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Abstract 

The application of Markov models as deterioration-forecasting tools has been widely documented in the practice of infrastructure 
management. The Markov chain models employ monitoring data from visual inspection activities over a period of time in order 
to predict the deterioration progress of infrastructure systems. Monitoring data play a vital part in the managerial framework of 
infrastructure management. As a matter of course, the accuracy of deterioration prediction and life cycle cost analysis largely 
depends on the soundness of monitoring data. However, in reality, monitoring data often contain measurement errors and 
selection biases, which tend to weaken the correctness of estimation results. In this paper, the authors present a hidden Markov 
model to tackle selection biases in monitoring data. Selection biases are assumed as random variables. Bayesian estimation and 
Markov Chain Monte Carlo simulation are employed as techniques in tackling the posterior probability distribution, the random 
generation of condition states, and the model's parameters. An empirical application to the Japanese national road system is 
presented to demonstrate the applicability of the model. Estimation results highlight the fact that the properties of the Markov 
transition matrix have greatly improved in comparison with the properties obtained from applying the conventional multi-stage 
exponential Markov model. 
 
"Keywords: Infrastructure management, Hidden Markov model;  Measurement errors; Selection bias; Bayesian estimation; MCMC"  

1. Introduction 

Statistical deterioration forecasting with Markov models has been widely documented as an important 
methodology for hazard analysis in the practice of infrastructure management (Madanat et al,. 1995, Shin and 
Madanat, 2003; Shahin, 2005). A good example of its application is the PONTIS program (Golabi and Shepard, 
1997), which was developed for bridge management systems (BMS). In Markov models, the deterioration of an 
infrastructure system is represented by the transition probability among its discrete condition states, which reflect 
the status of its health. 

In order to apply Markov models for prediction, it is necessary to employ monitoring data from historical 
inspections, the quality of which is a decisive factor in the accuracy of estimation results. In infrastructure 
management practice, however, monitoring data are often marred by errors and bias. Measurement errors can arise 
from the measurement system itself, the inspector (human or machine), the inspected objects, or problems with data 
processing and interpretation (Humplick, 1992). Such errors tend to cause bias in the estimation results of 
deterioration models, especially when there is a small pool of monitoring data. 

Researchers have proposed methods of tackling problems related to measurement errors in monitoring data.  
Efforts have been made to perfect evaluation techniques for quantifying the error term (Cochoran and Cox,. 1968; 
Grubbs, 1973; Humplick, 1992). In addition, to cope with small sampling populations of monitoring data and 
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measurement errors, researchers have proposed estimation methodologies using the Bayesian estimation technique 
(Hong and Prozzi, 2006; Ben-Akiva et al, 1993; Ben-Akiva and Ramaswamy, 1993). To overcome problems in 
spatial sampling, which is viewed as contributing to measurement errors, Mishalani and Gong (2009) propose an 
optimization model using the latent Markov decision process (LMDP) to select the best sample size. To our 
knowledge, a paper by Humplick (1992) is considered the fundamental measurement errors model for later models 
using LMDP in infrastructure management. 

 
{Fig. 1 is about here} 

 
In the paper of Humplick (1992), the author proposed a factor analytical model focused on differentiating the 

causes of measurement errors as influenced by three categories: monitoring technologies, specific items, and 
measurement locations. Measurement errors are quantified by weighting factors for error terms with respect to the 
three categories. The best technology offering least measurement error becomes preferable in adjusting the error 
term and defining performance distress. Later research on LMDP then utilizes the estimation results of this 
measurement error model as input. 

Another research orientation toward elimination of measurement errors is with the application of Kalman filter. 
This mathematical method originated from the field of statistic and has been widely applied in many engineering 
fields. Theoretically, Kalman filter is an algorithm to generate estimates of the true values of observations and their 
associated calculated values by predicting a value, estimating the uncertainty of the predicted one, and finally 
computing a weighted average of the predicted value and the measured value.  The weighted average is calculated 
from the covariance, a measure of the estimated uncertainty of the prediction of the system’s state. As the weighted 
average has a better estimated uncertainty than either alone, the estimates produced by the algorithm tend to be 
closer to the true values than the original observations (Kalman, 1960). To the best of the authors’ knowledge, 
application of Kalman filters for management of infrastructure system has been recently documented in the papers 
of Durago-Cohen (2007), Chu and Durago-Cohen (2007), and Chu and Durago-Cohen (2008). Of the cited papers, 
continuous state-space models are discussed. The performance or condition of an infrastructure system is reflected 
in a continuous performance indicator. Using the framework of Kalman filter algorithm, authors of the cited papers 
have successfully discussed and proposed an approach for deterioration prediction within a dynamic infrastructure 
management system, in which, heterogeneity factors, time-series and panel data are used; effects of interventions 
over the life cycle of infrastructure system, and measurement errors are included. 

The hidden Markov model is a special case of Markov chain model, which has been widely used in several 
research areas such as image processing, speech recognition, and applied statistics (Robert et al, 2000; MacDonald 
and Zucchini, 1997; Lawrence, 1989). One of the great advantages of the hidden Markov model is that it allows the 
unobserved condition state to be captured, eliminating the noise and bias associated with monitoring data. Of cited 
studies on hidden Markov models, the main focus has been on the accumulation of discrete-value in time series. In 
addition, several profound research studies on hidden Markov models with unobserved states of regimes can be 
found in economics and finance engineering literature (Hamilton, 1989; Diebold and Inoue, 2001; Hamilton and 
Raul, 1994), where the authors attempt to simulate and evaluate the business cycle and switching of regimes by 
using non-stationary time series. One important finding is that the change of longitudinal data can be simulated by 
means of transition probability. In addition, research has shown that the transition probability can be identified in the 
non-linear auto-regressive approach using the Markov chain theory (Hamilton, 1989; Kim and Nelson, 1999). 
However, a majority of past research on hidden Markov models has proposed estimation methods to uncover 
unobserved condition states based on true condition states, which must be available as monitoring data. Under such 
an assumption, it is certain that the true condition states of a system are no longer random variables. This fact is 
considered as a limitation of the cited research. 

Apparently, research on the hidden Markov model has not been applied elsewhere in the literature of 
infrastructure management. In this paper, we develop a hidden Markov model to tackle a type of measurement errors 
in monitoring data so that estimation outcomes can be more reliable for practical use. It is noted that the term 
“measurement errors” in our model is referred as selection bias, which is explained in detail in section 2. In the 
model, we assume that “true condition states” and “observed condition states” of road sections are random variables. 
This assumption reflects the real possibility of having selection biases in the system. In another words, we consider 
selection biases as random variables. This assumption is one of the key features of our model, which is different 
from the assumption in past models. To describe selection biases as random variables, a mixture of mathematical 
forms between “true condition states” of road sections and “observed conditions states” or “selection biases” is 



   

proposed using the conditional probability distribution function. Also in our model, an innovative numerical 
estimation approach using Bayesian estimation and MCMC simulation is presented to overcome the difficulty of the 
complete likelihood function so that optimal values of the model’s parameters can be obtained. 

In comparison with the proposed methods in the research work of Humplick (1992) and the use of Kalman filter 
in the papers of Durago-Cohen (2007), Chu and Durago-Cohen (2007), and Chu and Durago-Cohen (2008), our 
paper is different from them in two fundamental research standpoints. Firstly, in our paper, we basically deal with a 
special type of measurement errors called selection bias. Precisely, we assume that measurements carried out by 
monitoring devices are precise. Selection biases occur due to the maladjustments of engineers. A greater description 
of our assumption is presented later in section 2. Secondly, the hidden Markov model in our paper is developed for 
discrete space, while in Kalman filter models; the state-space is continuous. Additionally, the hidden Markov model 
can represent an arbitrary distribution for the next value of the state variables, in contrast to the Gaussian noise 
model that is used in the models employing Kalman filter (Capper et al, 2005). Furthermore, our work is a 
significant extended work toward estimation of Markov transition probability using inspection data, which has been 
published in the paper of Tsuda et al, 2006b. 

The following section presents a framework on selection bias and the process of deterioration with hidden 
condition states. Section 3 details the mathematical formulation of mixture distribution and hidden Markov 
transition probability. An analytical technique using Bayesian estimation and MCMC simulation is discussed in 
section 4. Section 5 presents an empirical study using data of the Japanese national road system. The last section 
summarizes the contributions of the paper and includes suggestions for future research. 

2. Selection bias and hidden condition states 

2.1. Selection bias and representation matter 

This section details the problem of having measurement errors as selection bias in monitoring data. Based on this 
discussion, we establish a theoretical base for using the hidden Markov model to predict the deterioration of an 
infrastructure system. Fig. 1 shows monitoring data regarding the deterioration process of a road system, 
information which is used later in our empirical analysis. The dots in the figure represent the relation of rutting 
amount measured at two inspection times τA and τB (τA < τB) in the same road area. It is noted that road characteristics 
and inspection intervals vary a great deal with each sample. This fact implies that heterogeneity of the system is 
considered in our study. However, in the same figure, between the two inspection times, there are samples of the 
road sections where preventive maintenance was not performed. As long as no preventive maintenance is performed 
on the road, the condition of the road section cannot improve with the progress of time. Therefore, all dots reflecting 
values of measurement samples should lie above the 45-degree line. However, as shown in the figure, there are 
many samples positioned below the 45-degree line, indicating that there is considerable selection biases in the 
condition measurement data for the road. 

 
{Fig. 2 is about here} 

 
 It is important from the outset of this paragraph to emphasize the assumption in our paper “results from 

observations carried out by monitoring devices are precise”. And thus, our model is developed to deal with the 
measurement errors referred as selection biases. To make it more understanable, we distinguish two types of errors 
here: 1) random errors and 2) selection bias. Random errors result from faulty measurement by measuring devices, 
such as inspection cars with attached surface-monitoring equipment. Inevitably, surface-monitoring vehicles with 
devices measuring the deterioration of road sections are subject to errors, which can be thought to be random. Of 
course, errors due to special characteristics of the measurement device, or to differences between measurement days, 
are selection bias. It is necessary to consider the existence of selection bias by comparing macro characteristics, such 
as average values, on samples measured with different procedures. However, in the measurement of road 
deterioration, a different kind of selection bias exists, which we will call deterioration phenomena, a term which 
covers such matters as the rutting, cracking, and surface irregularity occurring with deterioration. The road condition 
of a certain road area is defined by the deterioration phenomena that exist within that area. However, there are 
numerous deterioration phenomena in a road area, and information on all such phenomena cannot be obtained by 
road surface inspection. Road condition is therefore defined by deterioration phenomena randomly selected among 
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all existing deterioration phenomena. In this case, with two measurement times, it is possible that a deterioration 
phenomenon sample measured a second time shows less deterioration than when measured the first time (the 
condition has improved before the second measurement). However, unless preventive maintenance has been 
performed, the deterioration phenomena that were measured in the first time still exist without being improved, and 
the condition has not improved. In this case, when defining the condition of the road area, it is important to 
determine what deterioration phenomena have been selected. Selection biases occur when the condition of 
infrastructure is defined with different deterioration phenomena, and we refer to this as the problem of 
“representation matter.”  

In the evaluation of infrastructure, the deterioration condition is often defined by phenomena whereby 
deterioration has most progressed. For example, with the empirical analysis in this study, three parts of the same 
road area were measured, and the condition of parts with the most deterioration was used to represent the condition 
of the road area as a whole. Or, sometimes the road area is fragmented into multiple areas, and the condition of the 
most deteriorated part of each fragmented area is measured, and then the average of these measurements is used to 
define the condition of the overall area. Another example of selection bias can be summarized in three following 
points: 1) engineers often choose different locations of a road section for uncover its condition state. However, they 
do not know exactly where is the location in that road section with worst condition state; 2) after inspections, for 
example, on two points (A and B), they compare the deterioration between the two points and choose the worst 
deteriorated one as representative; 3) in the next inspection period, on the same road section, there is no guarantee 
that data from exact locations like in previously inspection is selected. 

When the condition is defined with these above mentioned methods, theoretically, the condition cannot improve 
over time. However, data obtained by surface condition inspection is from samples selected from deterioration 
phenomena, and cannot be the deterioration phenomena with the most deterioration. Therefore, the condition 
defined by deterioration phenomena randomly selected has the selection bias of having less deterioration than the 
true condition measurement. In this study, we develop a hidden Markov model that takes selection biases into 
account, based on measurement data of road sections, and then empirically analyze the existence of system selection 
bias in road measurements. Furthermore, in practice, deterioration curves are often estimated by deleting the 
samples below the 45-degree line in Fig. 1, using samples that are positioned above the 45-degree line. However, 
this does not solve the problem of selection bias due to representation matter. 

2.2. Selection biases and the Hidden Markov Deterioration Process 

With Fig. 2, we explain the problem that arises when there are selection biases in condition measurements. Let us 
say the true deterioration of infrastructure can be expressed with I rating indicators (called condition state in this 
study) i(i=1,…,I). If i=1, the condition is best, and if i=I, it is the most deteriorated. Now, assume that the result of a 
condition measurement taken at time Aτ  shows the condition to be ( ) ( 1,..., )Am m m Iτ = = . However, selection 
biases might be included in the measurement results. We express the true condition (with no selection biases) of 
time Aτ  as *( ) ( 1,..., )Am i i Iτ = = . If selection biases exist in the condition inspection results, there is no guarantee 
that the “observed condition” ( )Am mτ =  is the same as the “true condition” *( )Am iτ = , and also there is the 
possibility that a value representing better condition state than the true condition state will be selected. Under such 
circumstance, the performance curve (or deterioration curve) of a road section is likely to be underestimated, and 
therefore, resulting in the underestimation of life cycle cost. This might be contracdict with the finding of Madanat 
and Ben-Akiva (1994), where measruement errors have been shown to increase the life cycle cost.  

 
Here, it is assumed that the measurement results of the condition inspection are subject to the discrete probability 

distribution ( )i if m α . However, when the true condition is i, ( )i if m α  is a conditional probability distribution 

whereby the condition is judged as m (hereinafter, conditional selection bias distribution). Also, iα is a parameter 
vector that characterizes the probability distribution. Next, it is assumed that measurement was performed again at 
time B A zτ τ= + , after time z has passed from time Aτ . We express the measurement result of the condition 

inspection as ( )Bm nτ =  and the “true condition” at time Bτ  as *( )Bm jτ = . There is also no guarantee that these 
two condition measurements will be the same. From the above measurement results, the pattern of the “observed 



   

condition” within the period [ ),A Bτ τ  is m n→ . The transition pattern of the “true condition” is i j→ . If there are 
selection biases, it is impossible to know if the measured condition state at each time is the “true condition state.” 
Therefore, it is the “observed condition” m n→  that is measured with the condition inspection, and the “true 
condition” i j→  is not measured. Based on data regarding the “observed transition pattern,” even if we estimate the 

transition probability mnπ , there is no guarantee that this is the same as the transition probability ijπ  defined by the 
“true transition pattern.” In this way, if there are selection biases in the measurement results, the Markov 
deterioration process defined by the “true condition state” is hidden behind the Markov chain defined by the 
“observed condition states” with selection biases.  

The characteristic of this study is that we use a hidden Markov model to show the state where the Markov chain 
of the true deterioration process is hidden within data that include selection biases. With a hidden Markov model, it 
is a task simultaneously to estimate the probability ( )i if m α  that shows the mechanism of biases in the measurement 

results, and the transition probability ijπ  that is defined with the “true condition state.” Furthermore, to be accurate, 
it is impossible to predict the “true conditionstate” i, or to know what conditional selection bias distribution the 
“observed condition state” m came from, among the different conditional selection bias distributions 
( )( )1,...,i if m i Iα = . Therefore, a methodology is needed for estimating the conditional selection bias distribution 

that generates the data for the “observed condition state.” For this reason, the hidden Markov model estimation 
becomes complicated, However, we will consider an estimation method in Section 4. 

3. The hidden Markov model 

3.1. Multi-stage Exponential Markov Hazard Model 

Deterioration of a road section can be described as evolution of transition among discrete condition state. With 
Markov chain model, the Markov transition probability can be described as follows:  

 
[ ( ) = | ( ) = ] = ,B A ijProb m j m iτ τ π

∗ ∗  (1) 
 
where  

=

0 ( , = 1, , )
= 0 ( > )

.
= 1

ij
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j i

i j I
when i j

π

π

π

≥ 













∑



 (2) 

Given inspection data of respective road sections at times  and A Bτ τ , and the corresponding characteristic 
variables (eg. traffic volume, thickness of road sections, etc), the properties of Markov transition matrix ijπ  can be 
estimated through Maximum likelihood estimation approach. An explicit formula for estimating the Markov 
transition probabilities has been derived by Tsuda et al, 2006b. In this paper, we briefly outline the formula in Eqs. 
(3), (4), (5), and (6) for convenient of the readers. A greater detailed of the formulation and estimation method for 
Markov transition probabilities using maximum likelihood estimation approach should be referred to the original 
paper of Tsuda et al, 2006b. 

1
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Transition probability from condition state i  to absorbing condition state I  is eventually defined in the 

following equation:  
 

1

=

( ) = 1 ( ) ( = 1, , 1).
I

iI ij
j i

z z i Iπ π

−

− −∑   (6) 

In the above equations, iθ is referred as hazard rate and z is time interval between the two inspections. The hazard 
rate iθ  is a representation of hazard function, which is defined as conditional probability, a ratio of probability 
density function of transition of condition state i (numerator) and survival probability function (denominator). In the 
cited paper, the hazard function is assumed to follow exponential function form. A detail of exponential hazard 
function and its mathematical derivation should be referred to original paper. 
The hazard rate can be expressed by multiplicative form of characteristic variable x  and unknown parameter '

iβ

(Lancaster, 1990). The unknown parameter '
iβ is the target of estimation in statistical models, and it is often 

referred as model’s parameter. 
 

= ( ) = .'i i ix xθ θ β  (7) 
Statistically, the characteristic variable x  in Eq. (7) is often referred as model’s covariates or variables. This 
characteristic vector genuinely represents the heterogeneity factors in our model. Example of the characteristic 
variables are daily or annual traffic volumes, ambient temperatures, thickness of road sections, etc. Such 
characteristic variables are the factors affecting the deterioration process. For instance, road sections engaging with 
a high number of daily traffic volume oftenly have faster deterioration than that engaging with less daily traffic 
volume. The values of characteristic variables of different road sections are different, and therefore we considere 
them as observable heterogeneity factors.  

3.2. Mixture distribution mechanism 

This section explains the mathematical formulation of the hidden Markov model based on the mixture 
distribution mechanism. Assumptions are as stated in Section 2. In fact, it is uncertain whether the probability 
distribution function ( | ) ( = 1, , )i if m i Iα   can be used to estimate the true condition state i . However, we are able to 
express the probabilistic dependence of observed condition state ( ) =Am mτ  on true condition state i  by means of 
the likelihood function ( | ) ( = 1, , )i if m i Iα  . 

 

=1

( ( ) = ) = ( ) ( | ),
I

A i A i i
i

m m f mτ π τ α∑  (8) 

 
where ( )i Aπ τ  is the probability of true condition state i at inspection time Aτ . Eq. (8) depicts the conditional 
probability distribution of observed condition state ( ) =Am mτ  on true condition state i . In other words, it portrays 
the conditional probability distribution of observed condition state ( ) =Am mτ  by averaging the distributed values of 
selection biases over the range of true condition states. Models which mix mechanisms of selection biases are 
referred to as mixture distribution models. 

Similarly, the probability distribution of observed condition states at inspection time =B A zτ τ +  ( < )A Bτ τ  can 
be described with mixed forms. The likelihood function ( ( ) = )Bm nτ , to which observed condition state ( ) =Bm nτ  



   

at inspection time Bτ  can be defined as  
 

= =

( ( ) = ) = ( ) ( ) ( | ).
I I

B i A ij j j
i i j i

m n z f nτ π τ π α∑ ∑  (9) 

 
As a result, the likelihood function ( ( ) = , ( ) = )A Bm m m nτ τ , at which we observe  condition state ( ) =Am mτ  at 

inspection time Aτ  and condition state ( ) =Bm nτ  at inspection time Bτ , can be defined as follows:  
 

=1 =

( ( ) = , ( ) = ) = ( ) ( | ) ( ) ( | ) .
I I

A B i A i i ij j j
i j i

m m m n f m z f nτ τ π τ α π α
 

 

 
∑ ∑  (10) 

  
It is noted that the random variables ( )Am τ and ( )Bm τ  (as well as *( )Am τ and *( )Bm τ ) are correlated through 

the Markovian transition probability. The probability distribution functions ( | )i if m α  and ( | )j jf n α  are 
independent  of each other. In other words, the distribution of observed condition states depends on hidden 
characteristics or selection biases at respective inspection times Aτ  and Bτ .  

3.3. Initial values of the condition states 

As can be seen from Eq. (10), there are three unknown components: the initial distribution ( )i Aπ τ , the 
probability distribution function ( | )i if m α , and the Markov transition probability ( )ij zπ . The value of the initial 
probability distribution ( )i Aπ τ  is regarded as transcendental information. The initial probability distribution can be 
assumed as a variable of non-parametric distribution. However, assuming it to be a non-parametric variable limits 
the study for a large number of monitoring data since characteristic variables concerning one road section do not 
share the same values with those of other road sections. It is therefore advisable to determine the initial value of the 
condition state immediately after &M R  activities, when a road section is renewed to a good condition state 
whereby = 1i . For example, if &M R  action is carried out just before time 0τ , the initial probability distribution 
can be defined as  

 
0 1 0 0( ) = { ( ), , ( )} = (1,0, ,0).Iπ τ π τ π τ   (11) 

 
Evidently, properties of the vector 0( )π τ  are measurable. Thus, if &M R  actions are implemented at alternative 

times 1, , Tτ τ , the initial value of probability distribution ( )i Aπ τ  can also be defined. To come up with a general 
likelihood function for the conditional probability distribution of observed condition states m , observed condition 
states after &M R  actions at times tτ  ( = 1,..., )t T  are assumed as ( ) =t tm mτ . Durations between two consecutive 

&M R  actions from 1t −  to t  are denoted as  ( = 1, , )tz t T . As a result, likelihood function ( , , )L m zα , which 
describes the conditional probability distribution of observed condition states 1= ( , , )Tm m m , can be recurrently 
defined:  

 

1 1 1 1
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The model’s parameters to be estimated are  β and α , which are embedded in the Markov transition probability 

ijπ through Eq. (3) , Eq. (7) and the probabilitity mass function ( )f ⋅ respectively. ikelihood functions in Eq. (12), Eq. 
(13), and Eq. (14). The maximum likelihood estimation method can be used to estimate the values of a model’s 
parameters based on numerical analysis with an objective likelihood function. However, the method is limited in 
that it requires a high order of derivative and a high degree of computation for solving the optimal condition of 
nonlinear polynomial equations. Therefore, within the estimation framework for the hidden Markov model, the 
maximum likelihood method is not the preferred approach (Titterington et al., 1985). Attempts to overcome the 
limitations of the maximum likelihood method by using Bayesian estimation have been proposed in a great number 
of  advance statistic literatures (e.g. Geman and Geman 1984; Scott, 2000; Jeff, 2006).  

3.4. Complete likelihood function 

Distribution of selection biases is assumed by means of a hidden variable 0= ( , , )Ts s s . If there is no &M R  
action in the inspection period, the following condition is satisfied:  

 
0 1= 1 .Ts s s I≤ ≤ ≤ ≤  (15) 

 
Furthermore, if the hidden variable is measurable, its value can be used to update the probability distribution of 

true condition state i , which is hidden because of selection biases. In addition, to identify the possibility of 
measurement of the hidden variable, a dummy variable δ  is assigned with the following conditions:  
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   (16) 

 
With this assumption and according to Dempster et al, 1977, the likelihood functions in (12), (13), and (14) are 

then described as follows:  
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In Bayesian statistics, Eq. (17) is commonly referred to as a complete likelihood equation, with a finer explicit 

form than that in likelihood Eqs. (12), (13), and (14). Nevertheless, a difficulty remains at this point in how to assign 
a realistic value for the hidden variable s , since it is unobservable. In view of probability distribution, hidden 
variable s  can be derived when full conditional posterior distribution with Bayesian inference is applied.  The prior 
probability distribution in the Bayesian estimation is assumed as follows:  

 

1 1

= =1 1

( , , , ) ( | ){ = | , , } = = ,
( , , , ) ( | )

i
t it i t i

t t s st t
i

t jt j t j
i s j st t

L s m z f mProb s i s
L s m z f m

α ω α
α ξ
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−

−
+ +

−

− −

∑ ∑
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 (18) 

 
where 1 1 1 1= ( , , , , , ), = ( ,i

t t t T ts s s s s s s
− − + −

  , 1 1, , , , )t t Ts i s s
− +

 , and =  (ts i i  1{ ,ts
−

∈ 1, })ts
+

 . In addition, jtω  
satisfies  
 



   

1 2

1 1

1

= 1
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=
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jt s j jst t

s jT

t

t T

t T

π π

ω π π

π

− +

−






≤ ≤


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 (19) 

 
If the posterior probability distribution of hidden variable 1 1{ , , }t t ts s s

− +
∈   at time t  is measurable, transition 

probability ( ) ( = 1, , ; = , , )ij z i I j i Iπ    and probability distribution function ( | ) ( = 1, , )i if m i Iα   can ultimately 
be estimated. It is also noted that the posterior probability distribution of  hidden variable 1 1{ , , }t t ts s s

− +
∈   is 

conditionally dependent on the observed value of ts
−

. 
To solve the likelihood function in Eq. (18), it is necessary to estimate the value of hidden variable s . The main 

task, therefore, is to estimate the two unknown parameters α  and β , which are embedded in the transition 
probability functions. In reality, the possibility of seeking the posterior distribution of all hidden variables is very 
hard. Thus, it is recommended that MCMC simulation be used in randomly generating hidden variable s .  

3.5. Conditional distribution of selection biases 

As mentioned in section 2, the representative condition state of a road section generally happens to be the worst 
condition state among several observed on the same section. Thus, it is possible to assume the range of observed 
condition state m  in a domain ( = 1,..., )m m i . The relationship between observed condition state m  and true 
condition state i  implies selection biases on the same road section. Observed condition states can be considered to 
be chosen through a random selection process. However, probabilistic inference on the value of probability 
distribution function ( | ) ( = 1, , )i if m m iα   is a matter of some difficulty. In this research, the distribution 
probability function ( | ) ( = 1, , )i if m m iα   is assigned to satisfy the following conditions:  

 
0 >

( | ) = ,i i i
m

when m i
f m

when m i
α

α




≤

 (20) 

  
where parameter i

mα  is assumed as a non-parametric constant satisfying  
 

0 1,i
mα≤ ≤  (21) 

=1

= 1.
i

i
m

m
α∑  (22) 

 
The probability distribution of parameter i

mα  can be estimated if the quantity of monitoring data is sufficient. 
This is a non-parametric approach in cases where there is no prior information regarding selection biases. Moreover, 
the assumption in Eq. (20) reflects management practice and also eliminates the so-called “label switching” problem 
in hidden Markov model estimation (Zucchini and MacDonald,2009; Scott, 2000).  

4. Estimation methodology 

4.1. Markov Chain Monte Carlo (MCMC) method 

In statistics with Bayesian inference, prior and posterior probability are employed with the aim of estimating the 
values of a model's parameters. However, in hazard analysis, it is difficult to define the prior probability distribution, 
even in a simple condition states deterioration model. Methods to overcome the problems in the assumption of prior 
probability distribution often require numerical analyses with multi-dimensional integration, and this necessity 
remains a limitation of Bayesian estimation. 
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In recent years, an appealing solution to the problem in Bayesian estimation has been proposed, with the 
application of MCMC simulation. The MCMC simulation technique is attractive because it requires neither a high 
level of derivative nor multi-dimensional integration of a model's objective functions. Estimation results in a great 
deal of applied statistics research have been improved through a combination of Bayesian estimation and MCMC 
simulation. 

In MCMC simulation, Gibbs sampling and Metropolis Hastings (Metropolis-Hastings or MH) techniques have 
been extensively discussed. Our list of references includes a good example of the use of MCMC simulation in 
research related to image restoration.  In the cited study, the algorithm of Gibbs sampling was used to estimate the 
posterior distribution in Bayesian estimation. In MH law, the iterative parameter β  is defined by repeatedly 
generating random numbers through the conditional probability density function. In the present research, we propose 
an extended estimation methodology to estimate the parameters of the hidden Markov model based on the literature 
regarding Bayesian estimation for the Weibull hazard model of Tsuda et al. (2006a). 

To estimate further the parameters in hidden Markov models, an analytical approach using method of maximum 
likelihood has already been shown to have limitations (Titterington et al., 1985; Robert, 1996). Since the hidden 
Markov model is considered as one type of mixture distribution model, a great deal of research has suggested 
defining a set of complete likelihood functions instead of using conventional likelihood functions (Diebolt and 
Robert, 1994; Robert et al., 2000). In view of MCMC simulation, it is necessary to develop an explicit algorithm for 
estimating the Markov transition probability with multi-condition states. In this research, we propose an analytical 
approach using Bayesian estimation and MCMC simulation for estimating the Markov transition probability of the 
multi-stage exponential Markov model, which is briefly presented in section 3.1. 

4.2. Formulation of the model 

Visual inspection is carried out on each section k  of the entire road system (with K  as the total number of road 
sections). The observed data on each section over a time-series can be denoted as  ( = 1, , )k k

t t Tτ  , with kT  as the 
number of inspection times for road section k . Each observed condition state from the visual inspection is 
represented as ( )k

tm τ , with the sign    indicating measurable data. 1= ( , , )K
ξ ξ ξ  is denoted as the vector of 

measurable data concerning 
=1

K k
k

T∑  number of records. 
The deterioration process of a road section is influenced by the changes in values of characteristic variables such 

as traffic volume, thickness of overlay, weather, etc. The values of characteristic variables are recorded and stored as 
monitoring data. To consider the effects of characteristic variables on deterioration, vector k

tx  is assumed to 
represent characteristic variables. In addition, duration between two consecutive visual inspections is defined as 

1=k k k
t t tz τ τ

−
− . In summary, observed information concerning each section of road can be symbolized as 

= ( , , )k k k k
t t t tm z xξ , with ( ) =k k

t tm mτ . As a result,  simultaneous probability distribution for the entire K  samples 
can be defined as follows:  

 
1

1=1 =1 =1 =1 =1 = = ,1 1

( , , , ) = ( ) ( | ) = exp( ) .
kk k k s kK T T K T ltksk k k kit

k k t k t k k l tk ks s s s mt t t t t k kk t t k t i ll s i s lt t

L m z f m zθ
α β ξ π α α θ

θ θ

−

−
≠

− −

      
 −   

−        

∏ ∏ ∏ ∏ ∏ ∑ ∏  (23) 

 
In likelihood Eq. (23), theoretically, hazard function can be described either by using exponential form as 
= exp( )k k '

i ixθ β or by plain form (refer to Eq. (7)). In order to estimate unknown parameters and hidden variables 
(selection biases), we need to propose a feasible numerical method to solve the likelihood function in Eqs. (12), (13), 
and (14). By solving Eq. (23), the values of 1 1= ( , , )Iα α α

−
 , 1 1= ( , , )Iβ β β

−
 , and hidden variable 

1= ( , , )Ks s s  can be obtained. If parameter vectors α  and β  are known, the posterior distribution of hidden 

variable  ( = 1, , ; = 1, , )k k
ts t T k K   can be estimated as well. Given the condition 1 1 1= ( , , , , , )k k k k k

t t t kT
s s s s s
− − +

  , the 

conditional probability, in which hidden variable 1 1 ( { , , })k k k k
t t t ts s s s

− +
∈   equals true condition state i  , is finally 

estimated:  



   

 

1

= 1

( | ){ = | , , } = ,

( | )

k k
k k it i t i
t t kst

k k
jt j t j

kj st

f mProb s i s

f m

ω α
α ξ

ω α

−

+

−

∑

 (24) 

 

4.3. Bayesian estimation 

As a common practice in Bayesian estimation, the assumptions for prior probability distribution of parameters α  
and β  should be based on various sources of prior experience information (Jeff, 2006). Any new information 
concerning monitoring data ξ  shall be directly used for the estimation of likelihood function ( , , )L α β ξ . The 
updating rule in Bayesian estimation constantly improves the level of accuracy for prior probability distribution of 
parameters. By using the most up-to-date monitoring data, values of parameters α  and β  specifying the 
probability density function ( , | )ρ α β ξ  can be simultaneously obtained. However, according to Ibrahim et al. (2001), 
a single time of assuming the prior probability density function cannot guarantee the accuracy of estimation results 
since  prior probability density function can be assumed in various ways. Thus, it is advisable to define prior 
probability density function concomitantly with visual inspections. As a rule of thumb, the influence of the prior 
probability density function will gradually decrease as the number of monitoring data increases. 

As mentioned in Section 3.5, constant parameter 1= ( , , )i i
i iα α α  in Eq. (20) is assumed to satisfy the conditions 

in Eq. (21) and Eq. (22). On that account, we introduce conjugate Dirichlet distribution for the prior probability 
density function of constant iα :  

 
1

=1

( | ) = ( ) ( ) ,
i i

i i i m
i i i m

m

ν

η α ν ν α
−

Ψ ∏  (25) 

1

=11

( )( ) = = 1.
( ) ( )

i i i
i ii

i mi i
mi

andν ν
ν α

ν ν

Γ + +
Ψ

Γ Γ
∑




 

 
It is noted that Direclet distribution infers a constant parameter 1= ( , , )i i i

iν ν ν , which spontaneously satisfies the 
constant parameter iα  in (21) and (22). 

The assumption for the prior probability density function of parameter iβ  can be defined in the next step. The 
conjugate multidimensional normal distribution ( , )i M i iNβ ζ Σ:  is assumed for the prior probability density 
function in M  dimension:  

 
1

2

1 1( | , ) = exp ( ) ( ) ,
2(2 ) | |

'
i i i i i i i iM

i

h β ζ β ζ β ζ

π

− 
Σ ⋅ − − Σ − 

 
Σ

 (26) 

 
where iΣ  and iζ  of ( , )M i iN ζ Σ  are covariance matrix and standard covariance of the prior distribution 
respectively. As a result, a proportional result of the probability density function ( , | , )sρ α β ξ  can be re-formulated:  
 

{ }
1
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( , | , ) ( , , , ) ( | , ) ( | )
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i
i i i i i

i
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1

=1 =1 =1

( ) .
kT I ik is it m

k mmtt i m

ν

α α
−

  
⋅     

   

∏ ∏∏  (27) 

4.4. Gibbs sampling 

A direct estimation of probability density function ( , | )ρ α β ξ  in hidden Markov models is impractical. By using 
the MCMC simulation, value samples (specimens) of parameters α  and β  can be alternately extracted from the 
probability density function (Geman and Geman, 1984). In Eq. (27),  parameters α  and β  can be mutually used to 
express the probability density function. Approximation of ( | , )sρ α ξ  and ( | , )sρ β ξ  can be further described as 
follows: 

 

1

=1 =1 =1 =1

( | , ) ( ) ,
kK T I ik is it m

k mmtk t i m
s ν

ρ α ξ α α
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The conditional posterior distribution of hidden variable s  can be expressed in Eq. (24). A detailed procedure of 

the analytical approach using Bayesian estimation and  MCMC simulation is given in the following steps. 

4.4.1. Step 1: Initial parameter values 
Parameter vectors  ( = 1, , )i i Iν  , iζ , and  ( = 1, , 1)i i IΣ −  of the prior probability distribution in Eq. (25) 

and Eq. (26) have an arbitrary set of values. The value of the hidden variable (0) (1,0) ( ,0)= ( , , )Ks s s  is initially 
chosen so as to satisfy ( ,0) ,0 ,0

1= ( , , )k k k
Ts s s , ,0 ,0

11 k k
Ts s I≤ ≤ ≤ ≤ , and ,0 ( = 1, , ; = 1, , )k k

t tm s t T k K≤   . The 
influence of initial values (0)

α  and (0)
β  gradually becomes weaker as more information generated by MCMC 

simulation is accumulated. To begin with the iteration, a sampling number n  in MCMC simulation is assigned as 
= 1n . 

4.4.2. Step 2: Sampling parameter ( )n
α  

This section describes the estimation of ( ) ( ) ( )
1 1= ( , , )n n n

Iα α α
−

  based on prior hidden variable ( 1)ns − . The 
probability density function ( ) ( 1)( | , )n nsρ α ξ

−  in Eq. (28) can be rewritten, with an extended description ( )n
iα  

,= ( : = 1, , )i n
m m iα  :  
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where ,( 1)i n

mN −  is defined in the following equation, particularly when values of  condition state m  and hidden 
variable ( 1)ns −  are available:  
 

{ }
,( 1) ,( 1)= # = = .i n k k n

m t tN m m s i− −
∩  (31) 

 
Indication #{}  in Eq. (31) presents the number of measurable samples, to which the equation in the parentheses 

{}  refers. Parameter α  in Eq. (30) is assumed to follow Dirichlet distribution, with its parameter as ,( 1) 1i i n
m mNν

−
+ − . 



   

The parameters of Dirichlet distribution are subsequently updated by using extracted samples ( ) ,( ) ,( )
1= ( , , )n i n i n

i iα α α  
through Gibbs sampling. It is noted that samples of parameter ( )n

iα  are evaluated from the entire range of condition 
state ( = 1,..., )i i I . 

4.4.3. Step 3: Sampling parameter ( )n
β  

This section describes an algorithm for estimating unknown parameter β  of the multi-stage exponential Markov 
model. Additional notation of  the unknown parameter is eqβ

−
. It is noticed from the notation that element eqβ  

( , ) ( , = 1, , )e q e q M  is excluded from the list of unknown parameter β . Thus, we formulated the conditional 
probability density function ( | , , )eq eq sρ β β ξ

−
 of eqβ  based on the assumed value of eqβ

−
 in Eq. (29):  
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where tk

ieδ  and tk
ijδ  are dummy variables:  

 

1 11 = = 1 = , =
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k k k
tk tkt t t
ie ij

when s i e when s i s j
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otherwise otherwise
δ δ

− −
 

 

 

 

 
 q

eζ  and hq
eσ  are the prior expected values of vector eζ  and prior standard covariance of entire procession 1

e
−

Σ  

with respect to condition state q  and ( , )h q . In addition, 
=1,

M

h q≠∑  is the summation of all condition states from 

=1,

M

h q≠∑ , excluding index q .  Expected condition state is generated by using conditional probability density 

functions. By using the generated condition states, we can come up with the posterior distribution of  parameter β . 
A detailed MCMC simulation for estimating the posterior distribution will be presented later. However, a 
summation of the random sampling procedure for parameter ( ) ( ) ( )

11 1= ( , , )n n n
I Mβ β β
−

  up to this point is presented as 
follows:   
• Step 3.1 - value of parameter ( )

11
n

β  is randomly generated from ( ) ( 1) ( 1)
11 11ˆ ( | , , )n n nsρ β β ξ

− −

−
.  

• Step 3.2 - value of parameter ( )
12

n
β  is randomly generated from ( ) ( 1) ( 1)

12 12ˆ ( | , , )n n nsρ β β ξ
− −

−
.  

• Step 3.3 - procedure similar to steps 3.1 and 3.2 is repeated.  
• Step 3.4 - value of parameter ( )

1
n

I Mβ
−

 is randomly generated from ( ) ( 1) ( 1)
1, ( 1 )ˆ ( | , , )n n n

I M I M sρ β β ξ
− −

− − −
.  

Gibbs sampling is applied to generate condition states from ( 1)I M−  conditional posterior probability density 
functions. The so-called “adaptive sampling rejection” (Gilks and Wild, 1992) can be used as a technique to 
generate specimens of parameters in the posterior distribution, which is explained in Eq. (32). 

4.4.4. Step 4: updating hidden variable 
Given the prior value of hidden variable ,( 1) , , ,( 1) ,( 1)

1 1 1= ( , , , , , )k n k n k n k n k n
t t t kT

s s s s s− − −

− − +
  , a new hidden variable ( )ns  is 
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randomly selected based on the conditional probability law in Eq. (24). Random generation applies for all condition 
states , , , ,( 1)

1 1 ( { , , })k n k n k n k n
t t t ts s s s −

− +
∈  .  
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Hidden variable ,  ( = 1, , )k n k

ts t T  is estimated in succession, starting from = 1t  for all numbers of sample 
 ( = 1, , )k k K . 

4.4.5. Step 5:determining algorithm adjustment 
After step 4.4.4, the values of parameters ( )n

α , ( )n
β , and hidden variable ( )ns  are recorded. In the next iteration 

= 1n n + , the program returns to step 4.4.2. If the algorithm satisfies n n≤ , the program stops. 
A major concern is the number of condition states generated in simulation. The number should be carefully 

examined. In several cases, steady condition states could not be reached even though a large number of condition 
states had been accumulated. It is desirable to eliminate this problem by introducing a minimum set of parameter 
value as n . In fact, values of parameters ( )n

α  and ( )  ( = 1, 2, , )n n n n nβ + +   are embedded in the posterior 
probability density function ( , | )ρ α β ξ  through Gibbs sampling. As a result, estimation of the posterior distribution 
of parameters ,α β  becomes analytically feasible. To verify the estimation results, we apply the Geweke statistical 
test.  

4.5. Posterior distribution statistic 

Statistical testing for parameters α  and β  can be carried out based on  samples generated by using MCMC 
simulation. However, in the simulation, the probability density function ( , | )ρ α β ξ  cannot be considered as an 
analytical function. Therefore, instead of using a full parametric approach for statistical testing, a non-parametric 
approach is recommended. With the Gibbs sampling method, samples concerning ( ) ( ) ( )= ( , ) ( = 1, , )n n n n nθ α β   are 
generated. Among generated samples, the first n  samples will be removed. A new set of samples is then defined as 

a replacement, with its subscriptions as = { 1, , )M n n+  . By applying this approach, joint probability distribution 
functions ( )G α  and ( )G β  can be defined:  

 
( )#( , )( ) = ,
n n MG

n n
α α

α
≤ ∈

−
 (34) 

( )#( , )( ) = ,
n n MG

n n
β β

β
≤ ∈

−
 (35) 



   

 
where ( )#( , )n n Mβ β≤ ∈  is regarded as total number of samples, from which logical expression ( ) ,n n Mβ β≤ ∈  is 

satisfied. Moreover, expected values of standard variance ( )i iζ β and covariance matrix ( )i iβΣ  are estimated 
(refer to the formulation in Geweke, 1996):  
 

Confidence intervals of parameter α  and β  are examined and determined by using  samples generated from 
Gibbs sampling. For example, 100(1 2 )%ε−  confidence interval of parameter α  is defined by using statistical 

sampling order ,,
( , ) ( = 1, , 1, = 1, , )i mi m

i I m M
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It is noted that the initial value of parameter (0)

θ  guarantees for true condition states neither for prior distribution 

nor for posterior distribution in MCMC simulation. Thus, it is necessary to consider n  samples generated by Gibbs 
sampling as posterior distribution of the first n  set ( ) ( ) ( )= ( , ) ( = 1, , )n n n n nθ α β  . When the number of samples 
increases to 1n + , a hypothetical test using the Geweke statistical test is performed to verify whether samples 

emanate from the prior or posterior distribution. In the next step, sampling distribution ( )  ( = 1, , )n n nθ   is divided 
into two subsets, 1n  and 2n . In the Geweke statistical test, ranges for the two subsets are recommended as 

1 = 0.1( )n n n−  and 2 = 0.5( )n n n− , respectively. According to Chib (1995) and Newey and West (1987), the 
Geweke statistical test (referred as Z-score) used to verify values of parameter α  can be outlined as follows:  

 

1 2
2 2
1 2

= (0,1),
( ) ( )

i i
m m

i i im
m m

Z N
α

α α

ν α ν α

−

+

:  (38) 

1 ,, 1 2

= 1= 1 2 22
1 2 1 2

1 2 1 2

ˆ ˆ2 (0) 2 (0)
= , = , ( ) = , ( ) = ,

n n n
i ki k
mm i ik n nk ni i i im m

m m m m

f f

n n n n
α α

αα π π

α α ν α ν α

+

− ++

∑∑
 

 
where ( ) ( = 1,2)l

i
m

f x l
α

 is the probability density function and the value of 2 (0)l
i
m

f
α

π  is estimated from the 

following equations:  
 

0
=1

ˆ ˆ ˆ2 (0) = 2 ( , ) ,
q

l i
i l l m
m s

f w s q
α

π ω ω+ ∑  (39) 

1
1 , 2 1 , 2

1 0 1 1 2 0 2 2
= 1 = 12

ˆ ˆ= ( ) , = ( ) ,
n n n

i g i i g i
m m m m

g n g n n

n nω α α ω α α

+

− −

+ − +

− −∑ ∑  

1
1 , ,( ) 1 , ,( )

1 1 1 1 2 2 2 2
= 1 = 12

ˆ ˆ= ( )( ), = ( )( ),
n n n

i i g i i g s i i i g i i g s i
m m m m m m m m m m

g n s g n n s

n nω α α α α ω α α α α

+

− − − −

+ + − + +

− − − −∑ ∑  

( , ) = 1 .
1

sw s q
q

−
+

 



K.Kobayashi, K.Kaito, and N. Lethanh/ Transportation Research Part B 

 
The value of coefficient q , which represents the approximate value of spectrum density, should equal 20, as 

recommended in the practice of the Geweke statistical test (Geweke, 1996).  
In this test, null hypothesis 0H  and alternative hypothesis i

mα  concerning the invariance distribution of setting-
values for parameter i

mα  can be defined as  
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where /2z
ψ

 is the critical value to be applied for rejecting the null hypothesis. If the given hypothesis is accepted, the 
null hypothesis can be defined by a significant level %ψ , to which the condition /2z

ψ
 /2/ 2% = 1 ( )z

ψ
ψ −Φ  is 

satisfied. ( )zΦ  is the distribution function of the standard normal distribution. As for hypothetical testing for the 
distribution of the parameter ,  ( , = 1, , )i m i m Mβ  , a similar approach can be applied. 

5. Empirical application 

5.1. Summary of database 

We applied the hidden Markov model proposed in this study to the surface inspection results of the past 9 years 
of a general national road managed by M prefecture, and attempted to predict road rutting deterioration. The 
targeted database was comprised of data regarding maintenance history and data regarding surface inspection. 
Surface inspection was conducted every 3 or 6 years. The road area targeted for analysis is approximately 60km of a 
general national road in M prefecture, and measurement samples of 100m units were accumulated. From 1986 to the 
present, rutting measurement has been periodically conducted with measurement vehicles. The managed database 
used as the applied case of this study is the road surface inspection data of the period between 1998 and 2005. From 
the data, we focus on the rutting process of the asphalt road. Furthermore, records regarding road maintenance 
conducted during the period of analysis are also accumulated. For the surface areas where road maintenance was 
performed, we defined a sample timeline with the beginning point at the initial time, and created a database for the 
hidden Markov model estimation. Therefore, measurement samples are composed of rutting measurements at the 
initial time and the following consecutive measurement times, and information regarding the measurement intervals. 
The database also includes traffic information and road conditions from each measurement sample. A total of 5,261 
measurement samples were created in this way.  

In general, inspection results of public works are expressed as discrete condition indications, after structural and 
functional judgment. Therefore, it is possible to express the deterioration process with a Markov chain model. 
However, the rutting measurement data of the road used in this study are recorded as continuous data. In order to 
estimate the deterioration prediction model proposed in this study, it is necessary to replace the continuous value of 
rutting amount with a discrete condition value. In road management, the continuous measurement values of rutting, 
cracks and irregularity are often changed into several discrete indicators after technical judgment is made. With this 
study, we categorized the condition of rutting into 5 ratings, shown in Table 1, according to M prefecture’s technical 
policy. Of course, creating discrete categories will cause the deterioration estimation model results to differ. 
However, from the perspective of road management, it is important to estimate the time it takes to reach the limit of 
rutting (15mm or 20mm). We used a rating method different from that shown in Table 1, and performed a sensitivity 
analysis regarding the time it takes to reach the rutting limit. As a result, there was no remarkable difference in the 
prediction results with regard to time, so it was decided to use the condition rating as shown in Table 1.  

We refer to the measurement condition values of two continuous times as prior condition and posterior condition. 
In Table 2 we arranged the measurement samples used in a multi-stage exponential Markov model, with a focus on 
prior condition and posterior condition. Each row of the table corresponds with prior condition i and each column 
with posterior condition j. Here, we extract samples with no road maintenance between the two measurement times. 
However, as shown in the table, there are many samples in which the posterior condition exceeds the prior condition. 



   

In particular, there are many samples in which the prior condition is 2 but the posterior condition is 1. The fact that 
road maintenance has not been performed on these samples between the two times is evidence that there are many 
selection biases in the data for analysis. 

 
{Table 1 is about here} 

 
{Table 2 is about here} 

In our empirical study, two objectives are discussed. The first objective is to compare the estimation results of 
two models (the multi-stage exponential Markov model of Tsuda et al, 2006b and the proposed hidden Markove 
model) using the same pool of data. The second objective is discussed in section 5.3, where we further compare the 
estimation results of hidden Markov model on two different cases. In such two cases, we create datasets with 
assumption of having selection bias and estimate the model’s parameters in order to understand the deterioration 
performance curves in two different cases. From which, we can bencmark for the better model under the situation of 
having selection bias. 

5.2. Estimation results 

In the empirical study, annual traffic volume of large-sized cars is considered as a main characteristic variable 
affecting the deterioration or the hazard rate in Eq. (7). Denotation for traffic volume is 2ix , which is observable. 
The first characteristic variable 1ix  equals 1 as a constant value representing the overall influence of other variables. 

Table 3 presents comparative estimation results of our empirical study using both the multi-stage exponential 
Markov model (Tsuda et al., 2006b) and the proposed hidden Markov model. It is noted that with multi-stage 
exponential Markov model, data located above the 450 line is taken as input. Meanwhile, with the proposed hidden 
Markov model, all data in Table 2 is considered. Table 3 also highlights the fact that traffic volume exerts a strong 
influence on deterioration, especially for the first two condition states. The obtained values of parameters with the 
hidden Markov model are satisfied with credible intervals and convergent criteria in the sense of samples’ auto-
generation in Bayesian estimation and MCMC simulation. (Values of the Geweke test are less than 1.96.) In the 
Geweke statistical test, we estimate the z-score values (Geweke, 1996) based on 7000 sampling values of model’s 
parameters (Total number of samples are 10,000, the first 3000 samples are excluded as for burn-in period in order 
to achieve convergence in the sampling process).  

 
{Table 3 is about here} 

 
{Table 4 is about here} 

 
{Table 5 is about here} 

 
 

Further comparing the differences between results of the two models, we estimate the life expectancy of 
condition states and present the results in Table 4. Relatively, either with the multi-stage exponential Markov model 
or the hidden Markov model, it can be stated that the hazard rate of condition state 1 is very high. Its high value 
results in a considerably high speed of deterioration. After about 3 years in operation, road sections with condition 
state 1 tend to disappear. Condition state 2 has the longest life expectancy, at approximately 12 years. Meanwhile, 
life expectancies of condition states 3 and 4 are about 8 years. For a better understanding of transition probabilities, 
we demonstrate the Markov transition probability matrices in Table 5. 

Fig. 3(a) presents a comparative picture of deterioration curves. In the figure, the dotted curve represents the 
decrease in survival probability of corresponding condition states with the multi-stage exponential Markov model. 
The solid curve is of the estimation results of the hidden Markov model. In view of selection biases, the dotted curve 
contains bias and does not truly reflect the deterioration progress of the rut index on the entirety of road sections. Its 
estimation is based purely on the observed data, with embedded selection biases. The solid curve in the figure 
reflects true deterioration progress, since the hazard rate and life expectancy of condition states are calculated with 
simulated data. 
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Differences in estimation results of the two models are proved from examining displayed outcomes of Table 3 
and Fig. 3 (a). As a matter of course, the prediction of deterioration speed in the case of the hidden Markov model 
has been improved. The deterioration speed is slower than the deterioration speed predicted by the multi-stage 
exponential Markov model. The distance between two deterioration curves increases along with the operation time 
of roads. This is due to selection biases that the multi-stage exponential Markov model cannot capture (that is, road 
inspectors/engineers tend to select worst visual condition states as representative condition states for the entirety of 
road sections). As a result, a faster deterioration speed occurs in the estimation of the multi-stage exponential 
Markov model. 

Another interesting finding can be drawn from observing deterioration curves in Fig. 3 (a). It is noted that 
selection biases occur with all condition states. However, the intensity of selection biases increases with higher 
condition states such as states 3 and 4. The increasing of selection biases with higher condition states can be viewed 
as over-estimation of the hazard rates of those states. This problem is likely to happen with road sections which 
received M&R activities in the past but for which M&R records are missing. This finding suggests the necessity for 
a future study to develop a methodology to capture accurately the transition pattern of performance indexes (road 
distress) like the rut index. 

 
{Fig. 3 is about here} 

 

5.3. Estimation bias 

The aim of this section is to compare the estimation results of using the proposed hidden Markov model on two 
datasets with assumption of having selection bias. With data such as that shown in Fig. 1, the areas below the 45-
degree line (where the posterior condition measurement improved compared to the prior condition measurement) are 
suspected to have selection biases. We made 1) a database without the data below the 45-degree line (Truncated 
DB), and 2) a database with all posterior condition measurements below the 45-degree line matched to the prior 
condition (so that the posterior condition has not changed from the prior condition) (Censored DB). The results of 
the estimation are shown in Table 6. 

Moreover, Table 7 shows the average hazard rate of the entire target area, using the Truncated DB and Censored 
DB. By comparing the average hazard rate [ ]ilE θ  shown in Table 4 and the average hazard rate of Table 7, it is 
possible to see that with both the Truncated DB and Censored DB, the average hazard rate of condition 1 is smaller 
than the average hazard rate [ ]ilE θ  sought with a hidden Markov model. On the other hand, when deterioration has 
progressed, as in conditions 3 and 4, the average hazard rates of the Truncated DB and Censored DB are larger than 
with a hidden Markov model, and the deterioration speed is faster. Fig. 3(b) shows performance curves made with 
the average hazard rates. As can be analogized from the comparison of the average hazard rates, using either the 
Truncated DB or Censored DB comes with the risk of a deterioration speed too slow with condition 1, and too fast 
with conditions 3 and 4, compared to the estimation of a hidden Markov model. This shows that with samples in 
which posterior condition improves compared to prior condition, it is highly possible that the deterioration has not 
progressed much from the true prior condition measurement to the true posterior condition measurement. Therefore, 
when using the Truncated DB, samples in which deterioration between the two measurement times progressed 
slowly might have been deleted from the database. On the other hand, with the Censored DB, because the posterior 
condition has been matched with the prior condition, (artificial) data with the assumption that deterioration has not 
progressed have increased; thus, if the prior condition is good, we might assess the deterioration speed as too slow. 
However, at least with the applied case, regarding the performance curves up to condition 3, there is no great 
difference between the performance curves estimated with the Truncated DB and Censored DB, and the 
performance curve created with the consideration of selection biases.  

Regarding the stage where deterioration has progressed, the estimation of deterioration speed is too fast. However, 
at the stage of progressed deterioration, bias from sample shortage due to road paving maintenance occurs, and there 
might be a problem with the accuracy of the estimation of the performance curve. With the practical application of 
road deterioration prediction, the existence of selection biases in the road condition inspection results has already 
been pointed out. With deterioration prediction, a Truncated DB is created without the data in which the condition 
improved between two measurement times, and a performance curve is created from this. The applied case in this 



   

report shows that there is no great practical obstacle in using a truncated DB to estimate a multi-stage exponential 
Markov model and performance curve, if the condition is at value 3 and rutting is relatively mild. However, this is 
true for the applied case in this study, and it is necessary to make further efforts to increase experiential knowledge 
regarding the influence of selection biases on road deterioration prediction. 

 
 

{Table 6 is about here} 
 

{Table 7 is about here} 
 

6. Conclusion 

In this paper, we have proposed an innovative analytical methodology to forecast the deterioration process of 
infrastructure through a hidden Markov model. In the model, selection biases are considered as random variables. 
Selection biases are eliminated through the assumption of prior and posterior distribution in Bayesian estimation. 
Furthermore, Markov Chain Monte Carlo simulation is introduced to generate a random sampling population in 
Bayesian estimation algorithm. 

We have presented an empirical study on the Japanese national road system. Estimation results reveal the fact 
that selection biases have existed in the monitoring data, particularly concerning condition states 3 and 4.  

We further point out the influence of selection bias on deterioration forecasting by comparing the estimation 
results of multi-stage exponential Markov model of Tsuda et al, 2006b and the proposed hidden Markov model.  

However, we have not discussed several points which may serve as topics for extending this study in the future: 
• While the present empirical study is carried out on the road system, this model can be applied to various types of 

infrastructure. Depending on the structural characteristics and prior knowledge of each infrastructure system, 
selection biases can be considered not as a random variable but also as in the form of a linear function. 

• The model can be extended to address the unobservable heterogeneity factor if the hazard rate is considered in 
the form of a mixture model. The mixture model can be useful in taclking the effects of various factors on 
measurement errors and selection biases. 

• The specification of the probability mass function  ( )if ⋅  in Eq. (20) can be extended to cover two tails 
distribution. In another words, we can assume selection bias to distribute on both sides of observable values. 
However, in order to implement such assumption, we need to come up with analytical solution for the matter 
called “identification problem”, which has been pointed out in econometric research (Kumbhakar and Lovel, 
2000) 

• Since the estimation results reveal a high risk of having selection biases with condition states 3 and 4 in the 
monitoring and inspection of road systems, it is suggested that future research should focus on finding the 
reasons causing selection biases in these condition states. 
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