<table>
<thead>
<tr>
<th>Title</th>
<th>Division of Synthetic Chemistry, Structural Organic Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td></td>
</tr>
<tr>
<td>Citation</td>
<td>ICR annual report (2011), 18: 6-7</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/154972</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Publisher</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Division of Synthetic Chemistry
– Structural Organic Chemistry –

http://www.scl.kyoto-u.ac.jp/~kouzou/index.html

Prof MURATA, Yasujiro (D Eng)
Assoc Prof WAKAMIYA, Atushi (D Eng)
Assist Prof MURATA, Michihisa (D Eng)
PD TANIGUCHI, Takuhiro (D Sc)
PD YOSHIKAWA, Osamu (D Eng)

Res
ENDOU, Masaru

Visitors
Prof DENNIS, John School of Physics, Queen Mary, University of London, U.K., 18 April
Prof WÜRTHWEIN, Ernst-Ulrich Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Germany, 8 October
Prof MARGETIĆ, Davor Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Croatia, 7 December
Prof LIU, Shih-Yuan Department of Chemistry, University of Oregon, U.S.A., 12 December
Prof WU, Jishan Department of Chemistry, National University of Singapore, Singapore, 22 December

Scope of Research

Fundamental studies are being conducted for creation of new functional \(\pi \)-systems with novel structures and properties, and for evaluation of their application as organic semi-conducting materials toward photovoltaic and electroluminescent devices. The major subjects are: organo-chemical transformation of fullerenes \(\text{C}_{60} \) and \(\text{C}_{70} \) specifically organic synthesis of endohedral fullerenes by the technique of molecular surgery; generation of ionic fullerene species and their application for the synthesis of functional material; synthesis of new carbon-rich materials by the use of transition metal complex; creation of new functional \(\pi \)-materials with unique photoelectric properties.

Selected Publications

Job, A.; Wakamiya, A.; Kehr, G.; Erker, G.; Yamaguchi, S., Electronic Tuning of Thiiazolyl-Capped \(\pi \)-Conjugated Compounds via a Coordination/Cyclization Protocol with \(\text{B(CF}_{3}
\text{)}_{3} \), Org. Lett., 12, 5470-5473 (2010).

KEYWORDS
\(\pi \)-Conjugated Systems Functional Dyes
Open-Cage Fullerenes Organic Solar Cell
Endohedral Fullerenes

Researcher
NISHIDA, Tomoko

Students
MORINAKA, Yuta (D2) MORI, Haruki (M1)
KATSUYA, Satoshi (M2) ZHANG, Rui (RS)
NOBORI, Masahiro (M2) SAKURAI, Yuko (UG)
NISHIMURA, Hidetaka (M1) SHIMOGAWA, Hiroyuki (UG)

Visitors
Res
ENDOU, Masaru

Prof DENNIS, John School of Physics, Queen Mary, University of London, U.K., 18 April
Prof WÜRTHWEIN, Ernst-Ulrich Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Germany, 8 October
Prof MARGETIĆ, Davor Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Croatia, 7 December
Prof LIU, Shih-Yuan Department of Chemistry, University of Oregon, U.S.A., 12 December
Prof WU, Jishan Department of Chemistry, National University of Singapore, Singapore, 22 December
A Single Molecule of Water Encapsulated in Fullerene C\textsubscript{60}

The C\textsubscript{60} encapsulating a water described here is a totally new member of endohedral fullerenes produced only by the present method. In contrast with the maturity of the science of empty fullerenes, research on endohedral fullerenes has not been fully developed in spite of their potentiality for various applications. This is ascribed to severe limitations in their production and isolation with high purity even in mg quantities. Their current production relying on physical method needs to be improved. We have succeeded in the macroscopic production of endohedral C\textsubscript{60} encapsulating a water molecule in 100\%, by a new approach using the methodology of organic synthesis with the dynamic control of the opening-size on an open-cage fullerene derivative. This result indicates that currently employed physical method for the production of endohedral fullerenes, which relies on accidental and uncontrollable self-assembly of atoms, can be replaced by the fully controlled and rational synthetic method of much higher efficiency.

Modification of \(\sigma\)-Framework of C\textsubscript{60} for Bulk-heterojunction Solar Cells

The organic thin-film photovoltaic devices, so called bulk-heterojunction (BHJ) solar cell, possesses a high potentiality as a renewable energy source because of its easy fabrication through solution process, flexibility, and large area application. In the BHJ cells [60] Fullerene derivatives have occupied a dominant position as an n-type organic semiconductor. However, much effort has so far been focused on developments of the donor polymer, while those of n-type materials remain untapped although some simple addition reactions to the surface of the C\textsubscript{60} cage are used. In this study, we have clearly demonstrated that the skeletal-modification of C\textsubscript{60} can be used to control the electronic properties and, thus, can be a promising avenue toward the novel acceptor materials for the BHJ solar cells. The device using the skeletal-modified C\textsubscript{60} derivative marked excellent open-circuit voltage \((V_\text{oc}=0.74\ \text{V})\) and power conversion efficiency \((\eta_e=3.1\%)\) with reference to the device using the benchmark acceptor PCBM \((V_\text{oc}=0.60\ \text{V}, \eta_e=3.1\%)\).

Planarized Triarylboranates as Boron-embedded 2D \(\pi\) Scaffolds

Electron-accepting \(\pi\)-conjugated skeletons have long been sought for development of excellent n-type semiconducting materials in organic electronics. Incorporation of electron-deficient boron atoms into a two-dimensionally expanded \(\pi\)-skeleton should be a promising strategy to this end. As a simple example, we now synthesize triphenylborane and its diboron homologue that are completely planarized with methylene tethers. In contrast to the conventional concept for the kinetic stabilization of boron-containing materials by bulky substituents, the produced compounds show high stability toward air and moisture, and even toward Lewis acidic amines despite the absence of steric protection around the boron moiety. These results should give a new paradigm for the stabilization of the tri-coordinate boron-containing materials. A notable advantage to embed the boron atoms into the \(\pi\)-skeleton is to allow us the structural and properties modification based on the coordination number change of the boron atoms. Indeed, upon treatment with fluoride ions, the triphenylborane derivatives undergo the plane-to-bowl conversion in a controlled manner.