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A novel synthetic material for spinal fusion: A prospective clinical trial of porous 

bioactive titanium metal for lumbar interbody fusion 

 

Abstract 

Object. To establish the efficacy and safety of porous bioactive titanium metal for use in 

a spinal fusion device, based on a prospective human clinical trial. 

Methods. A high-strength spinal interbody fusion device was manufactured from 

porous titanium metal. A bioactive surface was produced by simple chemical and thermal 

treatment. Five patients with unstable lumbar spine disease were treated surgically using this 

device in a clinical trial approved by our Ethics Review Committee and the University 

Hospital Medical Information Network. Clinical and radiological results were reported at the 

minimum follow-up period of one year. 

Results. The optimal mechanical strength and interconnected structure of the porous 

titanium metal were adjusted for the device. The whole surface of porous titanium metal was 

treated uniformly and its bioactive ability was confirmed before clinical use. Successful bony 

union was achieved in all cases within 6 months without the need for autologous iliac crest 

bone grafting. Two specific findings including an anchoring effect and gap filling were 

evident radiologically. All clinical parameters improved significantly after the operation and 

no adverse effects were encountered during the follow-up period. 

Conclusions. Although a larger and longer-term follow-up clinical study is mandatory 

to reach any firm conclusions, we consider this porous bioactive titanium metal is promising 

material for a spinal fusion device. 
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Introduction 

Osteoconductive synthetic materials including sintered hydroxyapatite (Ca10(PO4)6(OH)2 or 

HA), Na2O-CaO-SiO2-P2O5 system (Bioglass


) and glass ceramics containing apatite and 

wollastonite (AW-GC) are widely used clinically as bone substitutes [7,12,16]. Because 

application for load-bearing conditions such as the spine or long bones requires high 

mechanical strength, solid materials are usually used. However, such materials are brittle 

against shearing forces and bond to the surrounding bone only at their surface. Porous 

materials have advantages over solid materials in terms of bone bonding, because they can 

demonstrate both osteoconductive bonding and mechanical interlocking through bone tissue 

ingrowth into the pores. Conventional porous synthetic materials such as granules of HA and 

AW-GC have been applied clinically as bone graft expanders for lumbar posterolateral fusion 

or bone void fillers after tumor excision [8]. However, because of their poor mechanical 

strength, porous body of such materials cannot be applied in load-bearing conditions. Thus, 

achieving both high bone-bonding ability and high mechanical strength is quite difficult for 

porous materials. To overcome this problem, we have developed porous bioactive titanium 

metal, which possesses both high bone-bonding ability and high mechanical strength 

simultaneously [24]. Titanium metal and its alloys can be changed to bioactive materials by 

simple chemical and thermal surface treatment [9,18]. This can be applied to porous titanium 

metal as well [15]. Several experiments on animal models showed the safety and efficacy of 

porous bioactive titanium metal as a synthetic bone under load-bearing conditions. Our 

preclinical study [26] demonstrated that bioactive treatment effectively enhanced the fusion 

ability of the porous titanium implants in a canine model of spinal interbody fusion . 



Instrumented spinal fusion with autologous iliac crest bone grafting (ICBG) is a 

gold-standard surgical procedure for the treatment of unstable spinal diseases. However, 

grafts harvested from the iliac crest are still a major source of autologous bone and the 

harvesting process is associated with graft site morbidities including residual pain, long 

operative times and significant blood loss [1]. 

To accelerate the fusion rate and alleviate donor site problems, several effective 

osteoinductive agents including recombinant human bone morphogenetic protein-2 

(rhBMP-2) and osteogenic protein-1 (OP-1/BMP-7) have been introduced and are widely 

used clinically [3,20]. Excellent clinical results have been documented, although some 

serious adverse effects have been reported such as osteolysis around the cage implant, 

massive bleeding and soft tissue swelling [19,27,31]. Porous bioactive titanium metal is not 

only osteoconductive but also has osteoinductive ability without the need for additional 

osteogenic cells or agents [10,25]. Although the osteoinductive ability of porous bioactive 

titanium metal is limited and the actual mechanism has not been clarified, the osteogenesis it 

induces is believed to guarantee the high osteoconductive ability of this material. 

We conducted a clinical trial of porous bioactive titanium metal for lumbar interbody 

fusion. Here, we report our preliminary results and discuss the safety and efficacy of porous 

bioactive titanium metal as one of a new generation of synthetic device materials. This trial 

was based upon extensive experiments in animal models and clinical success in cementless 

total hip prosthesis using porous bioactive titanium metal [14,26].  



Methods 

1. Preparation of porous implants 

Porous titanium metal was manufactured from a mixture of commercially pure titanium 

powder less than 45 m in particle size (Osaka Titanium Tech. Co. Ltd, Osaka, Japan) and 

ammonium hydrogen carbonate as spacer particle [32]. Sintering was carried out at 1400 °C 

for 2 h in Argon gas. Three types of implants, 7, 8 and 9 mm thick and 30 mm wide, were 

prepared for the clinical trial (Fig. 1). To improve the safety of handling during surgery, a thin 

outer frame was placed around the porous body and sintered. These implants were supplied 

by Osaka Yakin Co. (Osaka, Japan). Micro-computed tomography (CT) analysis 

demonstrated that more than 99% of the porous structures were interconnected and more than 

80% of pores were connected through channels more than 52 m in diameter (Fig.2). The 

average porosity was 60% and the average pore size was 250 m. 

2. Mechanical properties of the porous titanium implants 

The compressive strength of the porous titanium body was measured using a universal 

testing machine (Model EHF-LV020K1-010, Shimadzu Corp., Kyoto, Japan) at a crosshead 

speed of 1 mm/min. 0.2% yield compressive strength and Young’s modulus of a typical 60% 

porous body were 53.0 MPa and 4.2 GPa, respectively. The stiffness was 91.5 kN/m, and this 

increased to 458.3 kN/m with the outer frame. The porous body combined with the outer 

frame proved stable against a cyclic load of 10,000 N at 4 Hz for 1,000,000 cycles. 



3. Bioactive surface treatment 

The porous implants were treated chemically and thermally to give them a bioactive 

surface, as described [9,18]. Briefly, the sintered porous titanium bodies were immersed in 5 

M aqueous NaOH solution at 60 °C for 24 h, 0.5 mM HCl at 40 °C for 24 h, ultrapure water at 

40 °C for 24 h and then heat-treated at 600 °C for 1 h. The homogeneity of the bioactive 

surface was confirmed by examining the topography and the chemistry of the center and the 

peripheral parts of several implants using a field emission scanning electron microscope 

(FE-SEM; Hitachi S-4300, Ibaraki, Japan), an energy dispersive X-ray microanalyzer (EDX) 

and X-ray diffractometry (XRD). In vitro apatite-forming ability was confirmed by soaking 

samples for 3 days in an acellular simulated body fluid (SBF) with ion concentrations (in 

mM) of Na
+
 142.0, K

+
 5.0, Mg

2+
 1.5, Ca

2+
 2.5, Cl

−
 147.8, HCO3

−
 4.2, HPO4

2−
 1.0 and SO4

2−
 

0.5: nearly equal to those of human blood plasma at 36.5 C and prerequisite conditions for 

generating bioactive materials [17]. The implants were sterilized by 25 kGy -radiology 

exposure before surgical implantation. 

4. Evaluation of implants 

All devices with the same lot number destined for clinical use were analyzed in vitro 

before implantation. All parameters of mechanical strength including yield compressive 

strength, elastic modulus and fatigue strength were within an error of less than 5%. 

Mechanical testing found no failure of the device, nor any loss of titanium particles. FE-SEM, 

EDX and XRD studies confirmed the homogeneity of the bioactive surface both centrally 

and peripherally. After the surface treatment, the whole porous surface was uniformly 



changed to a bioactive thin TiO2 layer approximately 1 m thick with sub-micron-sized 

pores. The walls of the porous body were completely covered with apatite within three days 

of soaking in SBF, indicating that the whole surface of the implant could be rendered 

bioactive by the chemical and thermal treatments (Fig. 3A–C). 

5. Transforaminal lumbar interbody fusion (TLIF) [11] 

All surgical procedures were performed by the two senior authors (S.F. and M.T.). 

Following a midline skin incision, the lateral aspect of facet joints were exposed through a 

midline subperiosteal approach or Wiltse’s approach depending on the case. After bilateral 

pedicle screw placement, the neural foramen was exposed by excision of the ipsilateral facet 

joint. Disc space preparation with the removal of degenerative disc materials and 

cartilaginous endplate was performed carefully from the safety triangle zone between the 

exiting and traversing nerve roots. In the case of concomitant spinal canal stenosis, neural 

decompression was done using a surgical microscope. The bioactive porous titanium implant 

was placed into the intervertebral space through the opened safety triangle zone and small 

local bone chips were packed around the implant as monitoring bone material. Compressive 

force was applied through the pedicle screws and pre-bent rods were set on the screws 

bilaterally. The patients were allowed to walk while wearing a hard brace beginning on the 

first day after surgery. 

6. Patients 

This was a prospective clinical case series on five patients (three men and two women) 

with degenerative unstable lumbar lesion who were eligible for surgical treatment and who 



were referred to our University Hospital from November 2008 to June 2009. In all cases, the 

patient and his or her relatives were informed about the benefits and the risks of the implant. 

Written informed consent was obtained from all patients and/or their relatives, in accordance 

with protocols approved by our Institutional Ethics Committee and in agreement with the 

Declaration of Helsinki. 

Among the five patients enrolled there were three with degenerative spondylolisthesis 

and two with isthmic spondylolisthesis. Inclusion criteria for this preliminary clinical trial 

were symptomatic single-level unstable lumbar disc disease with or without compression of 

neural elements, which were refractory to adequate conservative treatments for at least three 

months preoperatively. Patients with multilevel diseases, a previously operated spine, 

osteoporosis, general inflammatory disease or a severe comorbidity such as cardiovascular 

disease or renal dysfunction were excluded. The average age of the enrolled patients at 

surgery was 51.6 years (range 36–61 years). 

7. Clinical assessment 

A patient self-assessed 100 mm Visual Analogue Scale (VAS) (“0mm = no pain, 

100mm = worst pain imaginable”) for both low back pain (LBP) and leg pain (LP), the 

Japanese Orthopaedic Association (JOA) score (Table 1) and its recovery rate (Recovery rate 

= Postoperative score – Preoperative score / 29 (full score) – Preoperative score  100 (%)) 

were examined before operation and postoperatively. A self-assessed patient’s satisfaction 

score was examined after the surgery. For subjective assessment of the overall results of 

surgery, the patient was asked to select from among the options: very satisfied, satisfied, 



somewhat satisfied, somewhat dissatisfied  or dissatisfied. The satisfaction score was 

recorded as a score at all time points. All patients complained of LBP preoperatively and 

three complained of concomitant LP. The average preoperative JOA score was 15.8 (range 

11–21). The average preoperative VAS values for LBP and LP were 37.6 mm (range 10–50 

mm) and 21.4 mm (range 0–60 mm), respectively. An independent expert nurse carried out 

the assessment of pre- and postoperative VAS and the patient’s satisfaction score. The JOA 

scores and VAS measures were analyzed statistically using paired t-tests and P < 0.05 was 

considered statistically significant. 

8. Radiological assessment 

Magnetic resonance imaging (MRI), multidetector-row computed tomography 

(MDCT) and lateral dynamic X-rays were used to assess the neural compression and 

dynamic situation. Preoperative dynamic lateral X-rays showed marked segmental instability 

in all five patients. To assess bony union postoperatively, lateral dynamic radiographs were 

obtained at 3, 6 and 12 months. More than 3° motion on flexion–extension was considered to 

indicate nonunion. In addition, radiolucent regions around the pedicle screws and the implant 

were defined as showing nonunion. To evaluate the placement of implant and pedicle screws, 

bony union and adverse effects, coronal and sagittal reconstruction views using MDCT were 

assessed at 1 week and at 1, 3, 6 and 12 months after surgery. Bony union was defined as 

complete when there was osseous continuity between bony endplate and implant on both the 

coronal and sagittal MDCT images. Nonunion was defined as the presence of a visible gap 

between the vertebral endplate and implant, or radiolucency around the pedicle screws. 



Successful bony union was recorded when the assessments of radiological parameters 

mentioned above were complete. A change of 3 mm or more of implant migration into the 

vertebral endplate was defined as significant subsidence. MRI was performed at 1 week and 

at 1, 3, 6 and 12 months after surgery to assess neural decompression and dural tube 

extension, any adverse effects including inflammatory reaction around the implant such as 

vertebral endplate erosion, Modic change [20] and any fluid collection. Three independent 

experienced spinal surgeons, each with at least ten years of experience, did all the 

radiological assessments. Each patient’s preoperative clinical and radiological data are 

summarized in Table 2. 

9. Ethical considerations 

The study was performed in accordance with the principles of the Declaration of 

Helsinki and of Good Clinical Practice and was registered on the University Hospital 

Medical Information Network Clinical Trials Registry (UMIN000001448). Approval was 

obtained from the relevant competent authorities and our institutional Committee of Ethics 

before the trial began. As clinicians, the authors played a leading role in this new type of 

clinical trial, which is extremely rare in the development of new medical devices in Japan. 

We prepared all the protocols of this study by ourselves and were supported by a translational 

research center in Kyoto University. The independent clinical research coordinator of the 

translational research center managed all clinical data, which were extracted from each 

patient’s clinical research form. The endpoints of this clinical trial were achievement of good 

clinical results, bony union, no serious adverse effects (AEs) and avoidance of the need for 



autologous ICBG. 

Results 

1. Clinical results 

In all five patients, the preoperative LBP and radicular symptoms were resolved 

immediately after the operation. No surgery-related neurological deficit or wound 

breakdown was observed in any patient. The mean operating time was 164.6 min (range 

154–179 min) and the mean estimated intraoperative blood loss was 192 mL (range 80–310 

mL). No patient required transfusion or ICBG. No surgery-related complication was 

observed. The mean follow-up period was 15.2 months (range 12–19 months). The average 

postoperative JOA score was 25.6 at 1 month, 25.6 at 3 months, 27 at 6 months and 26.6 at 12 

months (range 18–29). The mean recovery rate of the JOA score was 76.6% at 1 month, 

77.5% at 3 months, 88.0% at 6 months and 85.8% at 12 months (range 38.9–100%). The 

postoperative JOA score improved significantly compared with the preoperative score at all 

times (P = 0.002 at 12 months). The mean VAS was 2 mm at 1 month, 2 mm at 3 months, 6 

mm at 6 months and 2 mm at 12 months (range 0–30 mm) for LBP. It was 0 mm at 1 month, 

0 mm at 3 months, 4 mm at 6 months and 2 mm at 12 months (range 0–20 mm) for LP. Both 

VAS measures were significantly improved compared with preoperative scores at all times 

(at 12 months; LBP P = 0.027; LP P = 0.012). All but one patient satisfied very much through 

the experiment periods. All clinical parameters showed rapid recovery within 1 month, 

which indicated a low level of invasiveness and good stabilization of the surgery (Fig. 4). 



2. Radiological results 

Dynamic radiological examination showed a solid bony construct without abnormal 

segmental motion or radiolucency around the implants in all cases after 3 months. No patient 

exhibited significant implant subsidence during the follow-up period. Immediate 

postoperative MDCT demonstrated good apposition between the vertebral endplate and 

implant in all but one case. These findings indicated good anchoring of the porous titanium 

implant to the surrounding bone. Follow-up MDCT showed good bone ingrown onto the 

surface of the porous titanium metal without radiolucent line. It also showed remodeling not 

only of the monitoring bone but also of the surrounding vertebral bone. However in Case 5, a 

gap was evident between porous titanium metal and surrounding vertebral endplate on the 

MDCT image immediately after the operation, because of a poor fit of the device surface 

with an irregular vertebral endplate. The gap was filled gradually and closed at the final 

follow-up MDCT (Fig. 5A–C). Because the radiological parameters mentioned above were 

complete in all cases, bony union was considered to be achieved in all cases by 6 months after 

the operation. Postoperative MRI scans showed no significant AE such as abnormal fluid 

collection or apparent change in the Modic sign. In three patients with concomitant spinal 

canal stenosis, successful neural tissue decompression was also confirmed. The 

postoperative clinical and radiological results are summarized in Table 3.  

Illustrative case (Case 1) 

This 54-year-old woman had complained of LBP and intractable bilateral LP for three 

years before surgery. These were refractory to adequate conservative treatment. She also 



complained of an inability to walk for longer than 10 minutes, with intermittent claudication. 

A physical examination demonstrated bilateral dysesthesia on the L5 sensory dermatome. 

Her preoperative JOA score was 21 points and her self-reported VAS was 10 mm for LBP and 

60 mm for LP. X-ray images showed degenerative spondylolisthesis at the L4–5 level with 

instability (Fig. 6A). Preoperative MR imaging demonstrated severe spinal canal stenosis at 

the L4–5 level. Transforaminal lumbar interbody fusion and spinal canal decompression 

using our bioactive titanium was performed. The operating time was 173 minutes and the 

estimated intraoperative blood loss was 140 mL. Immediate postoperative coronal imaging 

using MDCT demonstrated a press fit at the interface between the porous titanium metal and 

the vertebral endplate (Fig. 6B). Three months after the operation, dynamic X-ray imaging 

demonstrated no abnormal movement (Fig. 6C). Sagittal imaging using MDCT showed a 

stable interface without a radiolucent line or any clear zones around the pedicle screws, 

indicating a successful bony union (Fig. 6D). Postoperative MR imaging showed good neural 

decompression without any adverse effects. Her JOA score recovered to 29 points and the 

VAS score was 0 mm for LBP and 0 mm for LP at the final follow-up.  

Discussion 

Here we report the safety and efficacy of porous bioactive titanium metal for the 

treatment of unstable lumbar disc disease. All cases showed early bony union by 6 months 

without autologous ICBG and rapid recovery after the surgery. The patients’ satisfaction and 

clinical recovery rates were both acceptable. 

The use of an interbody fusion cage with autologous bone grafting is a standard 



procedure for lumbar spinal fusion. However, nonunion, cage subsidence, implant failure and 

donor site morbidity are still of concern [1]. Porous materials with adequate pore structure 

and appropriate mechanical properties might represent an alternative to traditional cage 

implants. Interconnected pores permit tissue ingrowth and thus anchor the prosthesis to the 

surrounding bone, preventing loosening. This concept also allows a larger support area 

because no graft space is required and it might be effective for the prevention of implant 

subsidence. In the current study, significant implant subsidence has not occurred throughout 

the follow-up periods. Furthermore, if bone bridging can be achieved across the whole 

implant through the interconnected pores from one vertebra to the other it reduces the risk of 

implant failure and ensures long-term stability. 

The kind of material and its pore characteristics influence the mechanical strength of 

porous biomaterials. Porous HA implants have good biocompatibility and osteoconductivity, 

but their mechanical properties are not adequate for load-bearing conditions. The clinical 

application of such conventional porous materials is limited to non-load-bearing conditions. 

Therefore, the use of metal to produce porous implants with higher mechanical strength is 

required. By using titanium metal as a starting material, our device with high porosity and 

large pore size acquired a high mechanical strength that is adequate for load-bearing 

conditions. In a previous study, we investigated the relationship between pore structure and 

bone ingrowth in vivo using several types of porous titanium implants. We concluded that 

high porosity and large pore size but also high interconnectivity of the pores is effective for 

bone ingrowth and tissue differentiation [23]. Based on this previous study, an optimally 



structured porous titanium metal was developed and used for this clinical trial. It has 60% 

porosity, 250 m average pore size and more than 99% pore interconnectivity. 

Another important issue associated with porous metal implants is the difficulty in 

producing bioactive properties on the inner surfaces of implants using conventional methods 

such as applying a plasma-sprayed HA coating. In the absence of a bioactive surface, the 

osteoconductivity of these implants and their capacity to promote fusion is limited. The 

thickness of a conventional HA coating layer is about 40–50 m, which cannot be applied for 

critical supporting structures without changes to surface morphology [5]. Moreover, the 

conventional HA coating for titanium metal implants has the potential for degradation, 

absorption and third body wear during long-term implantation, which might be related to its 

poor clinical results [2,21]. Our chemical and thermal treatments ensured that bioactive 

properties were applied to the whole surface of the porous titanium implants without 

reducing the pore space available for bone ingrowth [15]. Adequate stability of the thin 

treated layer was confirmed both in vitro and in vivo and might assure the long-term 

apposition with surrounding bone [9]. This material also offers sufficient resistance to 

shearing forces during the implantation of treated cementless hip prostheses. 

Although titanium metal and its alloys are ‘gold standard’ materials in orthopedics, one 

of the potential disadvantages of a metal device is a high elastic modulus. The elastic 

modulus of solid titanium metal is more than 100 GPa and this will lead to stress shielding 

around the metal device during long-term implantation. To reduce such a mechanical 

mismatch between the implant and host bone, several types of soft material including 

polyetheretherketone and carbon have been introduced clinically [6,28]. Although there are 



no long-term results as yet, porous titanium metal will reduce stress shielding, because the 

elastic modulus of this material with 60% porosity is 4.2 GPa, close to the value of human 

cortical bone and much less than solid metal materials. According to Nachemson’s study, 

loads to the human lumbar spine are between 1000 and 3000 N during most everyday 

activities, and increases in different body positions give possible values in excess of 3000 N 

during significant lifting [22]. Based upon these data, Brantigan suggested that a lumbar 

interbody fusion construct must bear an immediate postoperative load at the bone-implant 

interface of at least 2400 N during activities of daily living [4]. On the other hand, breakage 

of the carbon cage and dissemination of free carbon particles occurred in one case of implant 

nonunion [29]. A biomechanical study revealed that the carbon cage fractures at around 

5800–8800 N, and concluded that at least 5000 N was required for an interbody fusion cage 

[13]. The fatigue strength of porous titanium metal combined with an outer frame is more 

than 10,000 N under a repetitive compressive load, so it can be used as a spinal interbody 

fusion device safely. 

Another potential disadvantage of a pure metal device is the difficulty of confirming 

fusion status radiologically because of its high radiodensity. Usually, bony union is 

confirmed when the following radiological parameters are complete: visible continuous 

grafted bone trabeculation, no abnormal movement on dynamic study and no radiolucency 

around the implants. In the case of metal devices such as a titanium cage, bone trabeculation 

through the cage is difficult to identify on plain X-ray images. However, definitive diagnoses 

of bony union have become easier with the introduction of MDCT. Especially in the case of 

porous titanium metal, because the metal content is less than with the solid form, recognition 



of fusion status such as bone–implant interface and bony trabeculation around the implant is 

not so difficult on MDCT images. In the current study, two specific radiological findings 

were evident. The first of these was the anchoring effect between the porous bioactive 

titanium implant and the surrounding vertebral endplate seen on the images taken 

immediately after surgery. This could be attributed to the optimally rough surface of the 

porous bioactive device. The second finding was the gap-filling effect. The radiological 

evidence of gap filling as shown in Figure 6 resembles the results of alkali- and heat-treated 

total hip prostheses. Radiological gaps between alkali- and heat-treated metal shells and the 

acetabulum were filled within one year, which indicated the high osteoconductive ability of 

bioactive titanium metal [14]. The best feature of porous bioactive titanium metal is that it 

permits bone ingrowth through the inner pore structure. Although we reported good bone 

ingrowth to the pores in several studies using animal models, we could not confirm this 

evidence using noninvasive radiological examinations in the present study.  

There are some limitations to this study, including its small sample size, short 

follow-up period, and preliminary nature. Our chemical and thermal treatment has been 

applied clinically for cementless total hip prostheses after a strict clinical trial, which was 

approved by the Ministry of Health, Labor and Welfare in Japan. Excellent mid-term (4.8 

years) clinical results and early bone apposition were reported [14]. These results are 

encouraging for the efficacy and safety of this surface treatment on titanium and its alloys. 

Moreover, TLIF is a promising standard procedure for the treatment of patients with unstable 

spinal disease. Given these encouraging results, we planned this small clinical trial as much 

as possible to test the efficacy and safety of porous bioactive titanium metal in a spinal fusion 



device. Fortunately, there was successful bony union without the need for autologous ICBG 

in this small series. However, implantation of metal devices has a potency to bring about 

several late complications such as stress shielding and adjacent segment disease during 

long-term implantation. Therefore, long-term clinical results are mandatory to reveal the true 

efficacy and safety of this device. 

We consider that porous bioactive titanium metal is superior to other porous metal 

materials in terms of safety, osteoconductive and osteoinductive abilities, mechanical 

strength and controllable optimum microstructure [10,24]. Another advantage of porous 

bioactive titanium metal is its potency for general purpose medical devices. First, our surface 

treatment can be applied not only to pure titanium but also to several types of titanium alloys. 

By changing materials, the mechanical characteristics can be optimized. Second, using our 

manufacturing technique, the pore structure, mechanical strength and biological 

characteristics can be controlled depending on the conditions. This material will be valuable 

not only for spinal fusion but also for reconstructive surgery to the skull, the maxillofacial 

region and in other orthopedic fields. Moreover, adjustments to the elastic modulus and 

bioactive abilities promise to produce new generations of devices for the treatment of 

osteoporotic bone. 

Conclusions 

We developed porous bioactive titanium device for spinal fusion. The optimal mechanical 

strength and interconnected structure of porous titanium metal were adjusted to the device. 

The whole surface of porous titanium was treated chemically and thermally to form the 



bioactive surface. Clinical trial was successfully performed and early bony union was 

achieved in all cases without ICBG by 6 months. Two specific findings including an 

anchoring effect and gap filling were evident radiologically. Although a larger and 

longer-term follow-up clinical study is mandatory to reach any firm conclusions, we consider 

this porous bioactive titanium metal is promising material for a spinal fusion device. 
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Figure legends 

Fig. 1. Photograph of porous bioactive titanium device for transforaminal lumbar interbody 

fusion. 

Fig. 2. Micro-computed tomography image showing well-connected internal porous 

structures. 

Fig. 3. Field emission scanning electron microscope (FE-SEM) images showing surface 

morphological changes to the porous titanium metal. A. Before treatment, the surface was 

smooth. B. After chemical and thermal treatment, a thin submicron-sized pore layer was 

formed on the surface. C. Apatite formation on the whole surface of the porous bioactive 

titanium metal after soaking in simulated body fluid (SBF) for three days. 

Fig. 4. Sequential changes in the Japan Orthopaedic Association (JOA) score of the five 

cases. The graph indicates a rapid recovery of the patients’ clinical status within one month. 

Fig. 5. Sagittal multidetector-row computed tomography (MDCT) images taken immediately 

postoperatively and at 3 and 12 months for Case 5. The immediate postoperative image (left) 

shows an apparent gap between the porous titanium metal and vertebral bone. The 3-month 

image (center) demonstrates bone ingrowth cranial to the porous titanium metal. The 

12-month image (right) demonstrates complete gap filling and direct bone bonding to the 

porous titanium metal. 

Fig. 6. Preoperative and postoperative radiological studies obtained from a 54-year-old 

woman with degenerative spondylolisthesis at L4–5 (Case 1). A. Plain lateral X-ray 

demonstrating L4 listhesis. B. Immediate postoperative MDCT image demonstrating a press 



fit of the porous titanium metal implant to the vertebral endplate. C. Dynamic lateral 

radiographs at 3 months showing a solid construct without abnormal segmental motion (left, 

flexion; right, extension). D. Coronal MDCT image demonstrating solid bony union without 

device subsidence or any radiolucency at 3 months after surgery. 
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Table1. JOA score classifications for low-back pain 

Parameter JOA Score 

subjective symptoms 
  low-back pain 

none 
occasional mild pain 
frequent mild or occasional severe pain 
frequent or continuous severe pain 

  leg pain &/or tingling 
none 
occasional slight symptoms 
frequent slight or occasional severe symptoms 
frequent or continuous severe symptoms 

  gait 
normal 
able to walk >500m, although it causes pain, tingling, &/or muscle 
weakness 
unable to walk >500m due to leg pain, tingling, &/or muscle weakness 
unable to walk >100m due to leg pain, tingling, &/or muscle weakness 

9 
 

3 
2 
1 
0 
 

3 
2 
1 
0 
 

3 
2 
 

1 
 

0 
clinical signs 
  straight leg-raising test (including tight hamstrings) 

normal  
30-70˚ 
<30˚ 

  sensory disturbance 
none 
slight disturbance (not subjective) 
marked disturbance 

  motor disturbance 
normal (Grade 5/5) 
slight weakness (Grade 4/5) 
marked weakness (Garde 0-3/5) 

6 
 

2 
1 
0 
 

2 
1 
0 
 

2 
1 
0 

restriction of ADL 
  ADL (restriction) 

turning over while lying down 
standing 
washing 
leaning forward 
sitting (~1 hr) 
lifting/holding heavy objects 
walking 

14 

urinary bladder function 
       normal 
       mild dysuria 
       severe dysuria (incontinence, urinary retention) 

-6 
0 
-3 
-6 

JOA: Japanese Orthopaedic Association 
ADL = activities of daily living 
For each activity of daily living category severe restriction was accorded a score of 0; moderate 
restriction, a score of 1; and no restriction, a score of 2. 

 



Table2. Summary of preoperative patient’s demographic data 

Case Age Sex Diagnosis Level Symptoms Pre JOA Pre VAS (LBP) Pre VAS (LP) 

1 54 F DS L4/5 LBP+LP 21 10 60 

2 36 M IS L5/S LBP+LPLP 12 80 50 

3 51 F DS L4/5 LBP 19 80 0 

4 61 F DS L4/5 LBP+LP 11 60 60 

5 56 M IS L5/S LBP+LP 16 50 20 

DS: Degenerative Spondylolisthesis, IS: Isthmic Spondylolisthesis, LP: Leg pain, LBP: Low back pain, VAS: Visual 

Analogue Scale 

 



Table3. Summary of postoperative patient’s demographic data 

Case Op. 

Time 

(min.) 

Blood 

loss 

(mL) 

Post 

JOA 

score 

JOA score 

recovery rate 

(%) 

Post 

VAS 

(LBP) 

Post 

VAS 

(LP) 

Satisfaction 

score 

ICBG AEs Bony 

union 

(month) 

1 173 140 29 100 0 0 1 - - 3 

2 179 310 29 100 0 0 1 - - 3 

3 160 80 28 90 0 0 1 - - 3 

4 154 228 18 38.9 10 10 4 - - 6 

5 157 192 29 100 0 0 1 - - 3 

ICBG: Iliac crest bone graft, AEs: Adverse effects 

Satisfaction score: 1; very satisfied, 2; satisfied, 3; somewhat satisfied, 4; somewhat dissatisfied, 5; dissatisfied 

JOA score, VAS, and Satisfaction score are obtained at 12-month after the surgery. 
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