
ter, ™+ A7], for ¢ = | T — T
) L = |Ck1 Ckz] and §, = [é‘k-+ Ek— vec(Tk)] ,
(b) 2(7 + A7) = Az andy(7 + A1) = A where f : R® — R is the function to be minimized,
under the conditions(r) = 0 and(7) =0 ck1,ck2 € {0} UR, are the gainsg, € R™ (p = n) is
holds for someAr € Ry and (ry,72,73) € Ror X Roy x  the random variableg,(;l) is the elementwise inverse ¢f as
Ry, we denote by defined in Section lgx,e,— € R are the random noise, and
A T, € R™*™ is the uncertain time-varying matrix (which will
Z H 1 1 13 1 ” 1 M
v (t, AT, 0 — { A 1/}] , 7’1,7’2,7"3> (6) be treated as an uncertain time-varying “rotation” matrix in

Section V). To appropriately define (10), it is assumed that
a control input (function) fot € [, 7+ Ar] to steer the robot |c,|| > 0, i.e., cx1 > 0 or ¢z > 0. We also assume that
P as stated in (P1). Note that (P1) corresponds to a kind Of € T for the uncertain matrix s C R**" and assume
controllability assumption, which guarantees the existence oftat the random variablg, follows the probability distribution
point-to-point controller to steeP from the current position to =, : R™ — [0, 1]. In the algorithm given by (9) and (10), the
[(Az)T (Av)T]T keeping the boundednessAf) on the time problem parameters (given in advance) are the funcficthe
interval [7, 7 4+ A7]. Note also that applying to P results in probability distributions of{c;}, {ex_}, and the uncertain

matrix setT, while the design parameters of the algorithm
[Z((;ti:;] = BE:;] {R"I(QA(;))AZ} , (7) are the gain sequencés; }, {cx1}, {ck2} and the probability

distribution sequencg=;}. We call the algorithm given by (9)
llz(t)—x(r)|| < ril|Az|| + rof|A¢|| + 73 (Yt € [r,7+A7])  and (10) thegeneralized simultaneous-perturbation stochastic

(8) approximation algorithnor simply theG-SPSA algorithm

] ] ) ] For the algorithm, we discuss here the robust stability, i.e.,
in the world coordinate frame. A typical method to obtain thge convergence for every possible uncertain matrices. In the

input v is to utilize the so-called Lie bracket motion based opy|jowing part of this section, the conditions and propositions
periodic inputs and the accessibility distributtoof P (see, on the solutionr;, of the G-SPSA algorithm are assumed to be

e.g., [24]). those satisfied for everffT},} € [[r—, T, though the universal
guantification for the uncertain matrix is omitted for simplicity
ll. STOCHASTIC DISCRETETRAJECTORIES FOR of notation. N _
SFOCHAS-HC SOURCE SEEK|NG Undel’ Several Condltlons, the G'SPSA algonthm SOIVeS the

To obtain stochastic discrete trajectories for the sourééatlc optimization problem

seeking, we employ the idea of a stochastic approximation min f(x) (11)

technique, called theimultaneous-perturbation stochastic ap- zER™

proximation (SPSAJ21]. Since the original SPSA algorithmby using noisy measurements $fz). This is formalized in

is not applicable to our source seeking problem as statedRropositions 1 and 2.

Section | (which will be detailed in Remark 2), we extend the Proposition 1: Consider the search direction

original algorithm to a more suitable version. d(zk, ck, €k, 0;) in (10) and let&,; € R be the ith
element of the random vectgy,. If

A. Generalized Simultaneous-Perturbation Stochastic Approx-« the conditions on the problem parameters:

imation (A1) fis thrice differentiable,

A general form of the stochastic approximation algorithm (A2) Elep+ —ek— | {xo, 21, 2}, & ] = 0 w.p.l
is given by for all k£ € N,

d €. 00) ©) (A3) each element o is an orthogonal matrix,
X =T —Qa Tk, Ck, 5 .. .
ol i P Bler S O « the conditions on the design parameters:

wherez), € R" is the stateq), € Ry andc, € R, are the (B1) (a) for eachk € N, &, is integrable, the prob-
gains,{; € R? is the random variable introduced for solving ability distribution =, is symmetric about zero

1The linear combination of the all Lie brackets for the column vectors of (i.e., E[§g] = 0), and there exists & € Ry

G(z,0, ). such that|¢,;| < 8y and |€.'| < B w.p.1 for



allie{1,2,...,n}, not have precise information abofit but have an estimation
(b) for eachk € N, &; (i = 1,2,...,n) are T of T.
mutually independent Most of the conditions in Proposition 2 are fairly standard
hold, then in stochastic approximation [21], [25]. Conditions (A1)—(A6)
) are concerned with the functiofy the noises;., ¢—, and the
Eld(zk, cx, &k, 0k) |2 ] = Vf(2x) + O(llex] ") (as ek = 0)  yncertain time-varying matrigy,. (A1) means thaf is smooth
(12) enough and (A4) is common for descent-type algorithms,
for every T, € T, where the left hand side expresses th%aymg thatz™ is a.IocaI minimum pomt off. (A2) rgsembles .
. the common martingale difference noise assumption appearing
expected value with respect £g, ¢4, andey_. . . o .
) X in standard stochastic approximation algorithms (see e.g.,
Proof: See Appendix I. [ | . : S
o e : 30]). This plays an important role to make the search direction
Proposition 1 implies that, under several assumptions, t {ax ¢, 0,01 be a gradient approximation as in (12) and to
expected value ofd(zy,c, &, d,) is nearly equal to the % “k»5k) Ok g PP

. . . rove that a partial sum process associated with the difference
gradient of f (xy). So the algorithm given by (9) and (10) cargp(l o Cos € 01) — Eld(@n, cp, Ex,04)|24] is martingale (see

be regarded as an approximation of the so-called fiXGd-pO{ e proof of Proposition 2). In our source seeking problem

iteration for finding a root oV f(z) = 0. " . . . >
Next, the following result is obtained from Proposition 1_the condition holds if the field switches sufficiently fast. (A5)

Proposition 2: For the G-SPSA algorithm given by (9) andorescrlbes the second-order moment of the noise terms. (A3)

A i T = T e T = i
(10), suppose that a s&t C R"*" salisfyingT C T is given, Itrgcpr:ﬁiiozgsumjlligé to prove t?;: Zgonverleili g':e)rtl)sb;bilit
and assume that there exists a redte R"™ of the equation P b g P Y

V/(z) = 0. Let i denote the state of the modified G-SPS y reducing the G-SPSA algorithm into the Robbins-Monro

. : e Igorithm in Appendix II-A. Next, (B1)—(B4) are imposed
algorithm so tha(l is replaced wittfT'. If for the parameters designed by the users, and they will be

« the conditions on the problem parameters: (A1)—(A3) and guideline to design. A typical parameter choice {af},
(Ad) =z is an asymptotically stable equilibrium of{¢,,}, and{c;,} is

#(t) = =V f(z(t)) (in the Lyapunov sense), a c

(A5) there exists an; € R, such thatE[e7, | < a5 G = e = e =
andE[e}_] < a; forall k € N, (k+1) (k+1)
(A6) T is afinite set, wherea, a, ¢,y € R, are arbitrarily given so that < 1 and

« the conditions on the design parameters: (B1) and @~ 7 > 0.5. It may be reasonable to set large numbers to
ag, ck1, andcgs in the initial phase and let them be gradually

smaller withk so as to search the minimizer roughly at the
beginning and search it precisely near the minimizer. On the
other hand, a typical probability distributicfy, of &, is based
on the elementwise Bernoulli trial with outcorel and equal
. probabilities (i.e.,&,; = —1 or &,; = 1 occurs the same
f?_r all (k,4) € N x ,{,0’ L...,n}, . probability). The condition thaE, be Bernoulli-type is not
« the conditions for the modified G-SPSA algorithm: o cessary but it has been proven in [26] that the Bernoulli type
(C1) there exists a compact stability regidh C s optimal in many cases. Other possible choices are found in
R" for @(t) = —Vf(z(t)) (which is nonzero- [27]. The last (C1)—(C3) are technical conditions to guarantee
measure and for whicl(t) = —V f(z(t)) with  the convergence. (C1) and (C2) are challenging to check, but
z(0) € S results inz(co) = z¥) such that it is known that they are not restrictive conditions in practice,
& € S occurs infinitely often for everyo € S as addressed in [21], [25]. This fact has been demonstrated by
and almost all sample points, a number of examples (a great list of the existing results is
(C2) supyen [[2x]| < oo holds w.p.1foreveryo € S,  provided in [28]). In addition, it has been explained in [25]
(C3) there exists a4 € Ry such thatE[ f(Zx + that these can be ignored by replacing the algorithm in (9)
criTiér)?] < va and B[ f(21, — ex2Tiék)?] < with a projected version (like the projected gradient method

(B2) limy o ax = 0, ZI?;O ap = 00, limg_,o Cp, =
0, and 33" a3 /[lex|* < oo,

(B3) the random vectorg, (k = 0,1,...) are mutu-
ally independent,

(B4) there exists @, € R, such thatE[¢,2] < B4

74 for everyzy € S andk € N, for constrained optimization problems). A projected version
hold, then is given by z;.1 = Ux(zx — ard(zg,ck, &k, 0x)) Where
lim 2 — 2 (13) X c R"™ is a closed hyperrectangle in which, has to be
oo R constrained andlx : R* — R"™ is the projection onto the
holds w.p.1 for everys, € S. set X. Meanwhile, it should be noted that (C1) holds fif
Proof: See Appendix II. is convex and (C2) holds, and a simple sufficient condition

u R ) .
From Proposition 2, it turns out that a local solution t&°" (C2) is given in [30]. Also, a weaker condition of (C2),

the problem in (11) is given by the G-SPSA algorithm underzcoy hoigs if (i) v £(x) is Lipschitz, (i) the conditions in Proposition 1
several conditions. In particular, it should be noted that theid, iii) the first and second conditions of (B2) hold, and (iv) . (z) :=
conditions for the convergence do not heavily depend on tRg(cz)/c. Vie(z) — Vfoo(z) 8sc — oo andi = Vfo(x) has the

. . . . . origin as its unique globally asymptotically stable equilibrium. This is just
information of th? uncertain matrix sdt as seen in (A3) and , g icient condition for (C2) (i.e., (C2) covers more cases) but may be the
(A6) and thus this result is useful for the case where we @dwst practical for directly checking (C2). See [30] for further details.



which is for a more general class of stochastic approximationTheorem 1: For the signal fieldS, assume that there exists
algorithms, has been given in [29]. (C3) is related to the sourcez* € R™. Suppose that the uncertain matrix set
second-order moment of with randomly perturbed inputs T C R™*™ and the design parametefs;}, {ck1}, {ck2},
and is not so restrictive if (C2) holds. {Ex} of the G-SPSA algorithm are given so as to satisfy (A3),

Similar to the original SPSA algorithm [21], the G-SPSAA6), and (B1)-(B4) (note that (Al), (A2), (A4), and (A5)
algorithm has the following two features. First, the algoautomatically hold, which will be shown in the proof), and
rithm solves the problem in (11) when neithérnor Vf let{xo1, xo2, T10, 11, 12, T20, T21, T22, - - -} be the stochastic
is known, and instead, only noisy measurementsfofire process given by
available. In fact, it can be seen that the search direction T —

. ) ) k1 = Tro + k1 TkEk,

d(xg, ek, &k, 0x) in (10) contains the noisy measurements Tho = Tho — Cro Tkt 18
Frx + o The) +ers and flag — caTiéy) + 2. Next, the @ = Zko — iz e, (16)
number of measurements to determine the search direction - (K+10 = TR0 TRk (v gz, (chr +x2), &)
is only two and is independent of the dimensionof the wherezxy, € R™ is the initial stateT; € T is the uncertain

variablez. This merit can be understood by the fact that th@me-varying matrix,

number of measurements for the difference approximation of - Yl — Yk2 .(-1)
; = 1
Vf (=[0f(x)/0xy --- Of(x)/0x,]") grows withn. Ay, yra: (i1 + erz), &) (cp1 + Ck2>§k » (19)
The proposed algorithm is equivalent to the original SPSA ., := f,, (zk), (20)

algorithm in [21] if and oy; are the i.i.d. random variables from the probability

Crk1 = ka2, T ={I,} (14) distributiong in Section IlI-A. If (C1)—(C3) hold for the mod-
. . . . ified G-SPSA algorithm withf (z) := E[ fy(z) | 2], ept :=
for (10). Basically, the proposed algorithm is an extention byakl(x)—E[fa(x) |2], e = for,(x)— E[ f-(z) | 2], SOme
the coordinate transformation, while the following differenceg — gnixn1 including T, {ar}, {cia} {cra}, {Zk}, 200,
should be stressed: andz*, then
« the search direction (10) is based on unequal two-sided ) . o
perturbationscy Ti&, # croTié, while the original Jm zg; = (T} € TTezo T) (21)
version is of equal perturbations, Ti.&, = cka 13- w.p.1 for everyzoo € S andi € {0,1,2} (where$ is given
« the direction (10) is regarded as a time-varying functiop (C1)). m
of g, ck1, k2, &ky x4, @andei_ (by the time-dependent Proof: For f(z) := E[f,(x)|z] andeg; := fo,. (zri) —
matricesT}) unlike the time-invariant original one. Elfy(zri)|ze] (= 1,2), we haveyy; = f(an) + ex in @
These properties play a key role for solving the source seekisignilar way to (17). This and the first two equations of (18)
problem. Note that, though one may consider that the formerovide y.1 = f(xro + ck1Teéx) + k1 @aNd yko = f(apo —
is just an excess of generality, (12) is not straightforwardly,,7T}.¢y) + exo. So it follows underry = ko, et = g1,
obtained by [21] in the case whem®:T&x # croTkék, ande,_ = g5 that the third equation of (18) is equivalent to
because we need a different formula (the latter equation ®iG-SPSA algorithm. Then, (A3), (A6), (B1)-(B4), and (C1)—
(39)) to derive it. Note also that the latter, i.e., the idea of tH€3) hold for the G-SPSA algorithm as stated, and also (A1),
time-varyingcoordinate transformation ¥, is not standard (A2), (A4), and (A5) hold by the thrice differentiability of,,
in static optimization methods. These imply that the proposéke i.i.d. sample condition fos; (which implies thatxy, is
algorithm will be a special technique for the source seekiigdependent of o4, o (k11 - - -}), the definitions of:;; and
by mobile robots. the source, (C2), and (16). So it turns out from Proposition 2
that (21) withi = 0 holds for everyzyy € S. Moreover, since
B. G-SPSA Based Stochastic Discrete Trajectories for SoutgeandT}, are bounded as stated in (B1) (a) and (A3), the first

Seeking two equations of (18) and (B2) impljmy_ o ||z —Zxo|| = 0
Based on the G-SPSA algorithm, we provide a set & ¢ € {1,2}. This and (21) fori = 0 prove that (21) with
stochastic discrete trajectories for source seeking. i € {1,2} holds for everyzq € S. L

For the signal fieldS, let us introduce the random variable Theorem 1 presents a set of stochastic trajectories converg-
ing to a source almost surely (in which each trajectory is

e(t) == for)(@(t)) = E[ fou (z(t) [x(t)]. (15) specified by{ax}, {ci1}, {cx2}, and{Z;}). The trajectories
are given by fully exploiting the advantages of the G-SPSA
algorithm: they only use the measuremepts (i = 1,2) of
Ele(t)|z(t)] =0 V(t,2(t)) € Royp x R™.  (16) Jfou for finding a source, and the measurements to determine
the search direction are collected by the ohlyo auxiliary
By (3) and (15),5 is expressed as movements to the positions,; and z».

Its conditional expected value is zero, i.e.,

y(t) = E[ fow) (x(t)) | ()] + £(1). 7 IV. STOCHASTIC SOURCE SEEKING CONTROLLERS

Then by respectively regarding(t), E[f,) (x(t))|z(t)], and A. Source Seeking Controllers in A General Form

£(t) aswy, f(x), andey. in the G-SPSA algorithm, we obtain  Now, we derive a controlleK” which sequentially generates
the following result. the next waypoints as a part of a stochastic trajectory in the



form of (18) and steers the robét along the trajectory. (6) and (7)), the controllek steers the roboP as
Since P does not have the position information in the world

coordinate frameP cannot follow some trajectories in the® (tr2) = z(tko) = Rn, (0(tko))(cr28e),

form of (18). So, in order to obtain an appropriate trajectory(f(k+1)0) = =(tx2) + Bn, (0(tr2)) R, (—Athko)

?n the se_nsor—free sitl_Jation, we transform the condition (18) X (cr2€n — and(y(tro), y(tra), ez, &)

into that in the body fixed fram&(txo):

(24)

= x(tko)
21 = k1R, (—0(tko)) Tils — ap R, (0(t0))d(y(tro), y(tka), cha, &) (25)
2pa = —CpaRp, (—0(tko)) Tk, . hen th diti he di [ iall
Z(k+1)0 = —akRn, (=0(tko)) Ted(Yr1, Yrzs (k1 +crz2), &) e O o e e e e et e

22) tro — tro > 1 and t(kﬂ)o — tge > 1, imply that the
corresponding noise signalsy,co_,e14,61_,... are not

where x(ty0) = zro and 6(t) is the rotational position of correlated and so (A2) holds. Thus it turns out from (3) and
P at time ty. Here, if ¢,y = 0 and Tp, = R, (A(txo)) (20) that the stochastic procegs(too), ¥(to2), (t10), z(t10),
(k=1,2,...), we havez, =0, zp2 = —cjaék, andz(g1y0 = *(t12),...} is equivalent to that in Theorem 1 witl' :=
—ard(yr1, Yras cr2, ). This is a condition excluding the {L € R™>*"™ 3¢ € {0(tro)} ® By s.t. L = Ry, ()}, {ax},
position information off(t,,) in the world coordinate frame ¢k1 = 0, {ck2}, and {E,}, and it is obvious that (A3) and
and thus is suitable in the sensor-free situation. This idéA6) hold for T. In addition, (B1)-(B4) hold for the given
provides a solution to Problem 1. {ar}, {cr2}, {Ex} and ¢y = 0, and (C1)—(C3) hold for the

Theorem 2: For the feedback system in Fig. 2, assume thitodified G-SPSA algorithm as stated. So (iii) follows from
(P1) holds forA7 € Ry and (r,r2,73) € R}, and there Theorem 1.

exists a source™ € R™. Let t := 0 and suppose that the (i) Suppose thatr, € S is given and letz(0) = xo. From
tuning parameters: (23) and the definition of), we have||z(t)|| < ri|lck2ékll +

To||Atprol| + r3 for t € [tro,tre] and [|z(t) + cr28ell <
o — tw > max{n,Ar} and g0 — te || Ry (—Athro) (er28r — ard(y(tro), y(tr2) crz, &)l +
max{n, At} for everyk € {0,1,...}, To||Athkall + 13 = T1lckads — akd(y(tk0)7'y(tk2)7 Ck%fk)” +

o {ax}, {cx2}, and {Z;} satisfying (B1)—(B4) under the ral|[Adra| + 75 for t € [tra,tt1)0] in the body fixed
conditioncg; = 0, coordinate frame: (o), which are rewritten as

+ the posite integery and the desifable fotation angles(1) —a(so)| < kst + 721 Sviall +

ki € PN =0,1,...,00,2 =0,

« the discrete time sequendg,tio,t12,...} such that

are iven, where &® {0, 7 /N, £27 /N (Ve € lfxo, 2] (26)
’ = , T ) ™ ) 7

,:l:(%\f _ 1)7r/N,7r}"2N(e.g., ®, = {72,”/3’7,”/3’ ||33(t) _l’(tkﬂ)” < 7”1||Ck2€k _akd(y(tko)ay(tk2)ack2;€k)H

0,7/3,27/3,7}"2). If (C1)~(C3) hold for the modified G- + ro|[Atra|l + 73

SPSA algorithm with the samg, ¢, ;- as in Theorem 1, (Vt € [tro, te1yol)  (27)

T :={L € R |Jp € [-m, 7)™ st. L = R,,(p)} (the .

set of n,-dimensional rotation matricesfax}, ¢ = 0, N the world coordinate frame (see (8)). Then,

{ck?},_{Ek}, xo = «(0), and z*, then the controllerK | AW < 7/n2 (28)

satisfying (23) (at the top of the next page) for= 0,1,...

is a solution to Problem 1 for any > romy/ng + r3. by the definition of® (which implies Ayy; € [—m,m)™2).

Proof: Let z(t) (also x(t;;)) denote the translational Furthermore, as shown in the proof of (iii), the stochastic pro-
position of the robotP for the controllerK satisfying (23). cess{x(too), z(to2), z(t10), (t10), x(t12),...} IS equivalent
Then this theorem is a direct consequence of the followirig that in Theorem 1, which, together with (B1) and (B2),
three facts: implies that x(tg;), craék, and axd(y(tro), y(tr2), cr2, k)
=0,1,...,4=0,1,2) are bounded w.p.1. So we have (ii).

(i) The setS, which is given by (C1), is nonzero-measure an ) Applying (24), (25), and (28) to (26) and (27) gives

includes the source* in its interior.
(ii) For every (zo,t) € S x Rog, [[z(t)|| < co w.p.1 under ||z(t) — z(tro)|| < ri1llz(tre) — z(tro)|| + rom/ne + 13
x(()) = Zo- (Vt € [tk(]?th])v

(iii) For everyzg € S andi € {0,2}, limg_, o0 x(tr;) = z*
w.p.1 underz(0) = . - l2() = @(t2) | < ralle(tnino) — z(tra)ll + ramy/na + 13

(iv) For eachz, € S andv € R, there exists &, € N (Vt € [tr2, t(et1)0))-
such that the following two conditions hold for eveky €
{kmin, kmin +1,...}: @) [|2(t) —z(tro)|| < v+romy/na+r3
for everyt € [tro, tr2], (0) (1) —2(tr2) || < v+romy/na+rs
for everyt € [trz2, t(it1)0]-

Then (iii) implies that, for eaclr; € S andv € R, there
exists ak,,;, € N such that||z(tx2) — z(tko)|| < v/r1 and
lz(t(er1y0) — z(tr2)|| < v/ry for everyk € {kmin, kmin +

1,...} w.p.1. This completes the proof of (iv). ]
Fact (i) is trivial. So we next prove the other facts in the order Theorem 2 presents stochastic source seeking controllers
of (iii), (i), and (iv). composed of two point-to-point controllers. The controllers is

(iii) By the definition of the point-to-point control input (see given by the G-SPSA algorithm and it executes the G-SPSA



_ =28k , .
v (t7 tk2 — tro, 0 — [Awko } 7’1#‘2#‘5) if ¢ € [tro, tra),

u(t) = ; (23)
Rn -A - d t ) t ) ) :
v(t, ter1)0 — th2, 0— { L (= A%ko) (Cratr z];pk(gy( #0)s Y(tk2), Cio fk))} 7"1»7“2,7“3) if ¢ € [th2, tr1)0]

algorithm step by step: aftéP obtains a measurement at thene step of the SPSA algorithn®, has to visit two points to
current position, the first input movesP to a point to collect collect measurements and move to a point indicated by the
another measurement and the second inpsteersP to a search direction. Then, in our problem, this movement must
point indicated by the search direction, which is iterated. Thdre achieved without using the position information. Clearly,
the values about the mobility aP, i.e., AT and (r1,72,73), in the presence of uncertainty, such three-point feedforward
are related to the convergence propedyr corresponds to control is less desirable than the two-point feedforward control
the possible convergence speed as shown in the conditionifoK23). [ |

the discrete time sequen¢®z, t1o, t12, . . .}, while (11,72, 73) Remark 3: As a variant of the SPSA algorithm [21], the
has the relation to the smoothness of the paths connectjige-measurement type, which requires the only one measure-
the waypoints given in Theorem 1, and algp and r3 are ment to determine the search direction, has been developed
numbers characterizing the radiusf the closed ball to which jp [31]. This can be also extended to an appropriate form for
P converges. the source seeking. However, as pointed out in [31], the one-
Remark 1: It is assumed in Theorem 2 that, — txo > measurement algorithm is less efficient in many cases®
max{n, AT} andt 1o — tx2 > max{z, Ar}. The condition  pemark 4: The controllers proposed in Theorem 2 are
on Ar is related to the mobility of the robde. On the other 4;en without explicitly considering the mobility of the robot
hand, the condition om is reasonable in finding the sourcep Tpjs implies that the controllers may lead to some unnatural
of the “"expected” signal field. In fact, in our source seekingghayior. On the other hand, as shown in the next subsection,
method, the source is sought by sampling the value of thep js the unicycle robot, the resulting movement is similar
stochastically switching signal field, and then the cond|t|0(rp]ot completely-consistent) to a well-known biological phe-
guarantees that the number of samples is largg.isfgreater ,menon, the bacterial chemotaxis, that is, the phenomenon
than tiy — tro OF L1 — trz, it iS @ practical option that yat pacteria in an environment sense a chemical concentration
the discrete time sequen¢eys, t10, 12, .- -} iS 1€Set S0 @S 10 5ng move to a more favorable position [32]. In fact, it is
satisfy the condition. Note that the control designer usualp,own that the mobility of the bacteria is the almost same
has the flexibility in choosing the time sequence. ®  as that of the unicycle and the movement of the chemotaxis is
Remark 2: It should be clarified why the original SPSAcomposed of a random turn and a forward move. Meanwhile,
algorithm [21], given by (9), (10), and (14), is not suitablgne proposed controller let the unicycle rob®tperform the
for our source seeking problem. First, the discrete trajectoriggdom turn and the feedforward/backward move. In this
given by the original SPSA algorithm cannot be followed b¥anse, the movement by the proposed controllers may not be
P in practice. In fact, (14) and (18) specify a robot movinginnatyral for some class d®. In relation to this, it should

trajectory in the body fixed fram&(io) (see (5)) as be remarked that a source seeking method that mimics the
21 = C1 Ry (—0(t40)) &, bacterial che.motaX|s has been proposed in [6]. [ |
zi2 = —Ck1 R, (—0(tko))&k, (29)  Remark 5: Though the boundedness and the convergence

Zer1)0 = —ag R, (—G(tko))d(ym, Yras 261, 1), of x(t) is guaranteed for the proposed controlnnight drift
far away on the way to the source even when the rébstarts
in which the three destinations depend on the positiopy) in  near the source. This is because the gajnsvhich are relative
the world coordinate frame. However, the position informatioto the moving distance on the time intervitlg, ¢ (+1)o], have
is not available inK” as shown in Fig. 2. Thus, in general, it iso be large numbers in the early iterations to avoid the sluggish
impossible to moveP along the trajectory. The only case thaperformance and so the value &1 f,«, ) (x(tro)) | (tro) ]
P can follow the trajectory is when the trajectory is giverloes not always decrease even if the initial positidf) is
based on the coordinate frame whose originig0),0(0)) near the source. In exchange for the undesirable transient, such
and a feedforward estimator, that is, a solver of the differentialpolicy contributes to good performance #0) far from the
equation (1) with the initial state and the input history, is usesburce. Generally, in the optimization using a gradient-free
to estimate the robot position on the time interi@gloo). In  descent method (such as the finite-difference approximation),
this case, the rotational position in the frame can be estimawtth a phenomenon is unavoidable because the step size
only with the model of (1), the zero initial position, and thesequence which guarantees monotonically decreasing behavior
input history. However, it is obvious that such feedforwardannot be determined without the information of the gradient.
estimation produces an accumulative error in the real worlthese points imply that the possibility of the drift is a
and is unrealistic. Second, unlike the proposed controllerstimeoretical limitation of our method. However, it should be
(23), K has to be a feedforward motion controller driving th@oted that our method yields a certain result for switching
robot P to three points. That is, as seen in (29), to executBields despite of such a limitation. ]



B. Source Seeking Controllers for Some Specific Robots

and (ry,72,r3) := (1,0,0). Thenu[s] in (31) is composed of

Next. we focus on two- and three-dimensional nonholdh€ control inputs for forward move and for turn at the same
nomic robots and show that there exist very simple sourB8Sition, which can be related to (23) as follows. From (2)

seeking controllers.

and the definition of the point-to-point control input the

1) 2D Nonholonomic Robot Caséwe first prepare the combination of the first and second inputs in (31) corresponds
to

following result.
Lemma 1: Consider the search directiof{zy, ¢, &k, 0k )
in (10). If & € {—p, p}™ for p € R, then the vectorg &,

and d(zy, cx, &, 0 ) are linearly dependent. More precisely,

the relation

d(@, s €y Ok) = (wrp*) T
holds for the scalar
(f(zr+er Tibe) +ert ) — (f (2r —craTibr) +ex-)
(ck1 + cr2) ’
Proof: For &, € {—p, p}™, we haves, = psign(£x). So
it follows that kak = ka sign(fk) and d(mhck,fk,ék) =
wkafl(fl) = p~lwi Tk (sign(&) Y = p~lwi Ty sign(&).
This proves (30). u

(30)

WE =

cos(([s])
v (t, 2h, 0 — [CLS/?)J?A [sin(g[s])u , 1,0,0) . (33)

Cls]
On the other hand, sincBx(—([s])[cos(¢[s]) sin(¢[s])]T =
[1 0]" and Acos(¢[s]) sin(¢[s])] "
(Mcos(¢[s]) sin(¢[s])]T)=Y  (the latter is related to

Lemma 1 and it holds only fo¢[s] on the set in (32)), the
third input corresponds to (34) at the top of the next page. We
see from (33) and (34) that the controll&r satisfies (23) for
{tog,tlo,tlg, tgo, .. } = {2h,3h, 5h, 6h, .. .}, {ak}, {Ckg},

&k = Acos(¢[3k]) sin(C[3K])]T, Avro = ([3k] € Py,
and Ay = 0 € &, Here, (B2) holds for{a;},
{ck2}, and ¢y = 0. Furthermore, by noting that the

Lemma 1 shows that, £ (i = 0, 1, ...) are the probability Probability —distributions of ([s], the random vectors

distributions based on the elementwise Bernoulli trial showHcos(¢[3k])

in Section lll-A, the vectors in (18)gx1, 22, and (1),

sin(¢[3k]))]" (¢ = 0,1,...) are equivalent
to that from the elementwise Bernoulli trial shown in

are on a line segment iR™. So to execute one step ofSection Ill-A, i.e., which satisfies (B1), (B3), and (B4).

the G-SPSA algorithm, it is enough to drive on a line

Therefore, this theorem follows from Theorem 1. [ |

segment. This property presents a very simple controller forThe proposed controllek™ steers the robof” as shown in

the nonholonomic unicycle (2).

Fig. 4. Three steps on a line segment are repeated: the random

Theorem 3: For the feedback system in Fig. 2, assume thi#n, the forward move, and the forward or backward move.

P is the unicycle (2) and there exists a souscec R?. Let

2) 3D Nonholonomic Robot Casdn a similar way to

K be the discrete-time controller with the zero-order hold: the above, we can obtain a simple controller for a three-

ypre[5+1] = y[SL

[0
if s=0,3,6,...,
1)
= clss) :
uls]= _ 0 if s=1,4,7,...,
A pre(s]—yls]
E(CLs/3J2 —aLs/SJy CLS/gjzy )] if $=2,5,8,...
0

(1)

whereh € (n, 00) is the sampling period; € N is the discrete

time (s = [t/h]), yprels] € R is the state to savg[s — 1]

(=y((s = 1)h)), ¢[s] € R is the i.i.d random variable drawn

from the uniform distribution on

T 37 3T T
4’ 47 47 4’

A= +2, and{a;} € [, R+ and {cx2} € [[1o, R+ are
arbitrarily given so as to satisfy (B2) far,; = 0 (note that
a|s/3) andc, 32 €Xpressy, andcey, for k = [s/3)). If (C1)-
(C3) hold for the G-SPSA algorithm with the sanfie ey,
ex_, T as in Theorem 2{a;}, ¢x1 = 0, {cx2}, the Bernoulli-
trial based distributio=}, z¢ := x(0), andz*, then K is
a solution to Problem 1 for any > 0.

(32)

dimensional nonholonomic mobile robot.
Consider the robot in Fig. 5, which is described by

@y (t) cos 61 (t) cosBa(t) 0O
o (t) cos B (t)sinfy(t) 0
i3(t) | sin 04 (t) 2 0 u(t) (39
o(t) 0 I3

wherex(t) := [z1(t) z2(t) z3(t)]T € R? is the translational
position,f(t) := [01(¢) 62(t) 05(t)] " € R? is the orientational
position (yaw, pitch, and roll), and(¢) € R* is the control
input. This robot is the same as considered in [9].

For this, the following result is obtained.

Theorem 4: For the feedback system in Fig. 2, assume that
P is the three-dimensional robot in (35) and there exists a
sourcez* € R3. Let K be the modified version of (31) so
that u[s] € R, ([s] € R? is the i.i.d random vector drawn
from the uniform distribution on

1 1 T 37 3T ™
—tanl'— tanl1— 2o 22 0
{ an 7 an \/i}x{47 IRV 4}><{0},

the two Os fors = 1,4,7,... ands = 2,5, 8, ... are the three-
dimensional zero vectors, and:= 1/sin(tan~!(1/y/2)). If
the same conditions in Theorem 3 hold, is a solution to
Problem 1 for any- > 0. [ ]

Proof: The unicycle in (2) can move forward and turn at This can be derived in the same way to Theorem 3.
the same position; that i$;? can be steered straightforwardlyLet (;[s] denote theith element of([s]. Then, from the

to any translational position. Thus (P1) holds far := h

relationsin(tan=1(1/v/2)) = (1/v/2) cos(tan=*(1/v/2)) and
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1
0

Ypre[s]—yls]
Cls/3]2

)|

A (CLS/BJ2 —als/3)
0

o [+

. (t,h,o _, | Ba(=Cls]) (cLs/zap)\ [Z?I?Eg[[j]}))] —a|s3)d (y[s—l]’y[s],qs/sjz,)\ [Z?;Egi;]))} ,1,0,0) (34)
0
x, A X A C. Example

Consider Problem 1, where the robBtis the unicycle (2)
and the signal fields is given by the functions

Q @‘\ =[] -1 [ 001 —0.005]([21] [110
W=z 7180 ) [-0.005 0.01 |\ |25 " [80] )
g Py P (m)_(-xl_ '90DT[0.01 0.001}({@1] [90})
2 - - - )
(a) Step O: Current position. (b) Step 1: Random turn. [ 2] _90 0.001 0.003 X2 90
fa() = (1] [109 "70.02 0.003]/ a1 ~[109
% A x4 “@. ST\ |w2] |110] ) [0.003 0.01 |\ |22]  |110

and the probability distributiory(1) = 0.15, ¢g(2) = 0.15,
and g(3) 0.7. Its source isargmin, g2 FE|f,()|z] =
argming cg23"_, 9(0) f- () ~ [109.13 103.54]T. The con-
troller K is given by Theorem 3 foh := 1, ay := 15/(k +
1955 andcyo == 10/(k + 1)0:93,

Fig. 6 illustrates the contour plot of[f,(z)|x] and the
moving trajectory of> from the initial state(x(0), 6(0)) :
([182 41]7,10), where the isosceles triangles express
Fig. 4. Robot motion t_)y the; proposed controller in Theorem 3 (by repeatir(g;(lfki)7 e(tki)) (k =0,1,...,00, i = 0,2). Fig. 7 depicts
these steps, the robot is guided to the source). the time evolution of the distance to the source, ile(t) —
argmin, g2 E[f,(x)|z]||. We see that the roba? is guided
to the source by the simple controller.

Remark 6: As pointed out for the original SPSA algorithm
[33], the choice of the gaindax} and {ci2} is critical
to the performance, in particular, the convergence speed, of
the G-SPSA based controllers. A practical way to determine
these gains is the Monte Carlo method with randomly chosen

»

>
X1

Y

X1

(c) Step 2: Forward move. (d) Step 3: Forward or backward mowvi

X3

063

Y

X1

X2

Fig. 5. 3D nonholonomic mobile robot.

the probability distribution of[s], it can be shown that the

vectors

0,3,6,...), which correspond t&; (more precisely,

cos((1[s]) cos(Ca[s])
cos((1[s]) sin(¢2[s])
sin((1[s])

elementwise Bernoulli trial. This is the main idea of the proo

S based on some prior knowledge. There may be suitable
selection for the stochastic source seeking, and such a topic is
one of future works. Also, the best probabilistic distribution
{Zx} should be clarified in the future, though the Bernoulli-
type distribution has been mainly employed in this paper,
by considering the optimality proven in [26] and the good
property given by Lemma 1. ]
Remark 7: The above controllers are based on the turn and
the forward/backward move. Even if the rob®tdoes not have
such simple mobility, the source seeking can be achieved as
long as (P1) holds. [ |
Remark 8: Four limitations of the proposed method are
noted. First, the signal fieldg, () have to be thrice differ-
entiable as assumed in Section II-A. This guarantees that the
expected value of(zy, cx, &, 0x) (in (10)) is nearly equal to
the gradient off (z), from which the source seeking problem
is solved. If this assumption does not hold (and the signal

Hfield S does not switch), the method in [5] can be used as

an alternative. Second, our source seeking controllers have
been presented for periodic switching fields. The periodic
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substances. Thus one cannot always utilize the measurements
along the whole trajectory. ]

Remark 9: We note the difference to other source seeking
methods. First, a source seeking method for noisy environment
has been developed in [13]. By using this result, a solution to
Problem 1 may be obtained. The method, however, is based on
the extremum seeking and can be applied to the only integrator
and nonholonomic unicycles at present. On the other hand, the
proposed method is given for robots satisfying (P1). Next, a
method based on stochastic motion has been recently presented
in [14]. Although it is similar to our method in the sense of
taking stochastic motion, the method in [14] is a solution for
non-switching fields and thus the performance for switching
fields is unclear. Similarly to this, as mentioned in Section I,
there are a number of source seeking methods and some of
them might be useful for switching fields. However, there has
been no theoretical result for switching fields. ]

Fig. 6. Moving trajectory of unicycle by the proposed controller.
V. CONCLUSION

A stochastic source seeking problem has been studied. By
extending the SPSA algorithm in [21], we have developed
source seeking controllers for randomly switching signal field.
The key idea is to find a stochastic trajectory (i) converging to
the unknown source with probability 1 and (ii) followed by the
robot without a position sensor. The trajectory is given by a
generalized version of the SPSA algorithm. In addition, simple
source seeking controllers have been provided for two types
of nonholonomic robots, for which it has been shown that
the source seeking is attained by the combination of simple
movements.

As a first step for the switching source seeking, somewhat
limited cases have been treated. In particular, the convergence
of the proposed controllers is guaranteed for periodic and
sufficiently fast switching fields. In the future, more general
switching fields should be addressed. In addition, the proposed
controllers cannot be used for robots with drift (i.e., movement
Fig. 7. Time evolution of the distance to the source. under the zero control input), as stated in Remark 8. Solving

this problem is left as a future work. Also, for various
applications, the proposed framework should be extended to
switch is reasonable in some cases, e.g., in the base statlhcase where the robot is disturbed by the environment (e.g.,
placement, mentioned in Section |, with a large number #8fiid environment) and to the stochastic source seeking by
synchronized terminal units. Note, however, that the all resufaultiple robots.
in this paper hold even for aperiodic fields which switch befordcknowledgments The first author would like to thank Prof.
discrete timeg; (k =0,1,..., 7= 0,2) w.p.1. On the other James C. Spall, Johns Hopkins University, for his valuable
hand, our result should be extended to more practical switchefprmation on one-sided SPSA algorithms. He also would like
such as the Poisson switch. For the extention to the Poisderthank Prof. Toshiharu Sugie, Kyoto University, for giving
switch case, our result may be a basis because it is wélle opportunity to study at University of Pennsylvania.
known that the Bimodal distribution, which is used as the
switching model considered here, has a close relationship to APPENDIX |
the Poisson distribution [34]. Third, the proposed controllers PROOF OFPROPOSITION1
cannot be applied to robots with nonzero constant velocity, Notation

such as aircrafts. On the other hand, the methods in [4], [5],We denote bye; the ith standard basis dR". The Kro-

[10] can be used for such robots. Finally, even when the ,

robot can take the measurements continuously along the wh:@?ec ker product of the ve?txog's gndyQ IS expressed ag y».
trajectory, the proposed controllers do not utilize the all of th or the row vgctorz €R . diag,,(2) expresses .the b l.OCk
data. If they are adopted for the gradient estimation, a bet i;lgonal matrix whosen c_ilagonal blocks are.. Using this,
result could be obtained. It is however pointed out that e have the vector equality

time for measurement is not always short, e.g., for chemical (zz)y = diag,, (2)(y ® z) (36)
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forz € R*, y € R™, andz € R,
differentiable functionf : R — R andj = 2,3, let

(@) = (V)T
[0y = [0 09V 24 ()
0z, Ora o,

Note thatf()(z) is a row vector of dimension’. Using this, .
the function f(x + y) (thrice differentiable) is expressed by ki

Taylor's theorem as
= f@) + @)y + 5Oy )

- %f(‘”(i‘)(y Ry®y) (37)

flz+y)

For the thrice hold for every(i, j, k,1) € {1,2,...,

12

n}? (note that (B1) (a)
implies E[¢;] = 0 and E[¢;;'] = 0), from which we have

EelV @tlar]=[e] e - el], (39)
Bl @ (6 ® &) 2k ] = 0ps s 40)
Moreover,
3 02
%) < C =0O(]le i = 17 2
critere — max{cpi,cpa} — (llexl®)  ( )
(41)

in (38). From (A2), (B1) (a), (38), (39), (40), and (41), we
have

Eld(zy, ek, &k, Ok) | Tk ]

wherez is a vector on the line segment betweeandx + y.
g v _nm%xlm>>E@”®@mu+mww>
T,
B. Proof ( k)T
. . (»”Ck)Tk;e2 )
By noting (A1), we apply Taylor's theorem in (37) to the =T} O([[ex|I7)
terms f(z + c1Tk&k) and f(xy — cp2Tr&k) in (10), which .
gives |/t )(xk)Tken
[ e[ TV f(x
f@p+enTibe) — f(or —cr2Tiér) e;TTirV;Ex:%
= (ckr+era) f O () Tl =Ty : O(llex?)
2 2 :
+ (¢k1 2Ck2)f(2)(xk)(Tk ® Ti) (Er @ &) el T V f(xr)
3 3
+ (Cglf(?’) (£k1)+%f<3) (m)) (T @ T @ Th) (6 ©E,®@E) asc, — 0. This, together with (A3), implies (L12).

wherez,; andz,, are vectors on the line segments between

Tk and Ty + Clekfk and between:ck and T — Ckngfk,
respectively. It follows from (10) and (36) that

d(zg, i, &k, O)

= T (f O (ap) Tr )€

+ MTk(f(Z) (l‘k)(Tk ® Tk)(fk & §k)) ](;1)

2
Ck1 f(3) ($k2)>

1 3
* éTk ((Cm +Ck2 f

X (Tk®Tk®Tk)(§k®fk®§k)>€;@1)
(-1)

k

3
Ck2

) (Z1) +
(@r1) Ck1+Ck2

Ek+ — Ek—
(cr1 + cx2)

= Tydiag, (f O () Ti) (€Y @ &)
1 (=) 1 g (5O (@) (T © T1))

+ Ty,

2
X (5;(;1) ® (& ® &)
+ lTk (( el FO(Tgr) + Ciy f(g)(xm))
6 Crp1+Cr2 Cr1+Cra

X (Tk®Tk®Tk)(fk®fk®fk)>fz(€1>
(-1)
(Ckl + Cga) "
Here, from (B1), the relations
[&w } B {0 if i # 7, [fkjfkl
sz L ifi= Js sz

4+ — €k—

+ T, (38)

o =0

APPENDIXII
PROOF OFPROPOSITION2

In a similar way to [21], Proposition 2 is proven via the
Robbins-Monro Algorithm.

A. Robbins-Monro Algorithm
The Robbins-Monro Algorithm has the form

(42)

wherez; € R™ is the stateq;, € R, is the gain,g : R" —
R™ is the function whose root is to be found, ahde (RU
{o0})™ ande;, € R™ are the random variables.

A result on the convergence is given by the following
theorem (see, e.g., [25] for further details).

Proposition 3: Consider the algorithm in (42). Assume that
there exists a roat* € R" of the equatiory(z) = 0. If

(Dl) limy, 00 ar, = 0 and ZI?;O ap = 00

(D2) limg_ oo by = 0 andsupyen [|bx]| < oo w.p.1,

(D3) for everyzy € S andx € Ry,

E ;€4

whereS is a set deflned in (D5),

x* is an asymptotically stable equilibrium @{t¢) =
—g(x(t)),

there exists a compact stability regi8nC R™ for
z(t) = —g(x(t)) (which is nonzero-measure and for
which &(t) = —g(z(t)) with z(0) = z( results in

Tpy1 = T — ar(g(zr) + b + ex)

sup

k—ro0 le[k,00)

hm Prob l

> /@1 =0 (43)

(D4)

(DS)



x(o0) = x*) such thatz, € S infinitely often for
everyz, € S and almost all sample points,
(D6) suppen |lzk]l < oo w.p.1 for everyz, € S,
then

lim z, = z* (44)

k—o0

for everyz, € S. [ ]

w.p.1

13

difference assumption (A2) and the independence assump-
tion (B3) hold, the sequenc{aZf:k aie;} 32, is martingale

in the filtration ¥ and further {|| Zf:k aieil|}32y is sub-
martingale inFz (by the Jensen’s inequality). This follows
from the relatlonE[Zﬁ e Qi€ — Zgzk aie;l Zf:k ae;] =
a[3+1E[E[6B+1|I0,I1, s 793[356[35 Zi:k aiei” Zf:k aiei]

= agr1E[Elegii|ro, 21, ..., 8, EﬂHZf  ai€i] = 0 sub-

ject to (A2) and the fact tha[:l i @ie; is determined by
{(z, 5,6)}1 o- The submartingale property enables us to apply

B. Proof of Proposition 2
By Proposition 1 and the relation
d(xr, s Eky O) = Eld(g, ek, &, Or)|Tk] + d(xh, i, Eky Ok)
— Eld(w, ek, &k, On) |71,
the G-SPSA algorithm given by (9) and (10) is represented as
Tp1 = 21, — a (V f(zr) + O(||cx®)
+ d(zk, i, &k O) — Eld(2k, cksy €k Ok) |2k

under (A1)-(A3) and (B1). Therefore, the G-SPSA algorithm proh

with a fixed sequencéT}} is equivalent to (42) for

g(zr) = V f(xr),
be = O([|exl?), (46)
ex = d(Tk, ¢k, ks Ok) — Eld(xy, ek, §k, Ok)| k] (47)

1

Furthermore, under (A6), the statement .

(x) for each sequencl}} € [[,-, T

w.p.1” holds (2]
implies the main statement in the theorem (“(13) holds fot,
every {Ty} € [[,—, T " holds w.p.1), since (A6) means that
[I5—, T is a countable set.

So in the following part, to provex}, we show under (45)—
(47) that (A2)—(A5), (B2)-(B4), and (C1)—(C3) imply (D1)—
(D6) for any {T}} € []=, T.

First, it is trivial that (B2) implies (D1) and (D2) and that 51
(A4), (C1), and (C2) imply (D4)—(D6) because C T.

Next, we prove that (D3) holds under (A2), (A3), (A5),
(B2)-(B4), and (C3). Suppose that a sequer@.} € [6]
[Tr=, T is arbitrarily given and consider the stochastic pro-
cess {37 kazel}ﬁ x With the filtration ¥ generated by
{(x1, &)}7_,. From Jensen's inequality and the fact that]

Elele;] =0 for i # j, we have
2 8
= ZE [||aiei\|2}
i=k

B B
<E Zaiei ]) < E Zaiei
i=k i=k
(48)

Furthermore, under (A3), (A5), (B2), (B4), and (C3), it camt]
be shown in a similar way to [21] that

y limpg oo v = 27

(4]

(8]

2

(9]

. [11]
ZE[Hakekll <MZ HQ (49)
k=0 [12]
where i is a constant that does not depend forEquations
(48) and (49) mearE[HZ7 p aieill] < oo for every f € [13]

{k,k+1,...}. It follows that the sequence$"" , ase; }a
and{HZl r ai€ill 32 are integrable. Thus, if the martingale

Prob

Doob’s martingale inequality to the probability part of the left
hand side of (43), which gives

8 2

sup
BE[k,00)

a;€;

§ a;€;

> K <hm/<;
B—

(50)

Equations (48)—(50) imply

oo
sup Zal@ > k| < fouZ 3
Bek,00) i—k ”clH

i=k

(45) This and (B2) prove (D3).
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