Synthesis and coordination behavior of Cu(I) bis(phosphaethenyl)pyridine complexes.

Nakajima, Yumiko; Shiraishi, Yu; Tsuchimoto, Takahiro; Ozawa, Fumiyuki

Chemical communications (2011), 47(22): 6332-6334

© The Royal Society of Chemistry 2011.
Synthesis and coordination behavior of Cu\textsuperscript{1} bis(phosphaethenyl)pyridine complexes

Yumiko Nakajima,\textsuperscript{a,b} Yu Shiraishi,\textsuperscript{b} Takahiro Tsuchimoto\textsuperscript{b} and Fumiyuki Ozawa\textsuperscript{a,b}

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Cu\textsuperscript{1} complexes bearing BPEP as a PNP-pincer type phosphaalkene ligand undergo effective bonding interactions with SbF\textsubscript{6}\textsuperscript{−} and PF\textsubscript{6}\textsuperscript{−} as non-coordinating anions to give [Cu(SbF\textsubscript{6})(BPEP)]\textsuperscript{−} and [Cu\textsubscript{2}(BPEP)\textsubscript{2}(μ-PF\textsubscript{6})\textsuperscript{+}], respectively [BPEP = 2,6-bis(1-phenyl-2-phosphaethenyl)pyridine]. NMR and theoretical studies indicate a reduced anionic charge of the μ-PF\textsubscript{6} ligand, which is induced by the strong π-accepting ability of BPEP.

Phosphaalkenes with P=C bond(s) are low-coordinate phosphorus compounds that possess extremely low-lying π* orbitals around the phosphorus atom, and thus exhibit strong π-acceptor properties towards transition metals.\textsuperscript{1,2} We have demonstrated with bidentate diphosphinidenecyclobutene ligands (DPCB-Y) that this property is useful for catalysis, leading to highly efficient organic transformations.\textsuperscript{3} More recently, we have developed 2,6-bis[1-phenyl-2-(2,4,6-tri-tert-butylphenyl)-2-phosphaethenyl]pyridine (BPEP) as a tridentate PNP-pincer type phosphaalkene ligand, which successfully stabilizes a coordinatively unsaturated 15-electron complex with a high-spin Fe\textsuperscript{I} center.\textsuperscript{4}

This paper reports the synthesis and structures of BPEP complexes of copper. Although PNP-pincer type ligands are ongoing research topics in coordination chemistry,\textsuperscript{5} their copper complexes have been extremely limited.\textsuperscript{6–8} In this study, we found that BPEP forms a Cu\textsuperscript{1} complex of a highly electron-deficient nature, causing effective bonding interactions with “non-coordinating” anions such as SbF\textsubscript{6}\textsuperscript{−} and PF\textsubscript{6}\textsuperscript{−}.

The BPEP ligand was introduced to CuBr in toluene at 90 °C (Scheme 1). The resulting [CuBr(BPEP)] (1) was characterized by NMR spectroscopy and elemental analysis.\textsuperscript{9} While it has been shown that [CuBr(pnp)] [pnp = 2,6-bis(di-tert-butylphosphinomethyl)pyridine] as a phosphine analogue adopts a three-coordinate structure without Cu–N bonding,\textsuperscript{6} complex 1 has the four-coordinate structure with a distorted tetrahedral configuration as confirmed by X-ray diffraction analysis (see ESI). A similar structure has been found for the complex with a PNP-pincer type phosphine ligand, and attributed to lower σ-donating ability of low-coordinate phosphorus ligands than phosphine ligands.\textsuperscript{7}

Complex 1 reacted with silver salts of non-coordinating anions (AgX; X = SbF\textsubscript{6}\textsuperscript{−} and PF\textsubscript{6}\textsuperscript{−}) to afford complexes of the formula “CuX(BPEP)” [X = SbF\textsubscript{6}\textsuperscript{−} (2a), PF\textsubscript{6}\textsuperscript{−} (2b)]. Since both complexes exhibited the same \textsuperscript{31}P NMR chemical shift (δ 213.3) in CD\textsubscript{2}Cl\textsubscript{2}, they should exist in ionic form in a polar solvent without direct interaction between [Cu(BPEP)]\textsuperscript{+} and X\textsuperscript{−}.

Complex 2a readily coordinated with MeCN, CO, and \textsuperscript{1}BuNC in CD\textsubscript{2}Cl\textsubscript{2} to form [Cu(L)(BPEP)]\textsuperscript{+}SbF\textsubscript{6}\textsuperscript{−} [L = MeCN (3), CO (4), \textsuperscript{1}BuNC (5)], respectively. The ν(CO) band of 3 appeared at 2132 cm\textsuperscript{−1} in the IR spectrum; the value is close to that of free CO (2143 cm\textsuperscript{−1}). Complex 5 exhibited the ν(NC) band at 2198 cm\textsuperscript{−1}. This value is higher than that of the phosphine analogue [Cu(\textsuperscript{1}BuNC)(pnp)]\textsuperscript{+}SbF\textsubscript{6}\textsuperscript{−} (2177 cm\textsuperscript{−1}).\textsuperscript{6} These data illustrate the highly electron-deficient nature of the copper center.

While the \textsuperscript{31}P NMR signal of 2a appeared at δ 213.3 in CD\textsubscript{2}Cl\textsubscript{2}, the signal was shifted downfield (δ 234.2) in C\textsubscript{6}D\textsubscript{6}. This tendency was quite different from that observed for 1, which showed the same chemical shift in CD\textsubscript{2}Cl\textsubscript{2} and C\textsubscript{6}D\textsubscript{6} (δ 251.5). As we have documented for DPCB-Y complexes,\textsuperscript{8} the \textsuperscript{31}P NMR chemical shift of the phosphaalkene ligand is rather sensitive to the M–P bond length, and tends to increase as the M–P bond is elongated. Although there is the possibility that the Cu–P distance of 2a varies with coordinating solvents, it seems more likely that the SbF\textsubscript{6}\textsuperscript{−} anion is associated with the cationic [Cu(BPEP)]\textsuperscript{+} moiety to form a neutral complex in nonpolar C\textsubscript{6}D\textsubscript{6}. To examine this point, single crystals of 2a were grown from a toluene solution (87%), and examined by X-ray diffraction analysis.
was not toluene solution. However, the crystalline product obtained was preserved in CD$_2$Cl$_2$, even in the presence of excess Cu(BPEP) units are connected by a symmetry with the P3 atom at the point of symmetry. Two fluorides (~2.1 Å). Reflecting the occurrence of an effective bonding interaction between the Cu and F atoms. Moreover, the P3–F1 bond [1.637(2) Å] is clearly larger than that of CuI complexes (2.06–2.16 and 2.22–2.32 Å, respectively). The most striking feature of 2a is the significantly shorter Cu–F1 bond [2.190(3) Å], which is comparable to that of CuI fluorides (~2.1 Å). Reflecting the occurrence of an effective bonding interaction between the Cu and F atoms, the Sb–F1 bond is elongated by 0.057–0.073 Å, compared with the other Sb–F bonds. To the best of our knowledge, this is the first example of a CuI complex with a coordinated SbF$_6$ anion.

Next, we attempted to crystallize PF$_6$ complex 2b from a toluene solution. However, the crystalline product obtained was not 2b, but a cationic PF$_6$-bridged dimer of Cu(BPEP) units, having a PF$_6$$^-$ counter anion (6). Figure 2 shows the X-ray structure of the cationic portion, which adopts C$_2$ symmetry with the P3 atom at the point of symmetry. Two Cu(BPEP) units are connected by a μ-PF$_6$ group in a zigzag conformation. The length of the Cu–F1 bond is 2.241(2) Å, which is somewhat longer than that of 2a, but still in the range of an effective bonding interaction between the Cu and F atoms. Moreover, the P3–F1 bond [1.637(2) Å] is clearly longer than the other P–F bonds [1.58(2) and 1.588(2) Å].

NMR spectroscopy revealed that the dimeric structure of 6 was preserved in CD$_2$Cl$_2$, even in the presence of excess MeCN or CO. Furthermore, dynamic behavior on the NMR time-scale was observed within the molecule (Scheme 2).

Figure 3(a) shows the $^{19}$F NMR spectrum measured at room temperature, showing two sets of doublets at $\delta$ = –73.7 ($^{1}J_{PF}$ = 711 Hz) and –77.8 ($^{1}J_{PF}$ = 978 Hz). Since the chemical shift and $^{1}J_{PF}$ constant for the former signal were identical to those for Bu$_3$NPF$_6$, this signal is assigned to PF$_6$ as the counter anion. Accordingly, the latter arises from the μ-PF$_6$ group. A remarkable feature of the spectrum is the significantly weak intensity of the latter signal at $\delta$ = –77.8. The $^{19}$P{H} value (978 Hz) is clearly larger than that of the PF$_6$$^-$ anion (711 Hz), and comparable to that of neutral PF$_5$ (938 Hz).

The $^{19}$P{H} NMR spectrum shown in Fig. 3(b) consists of two sets of signals at $\delta$ = –17.3 ($^{1}J_{PF}$ = 978 Hz) and –143.0 ($^{1}J_{PF}$ = 711 Hz), arising from μ-PF$_6$ and PF$_6$ respectively. The former signal appears as a triplet, while the latter shows septet coupling as expected for PF$_6$$^-$; namely, the P–F couplings for four out of the six fluorine atoms are missing from the signal of the μ-PF$_6$ group. This phenomenon is rationalized by assuming effective interactions of the four fluorine atoms with copper centers having a quadrupole moment and phenyl groups on the BPEP ligands were replaced by hydrogen atoms. However, although the dimeric structure of 6 was reproduced, distances between the Cu and F atoms were unreasonably shortened (Cu–F1 = 2.16 Å; Cu–F2 = 2.48 Å).

**Scheme 2**

![Scheme 2](image)

**Fig. 1** ORTEP drawing of 2a with 50% probability ellipsoids. Hydrogen atoms, disordered tert-butyl groups and disordered F6 atom were omitted for clarity. Selected bond distances (Å) and angles (deg): Cu-N 2.017(3), Cu-P1 2.252(11), Cu-P2 2.261(11), Cu-F1 2.190(3), Sb-F1 1.916(3), Sb-F2 1.843(4), Sb-F3 1.859(5). The copper center has a distorted tetrahedral configuration with the N–Cu–F1 angle of 146.04(15)$^\circ$ and the P1–Cu–P2 angle of 156.25(5)$^\circ$. The Cu–F1–Sb bond angle is 143.9(2)$^\circ$, and the Sb atom adopts a distorted tetrahedral configuration. The Cu–N and Cu–P lengths are in the range of PNP-pincer complexes (2.06–2.16 and 2.22–2.32 Å, respectively).

**Fig. 2** ORTEP drawing of 6 with 50% probability ellipsoids. Hydrogen atoms and counter anion (PF$_6$) are omitted for clarity. Selected bond distances (Å) and angles (deg): Cu–N 2.097(3), Cu–P1 2.263(10), Cu–P2 2.263(8), Cu–F1 2.241(2), P3–F1 1.637(2), P3–F2 1.586(2), P3–F3 1.588(2). The copper center has a C$_2$ symmetry with the P3 atom at the point of symmetry, which adopts C$_2$ symmetry with the P3 atom at the point of symmetry. Two Cu(BPEP) units are connected by a μ-PF$_6$ group in a zigzag conformation. The length of the Cu–F1 bond is 2.241(2) Å, which is somewhat longer than that of 2a, but still in the range of an effective bonding interaction between the Cu and F atoms.

**Fig. 3** (a) $^{19}$F and (b) $^{31}$P{H} NMR spectra of 6 in CD$_2$Cl$_2$ at 20 °C.
This is probably due to the absence of the bulky Mes groups. Therefore, the geometry of the Cu-($\mu$-PF$_6$)-Cu core was fixed to the X-ray structure, and the remaining portion was optimized assuming C$_3$ symmetry around the F3–Cu–F3* axis.

Figure 4 shows the optimized geometry of 6' under the above structural constraints. The Mayer’s bond orders (B) for Cu–F and P–F bonds are also presented. There is evidence for a bonding interaction between Cu and F1 ($B = 0.32$) and a weakening of the P3–F1 bond ($B = 0.66$). It is also observed that the F2 atom interacts with the Cu atom with a bond order of 0.13, despite the long distance between those atoms (3.05 Å). Bonding interactions of F atoms with Cu centers are also observed in several molecular orbitals (see ESI).

Table 1 compares the charge distributions in [(bpep)Cu-($\mu$-PF$_6$)-Cu(bpep)]$^+$ (6') and [Cu(bpep)]$^+$ (2'), which were evaluated by natural population analysis. The $\mu$-PF$_6$ group of 6' is charged to $-0.84$, meaning that the negative charge of the PF$_6^-$ anion ($-1.00$) is reduced by bridging coordination with two molecules of 2'. Since the copper center of 6' is more positively charged than that of 2', it is concluded that the negative charge of the PF$_6^-$ anion is distributed to the bpep ligand upon the formation of 6', very probably via $\pi$-backbonding between copper and bpep.

Complexes 2a and 2b undergo ion dissociation in CD$_2$Cl$_2$ as a polar solvent (vide supra). It was found that the complexes cleave the Si–N bond of Me$_2$SiN$_3$ to afford [Cu$_2$(bpep)$_2$($\mu$-N$_3$)]$^+$ [X = SbF$_6$ (7a), PF$_6$ (7b)] in 96 and 36% yields, respectively, along with Me$_2$SiF (Scheme 3). The reactions probably proceed via cooperative activation of Me$_2$SiN$_3$ by the electrophilic copper center and nucleophilic fluoride ion. Since it is known that it is very difficult to dissociate a fluoride ion from SbF$_6^-$ and PF$_6^-$ as non-coordinating anions, the high reactivity of 2a and 2b should be attributed to the high electrophilicity of [Cu(PEP)].

In summary, we have reported novel Cu$^+$ complexes bearing a phosphaalkene-based PNP-pincer ligand (BPEP). Thanks to the strong $\pi$-accepting ability of the P=C bonds, the [Cu(bpep)]$^+$ species possesses a highly electron-deficient copper center, exhibiting strong affinity towards SbF$_6$ and PF$_6^-$ as non-coordinating anions. Thus, SbF$_6^-$ is coordinated with [Cu(bpep)]$^+$ to form [Cu(SbF$_6$)(bpep)] (2a) as a neutral species. On the other hand, PF$_6^-$ formed [Cu$_2$(bpep)$_2$($\mu$-PF$_6$)]$^+$ (6'). The dinuclear structure of 6' is stable in solution even in the presence of excess MeCN or CO. This is due to the occurrence of effective bonding interactions between the Cu and F atoms.

Notes and references

* International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyotou University, Uji, Kyoto 611-0011, Japan. E-mail: nakajima@scl.kyoto-u.ac.jp, ozawa@scl.kyoto-u.ac.jp

b Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyotou University, Uji, KYOTO 611-0011, Japan.

‡ Electronic Supplementary Information (ESI) available: experimental procedures and analytical data, additional crystallographic data and computational details. See DOI: 10.1039/b000000x/

‡ This work was supported by a Grant-in-Aid for Scientific Research from MEXT Japan and the JST PRESTO program.

| Table 1 Charge distribution in 6' and [Cu(bpep)]$^+$ (2’) |
|---------------------------------|-----------------|
| Component | Charge Distribution | Charge Distribution |
| [Cu(bpep)]$^+$($\mu$-PF$_6$)]$^+$ (6’) | Cu | +0.78 | +0.67 |
| [Cu(bpep)]$^+$ (2’) | bpep | +0.14 | +0.33 |
| $\mu$-PF$_6$ | -0.84 | |

The values were determined by DFT calculations and NBO analysis.

Fig. 4 The optimized structure and Mayer’s bond orders for a model compound of 6, [(bpep)Cu-($\mu$-PF$_6$)-Cu(bpep)]$^+$(6').

Scheme 3

---

19 Weak coordination of PF$_6^-$ with Cu at a distance of 2.60(2) Å has been reported for [Cu(µ-CH$_2$C=CHCOOCH$_3$)(bpy)]PF$_6^-$: T. Fintunier, J. Organomet. Chem., 2006, 691, 3948.
CuI complexes bearing BPEP as a PNP-pincer type phosphaalkene ligand undergo effective bonding interactions with “non-coordinating anions” such as SbF$_6^-$ and PF$_6^-$.