<table>
<thead>
<tr>
<th>Title</th>
<th>On the connected components of moduli spaces of Kisin modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Imai, Naoki</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Algebra (2012), 349(1): 1-7</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/151711</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011 Elsevier Inc.</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
ON THE CONNECTED COMPONENTS OF MODULI SPACES
OF KISIN MODULES

NAOKI IMAI

Abstract. We give a proof of a conjecture on the connected components of
moduli spaces of Kisin module, which is valid also in the case \(p = 2 \).

Introduction

Let \(K \) be a \(p \)-adic field, and let \(V_F \) be a two-dimensional continuous representation
of the absolute Galois group \(G_K \) over a finite field \(\mathbb{F} \) of characteristic \(p \). Take
a \(\phi \)-module \(M_\phi \) corresponding to the Galois representation \(V_F \)(−1). As in [Kis,
Corollary 2.1.13], we can construct a moduli space \(\mathcal{M}_{V_F,0} \) of Kisin modules in \(M_\phi \),
that is a projective scheme over \(\mathbb{F} \). Let \(\mathcal{M}_{V_F,0}^g \) be a closed subscheme of \(\mathcal{M}_{V_F,0} \)
determined by the condition that \(p \)-adic Hodge type is \(v = 1 \).

In the case \(p > 2 \), a Kisin module in \(M_\phi \) corresponds a finite flat models of
\(V_F \), and \(\mathcal{M}_{V_F,0} \) is called a moduli space of finite flat models of \(V_F \). In this case,
Kisin conjectured that the non-ordinary locus of \(\mathcal{M}_{V_F,0} \) is connected. (In fact,
this is a special case of [Kis, Conjecture 2.4.16].) This conjecture was proved by
Kisin in [Kis] if \(K \) is totally ramified over \(\mathbb{Q}_p \), by Gee in [Gee] if \(V_F \) is the trivial
representation, and by the author in [Ima] for general \(K \) and \(V_F \). In the proof in
[Ima], we need the condition \(p > 2 \). In this paper, we prove the conjecture for all
\(p \). The main theorem is the following.

Theorem. The non-ordinary locus of \(\mathcal{M}_{V_F,0} \) is geometrically connected.

The outline of the proof is the same as the proof in [Ima], but we need some
more sophisticated arguments to treat the case \(p = 2 \).

Acknowledgment. The author would like to thank Mark Kisin for suggesting him
to consider the problem of the connectedness in the case \(p = 2 \). He is grateful to a
referee for a careful reading of this paper and suggestions for improvements.

Notation. Throughout this paper, we use the following notation. Let \(p \) be a prime
number, and \(k \) be a finite extension of \(\mathbb{F}_p \) of cardinality \(q = p^n \). The Witt ring
of \(k \) is denoted by \(W(k) \), and let \(K_0 = W(k)/[1/p] \). Let \(K \) be a totally ramified
extension of \(K_0 \) of degree \(e \), and \(\mathcal{O}_K \) be the ring of integers of \(K \). The absolute
Galois group of \(K \) is denoted by \(G_K \). Let \(\mathbb{F} \) be a finite field of characteristic \(p \). The
formal power series ring of \(u \) over \(\mathbb{F} \) is denoted by \(\mathbb{F}[\![u]\!] \), and its quotient field is
denoted by \(\mathbb{F}(\!(u)\!) \). Let \(v_u \) be the valuation of \(\mathbb{F}(\!(u)\!) \) normalized by \(v_u(u) = 1 \). For
a field \(F \), the algebraic closure of \(F \) is denoted by \(\overline{F} \) and the separable closure of
\(F \) is denoted by \(F^{sep} \).
First of all, we recall some notation from [Kis], and the interested reader should consult [Kis] for more detailed definitions.

We put $\mathcal{S} = W(k)[1/u]$. Let \mathcal{O}_E be the p-adic completion of $\mathcal{S}[1/u]$. There is an action of ϕ on \mathcal{O}_E determined by Frobenius on $W(k)$ and $u \mapsto u^p$. We take and fix a uniformizer π of \mathcal{O}_E. We choose elements $\pi_m \in K$ such that $\pi_0 = \pi$ and $\pi_{m+1} = \pi_m$ for $m \geq 0$, and put $K_{\infty} = \bigcup_{m \geq 0} K(\pi_m)$. Let $\Phi \mathcal{M}_{\mathcal{O}_E,F}$ be the category of finite $\mathcal{O}_E \otimes_{\mathcal{Z}_p} F$-modules M equipped with ϕ-semi-linear map $M \to M$ such that the induced $\mathcal{O}_E \otimes_{\mathcal{Z}_p} F$-linear map $\phi^*(M) \to M$ is an isomorphism. Let $\text{Rep}_F(G_{K_{\infty}})$ be the category of finite-dimensional continuous representations of $G_{K_{\infty}}$ over F. Then the functor

$$T : \Phi \mathcal{M}_{\mathcal{O}_E,F} \to \text{Rep}_F(G_{K_{\infty}}) : M \mapsto (k((u))^{\text{sep}} \otimes_{k((u))} M)^{\varphi = 1}$$

gives an equivalence of abelian categories as in [Kis, (1.1.12)]. Here ϕ acts on $k((u))^{\text{sep}}$ by the p-th power map.

Let V_{F}^p be a continuous two-dimensional representation of G_K over F. We take the ϕ-module $M_F \in \Phi \mathcal{M}_{\mathcal{O}_E,F}$ such that $T(M_F)$ is isomorphic to $V_{F}^p(-1)|_{G_{K_{\infty}}}$. Here (-1) denotes the inverse of the Tate twist.

From now on, we assume $F_{q^2} \subset F$ and fix an embedding $k \hookrightarrow F$. This assumption does not matter, because we may extend F to prove the main theorem. We consider the isomorphism

$$\mathcal{O}_E \otimes_{\mathcal{Z}_p} F \cong k((u)) \otimes_{F} F \cong \prod_{\sigma \in \text{Gal}(k/F)} F((u)) \colon \left(\sum a_i u^i \right) \otimes b \mapsto \left(\sum \sigma(a_i) b u^i \right)_{\sigma}$$

and let $\epsilon_\sigma \in k((u)) \otimes_{F} F$ be the primitive idempotent corresponding to σ. Take $\sigma_1, \ldots, \sigma_n \in \text{Gal}(k/F)$ such that $\sigma_{i+1} = \sigma_i \circ \phi^{-1}$. Here we regard ϕ as the p-th power Frobenius, and use the convention that $\sigma_{n+1} = \sigma_1$. In the following, we often use such conventions. Then we have $\phi(\epsilon_{\sigma_i}) = \epsilon_{\sigma_{i+1}}$, and $\phi : M_F \to M_F$ determines $\phi : \epsilon_\sigma M_F \to \epsilon_{\sigma_{i+1}} M_F$.

For $(A_i)_{1 \leq i \leq n} \in GL_n(F((u)))^n$, we write

$$M_F \sim (A_1, A_2, \ldots, A_n) = (A_i)$$

if there is a basis $\{ e^i_1, e^i_2 \}$ of $\epsilon_{\sigma_i} M_F$ over $F((u))$ such that $\phi \begin{pmatrix} e^i_1 \\ e^i_2 \end{pmatrix} = A_i \begin{pmatrix} e^{i+1}_1 \\ e^{i+1}_2 \end{pmatrix}$.

We use the same notation for any sublattice $\mathfrak{M}_F \subset M_F$ similarly. Here and in the following, we consider only sublattices that are $\mathcal{S} \otimes_{\mathcal{Z}_p} F$-modules.

Finally, for any sublattice $\mathfrak{M}_F \subset M_F$ with a chosen basis $\{ e^i_1, e^i_2 \}_{1 \leq i \leq n}$ and $B = (B_i)_{1 \leq i \leq n} \in GL_n(F((u)))^n$, the module generated by the entries of $\begin{pmatrix} e^i_1 \\ e^i_2 \end{pmatrix}$ with the basis given by these entries is denoted by $B \cdot \mathfrak{M}_F$. Note that $B \cdot \mathfrak{M}_F$ depends on the choice of the basis of \mathfrak{M}_F.

For each \mathbb{Q}_p-algebra embedding $\psi : K \to \overline{K}$, we put $v_\psi = 1$ and set $v = (v_\psi)$. Then $\mathcal{X}_V^{p,0}$ is the moduli space of Kisin modules with p-adic Hodge type v. The rational points of $\mathcal{X}_V^{p,0}$ are described as in the following.

Proposition 1.1. If F' is a finite extension of F, the elements of $\mathcal{X}_V^{p,0}(F')$ naturally correspond to free $k[[u]] \otimes_{F'} F'$-submodules $\mathfrak{M}_{F'} \subset M_F \otimes_{F} F'$ of rank 2 that satisfy the following:

1. $\mathfrak{M}_{F'}$ is ϕ-stable.
For some (so any) choice of \(k[[u]] \otimes_{F_p} F'\)-basis for \(M_{F'}\), and for each \(\sigma \in \text{Gal}(k/F_p)\), the map
\[
\phi : \epsilon_\sigma M_{F'} \rightarrow \epsilon_{\sigma \phi \sigma^{-1}} M_{F'}
\]
has determinant \(\alpha \sigma^e\) for some \(\alpha \in F'[u]^\times\).

\textbf{Proof.} This is [Gee, Lemma 2.2]. \qed

\section{Main theorem}

To prove the main theorem, in fact we prove that the non-ordinary component of \(\mathcal{M}_{V_{g,0}}\) is rationally connected. We use the following two Lemmas to join two points by \(\mathcal{P}^1\).

\textbf{Lemma 2.1.} Suppose \(x_1, x_2 \in \mathcal{M}_{V_{g,0}}(F)\) correspond to objects \(M_{1,F}, M_{2,F}\) of \((\text{Mod}/S)_F\) respectively. We fix bases of \(M_{1,F}, M_{2,F}\) over \(k[[u]] \otimes_{F_p} F\). We assume that there is a nilpotent element \(N = (N_i)_{1 \leq i \leq n} \in M_2(F((u)))^n\) such that \(M_{1,F} = (I + N) \cdot M_{1,F}\). Let \(A = (A_i)_{1 \leq i \leq n} \in \text{GL}_2(F((u)))^n\) such that \(M_{1,F} \sim A\). If \(\phi(N_i)_{1 \leq i \leq n} \in M_2(F[[u]])\) for all \(i\), then there is a morphism \(\mathcal{P}^1 \rightarrow \mathcal{M}_{V_{g,0}}\) sending 0 to \(x_1\) and 1 to \(x_2\).

\textbf{Proof.} This is [Gee, Lemma 2.4]. \qed

\textbf{Lemma 2.2.} Suppose \(n \geq 2\). Let \(\mathcal{M}_{F}\) be the object of \((\text{Mod}/S)_F\) corresponding to a point \(x \in \mathcal{M}_{V_{g,0}}(F)\). Fix a basis of \(\mathcal{M}_{F}\) over \(k[[u]] \otimes_{F_p} F\). Consider \(U^{(i)} = (U_j^{(i)})_{1 \leq j \leq n} \in \text{GL}_2(F((u)))^n\) such that \(U_1^{(i)} = \begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix}\) and \(U_j^{(i)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) for all \(j \neq i\). If \(U^{(i)} : M_{F} \sim \phi\)-stable, it corresponds to a point \(x' \in \mathcal{M}_{V_{g,0}}(F)\), and there is a morphism \(\mathcal{P}^1 \rightarrow \mathcal{M}_{V_{g,0}}\) sending 0 to \(x\) and 1 to \(x'\). If \((U^{(i)})^{-1} : M_{F} \sim \phi\)-stable, it corresponds to a point \(x'' \in \mathcal{M}_{V_{g,0}}(F)\), and there is a morphism \(\mathcal{P}^1 \rightarrow \mathcal{M}_{V_{g,0}}\) sending 0 to \(x\) and 1 to \(x''\).

\textbf{Proof.} This is [Ima, Lemma 2.3]. \qed

To prove the main theorem, it suffices to show the following theorem. The strategy of the proof is the same as in [Ima], and we focus on the changed points in the case \(p = 2\).

\textbf{Theorem 2.3.} Let \(F'\) be a finite extension of \(F\). Suppose \(x_1, x_2 \in \mathcal{M}_{V_{g,0}}(F')\) correspond to objects \(M_{1,F'}, M_{2,F'}\) of \((\text{Mod}/S)_F\) respectively. If \(M_{1,F'}\) and \(M_{2,F'}\) are both non-ordinary, then \(x_1\) and \(x_2\) lie on the same connected component of \(\mathcal{M}_{V_{g,0}}\).

\textbf{Proof.} When \(n = 1\), this was proved in [Kis], and we did not use the condition \(p > 2\) in the proof. If \(e < p - 1\), then \(\mathcal{M}_{V_{g,0}}(F')\) is one point by [Ray, Theorem 3.3.3]. So we may assume \(n \geq 2\) and \(e \geq p - 1\). Furthermore, replacing \(V_F\) by \(V_F \otimes_{\mathbb{F}_p} \mathbb{F}'\), we may assume \(F = F'\).

In the case where \(V_F\) is reducible, the proof of [Ima, Theorem 2.4] goes on, even if \(p = 2\). So, by a base change, we may assume that \(V_F\) is absolutely irreducible. As in the proof of [Ima, Theorem 2.4], we can prove that, after extending the field \(F\), there exists a basis such that
\[
M_{F'} \sim \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ 0 & u^{s_1} & 0 & \cdots & 0 \\ u^{s_2} & 0 & u^{s_3} & \cdots & 0 \\ 0 & 0 & \cdots & u^{s_n} \end{pmatrix}
\]
where \(a_i \in \mathbb{F} \), \(0 \leq s_i \leq t_i \leq e \), \(s_i + t_i = e \) and \(|s_i - t_i| \leq p + 1 \) for all \(i \). Note that we have proved that we may assume \(|s_i - t_i| \leq p + 1 \) for all \(i \) in the last paragraph of [Ima, p. 1197].

Let \(\mathcal{M}_{\mathbb{F}} \) be the \(k[[u]] \otimes_{\mathbb{F}} \mathbb{F} \)-module generated by the basis giving the above matrix expression. Then \(\mathcal{M}_{\mathbb{F}} \) satisfies the condition in Proposition 1.1. We take the point \(x_0 \) of \(\mathcal{M}_{\mathbb{F}} \) corresponding to \(\mathcal{M}_{\mathbb{F}, 0} \). We are going to prove that \(x_0 \) and \(x_1 \) lie on the same connected component. We can prove that \(x_0 \) and \(x_2 \) lie on the same connected component by the same argument.

By the Iwasawa decomposition and the determinant conditions, we can take \(B = (B_i)_{1 \leq i \leq n} \in GL_2(\mathbb{F}(u))^{n} \) such that \(\mathcal{M}_{1, \mathbb{F}} = B \cdot \mathcal{M}_{0, \mathbb{F}} \) and \(B_i = \begin{pmatrix} u_i & v_i \\ 0 & u_i \end{pmatrix} \) for \(a_i \in \mathbb{Z} \) and \(v_i \in \mathbb{F}(u) \). Then we put \(r_i = v_i(u_i) \). Now we have

\[
\phi(B_1) \left(\begin{array}{cc} 0 & u_{1i} \\ u_{i1} & 0 \end{array} \right) B_2^{-1} = \left(\begin{array}{cc} \phi(v_1)u_{12}^{s_1} & u_{12}^{s_1 - p_{a_1} - a_2} - \phi(v_2)u_{22}^{s_1} \\ -v_2u_{12}^{s_1} & \phi(u_1)u_{22}^{s_1} - v_1u_1^{s_1} \end{array} \right)
\]

for \(2 \leq i \leq n \). On the right-hand sides, every component of the matrices is integral because \(\mathcal{M}_{1, \mathbb{F}} \) is \(\phi \)-stable.

First, we consider the case \(t_1 + p_{a_1} + a_2 > e \). In this case,

\[
(pr_1 + t_1 + a_2) + (r_2 + t_1 + p_{a_1}) = e, \quad s_1 - p_{a_1} - a_2 = pr_1 + r_2 + t_1 < 0
\]

by the \(\phi \)-stability and the determinant conditions of \(\mathcal{M}_{1, \mathbb{F}} \). We have \(a_1 > r_1 \), because \(t_1 + p_{a_1} + a_2 > e \geq pr_1 + t_1 + a_2 \). Similarly, we have \(a_2 > r_2 \), because \(t_1 + p_{a_1} + a_2 > e \geq r_2 + t_1 + p_{a_1} \).

We consider the following operations:

\[
a_i \sim a_i - 1, \quad v_i \sim u_i, \quad \text{if it preserves the } \phi \text{-stability of } B \cdot \mathcal{M}_{0, \mathbb{F}}.
\]

These operations replace \(x_1 \) by a point that lies on the same connected component as \(x_1 \) by Lemma 2.2. We prove that we can continue these operations until we get to the situation where \(t_1 + p_{a_1} + a_2 \leq e \). In other words, we reduce the problem to the case \(t_1 + p_{a_1} + a_2 \leq e \). If we can continue the operations endlessly, we get to the situation where \(t_1 + p_{a_1} + a_2 \leq e \), because the conditions \(s_i - p_{a_i} + a_i+1 \geq 0 \) for \(2 \leq i \leq n \) exclude that both \(a_1 \) and \(a_2 \) remain bounded below. Suppose we cannot continue the operations. This is equivalent to the following conditions:

\[
s_n - p_{a_n} + a_1 = 0 \quad \text{or} \quad r_2 + t_1 + p_{a_1} \leq p - 1, \quad pr_1 + t_1 + a_2 = 0 \quad \text{or} \quad t_2 + p_{a_2} - a_3 \leq p - 1, \quad s_{i-1} - p_{a_{i-1}} + a_i = 0 \quad \text{or} \quad t_i + p_{a_i} - a_{i+1} \leq p - 1 \quad \text{for each } 3 \leq i \leq n.
\]

If \(e \geq p \), there are only the following two cases, because \((pr_1 + t_1 + a_2) + (r_2 + t_1 + p_{a_1}) = e \) and \((s_i - p_{a_i} + a_{i+1}) + (t_i + p_{a_i} - a_{i+1}) = e \) for \(2 \leq i \leq n \).

Case 1: \(pr_1 + t_1 + a_2 = 0, \quad s_i - p_{a_i} + a_{i+1} = 0 \) for \(2 \leq i \leq n \).

Case 2: \(r_2 + t_1 + p_{a_1} \leq p - 1, \quad t_i + p_{a_i} - a_{i+1} \leq p - 1 \) for \(2 \leq i \leq n \).

If \(e = p - 1 \), clearly it is in Case 2.

In the Case 1, we have a contradiction as in the proof of [Ima, Theorem 2.4]. So we may assume that it is in the Case 2.
Then we can show that
\[r_i < a_i, \quad pr_i + t_i - a_{i+1} = r_{i+1} + s_i - pa_i < 0 \text{ for } 2 \leq i \leq n \]
as in the proof of [Ima, Theorem 2.4]. Combining these equations with \(s_1 - pa_1 - a_2 = pr_1 + r_2 + t_1 \), we get
\[
- (p^n + 1)r_1 = (p^n + 1)a_1 + (s_n - t_n) + p(s_{n-1} - t_{n-1}) + \cdots + p^{n-3}(s_3 - t_3) + p^{n-2}(s_2 - t_2) - p^{n-1}(s_1 - t_1),
\]
\[
- (p^n + 1)r_2 = (p^n + 1)a_2 - (s_1 - t_1) - p(s_n - t_n) - \cdots - p^{n-3}(s_4 - t_4) + p^{n-2}(s_3 - t_3) - p^{n-1}(s_2 - t_2),
\]
\[
- (p^n + 1)r_3 = (p^n + 1)a_3 + (s_2 - t_2) - p(s_1 - t_1) - \cdots - p^{n-3}(s_5 - t_5) + p^{n-2}(s_4 - t_4) - p^{n-1}(s_3 - t_3),
\]
\[
\vdots
\]
\[
- (p^n + 1)r_n = (p^n + 1)a_n + (s_{n-1} - t_{n-1}) + p(s_{n-2} - t_{n-2}) + \cdots + p^{n-3}(s_2 - t_2) - p^{n-2}(s_1 - t_1) - p^{n-1}(s_n - t_n).
\]
As \(|s_i - t_i| \leq p + 1 \) and
\[
(p + 1) + p(p + 1) + \cdots + p^{n-1}(p + 1) = \left(\frac{p^n - 1}{p - 1} \right)(p + 1) < 3(p^n + 1),
\]
we get \(-a_i - 2 \leq r_i \leq -a_i + 2\). If \(e = p \), as \(|s_i - t_i| \leq p \) and
\[
p + p^2 + \cdots + p^n = \left(\frac{p^n - 1}{p - 1} \right)p < 2(p^n + 1),
\]
we get \(-a_i - 1 \leq r_i \leq -a_i + 1\). If \(e = p - 1 \), as \(|s_i - t_i| \leq p - 1 \) and
\[
(p - 1) + p(p - 1) + \cdots + p^{n-1}(p - 1) = \left(\frac{p^n - 1}{p - 1} \right)(p - 1) < (p^n + 1),
\]
we get \(-a_i = r_i\).
As \(r_2 + t_1 + pa_1 \leq p - 1 \), we have
\[
pa_1 \leq t_1 + pa_1 \leq p - 1 - r_2 \leq a_2 + p + 1.
\]
For \(2 \leq i \leq n \), as \(t_i + pa_i - a_{i+1} \leq p - 1 \), we have
\[
pa_i \leq t_i + pa_i \leq a_{i+1} + p - 1.
\]
Take an index \(i_0 \) such that \(a_{i_0} \) is the greatest. If \(2 \leq i_0 \leq n \), we get \(a_{i_0} \leq 1 \) by
\[
pa_{i_0} \leq a_{i_0} + p - 1 \leq a_{i_0} + p - 1.
\]
If \(i_0 = 1 \) and \(a_1 \geq 3 \), we get \(a_2 \geq 3 \), by
\[
pa_1 \leq a_2 + p + 1, \quad \text{and this contradicts the case where } 2 \leq i_0 \leq n. \quad \text{So, if } i_0 = 1, \text{ we have } a_1 \leq 2. \text{ Combining } -a_i - 2 \leq r_i \text{ and } r_i < a_i, \text{ we get } a_i \geq 0. \text{ Hence } 0 \leq a_i \leq 2 \text{ and } 0 \leq a_i \leq 1 \text{ for } 2 \leq i \leq n.
\]
First, we assume \(a_2 = 0 \). Now we have \(-2 \leq r_2 \leq -1. \) Comparing \(t_1 + pa_1 + a_2 \) to \(c \) with \(r_2 + t_1 + pa_1 \leq p - 1 \), we get \(e \leq p - 2 - r_2 \). If \(r_2 = -2 \), we get \(e \leq p \). Then we have \(-a_2 - 1 \leq r_2 \), and this is a contradiction. If \(r_2 = -1 \), we get \(e \leq p - 1 \). Then we have \(-a_2 = r_2 \), and this is a contradiction.

Next, we assume \(a_2 = 1 \). As \(0 \leq t_1 + pa_i - a_{i+1} \leq p - 1 \) for \(2 \leq i \leq n \), we have \(a_i = 1 \) for all \(i \) and \(t_i = 0 \) for \(2 \leq i \leq n \). As \(r_2 + pa_1 + t_1 \leq p - 1 \), we have \(r_2 \leq -1 \).
As \(pr_2 + t_2 - a_3 = r_3 + s_2 - pa_2 \), we have \(r_1 = pr_2 + p - e - 1 \leq -e - 1 \). If \(e \geq p + 1 \), then \(-a_3 - 2 \leq r_3 \) and \(r_3 \leq -e - 1 \leq -4 \). This is a contradiction. If \(e = p \), then \(-a_3 - 1 \leq r_3 \) and \(r_3 \leq -e - 1 \leq -3 \). This is a contradiction. If \(e = p - 1 \), then \(-a_3 = r_3 \) and \(r_3 \leq -e - 1 \leq -2 \). This is a contradiction.

Thus we may assume \(t_1 + pa_1 + a_2 \leq e \). We put \(M_{0,F} = \left(\begin{array}{c} u^{-a_1} \\ 0 \\ u^{a_1} \end{array} \right) \cdot M_{0,F} \), then

\[
M_{3,F} \sim \left(\begin{array}{c} \alpha_1 \left(\begin{array}{ccc} 0 & u^{s_1-pa_1-a_2} & 0 \\ 0 & 0 & u^{t_2+pa_2-a_3} \end{array} \right) \\ \alpha_2 \left(\begin{array}{ccc} u^{s_2-pa_2+a_3} & 0 & 0 \\ 0 & 0 & u^{t_2+pa_2-a_3} \end{array} \right) \\ \ldots \end{array} \right) \cdot M_{3,F}
\]

and \(M_{1,F} = \left(\begin{array}{ccc} 1 & v_i u^{-a_1} \\ 0 & 1 \end{array} \right) \cdot M_{3,F} \). Note that \(M_{3,F} \) satisfies the conditions of Proposition 1.1, and let \(x_3 \) be the point of \(\mathcal{F} \mathcal{P}_V^+0 \) corresponding to \(M_{3,F} \). If we put \(N_i = \left(\begin{array}{ccc} 0 & v_i u^{-a_1} \\ 0 & 0 \end{array} \right) \), then

\[
\phi(N_i) \left(\begin{array}{ccc} 0 & u^{s_1-pa_1-a_2} & 0 \\ 0 & 0 & u^{t_2+pa_2-a_3} \end{array} \right) N_2 = \left(\begin{array}{ccc} \phi(v_i) v_2 u^{t_1} \\ 0 & 0 \end{array} \right)
\]

\[
\phi(N_i) \left(\begin{array}{ccc} u^{s_n-pa_n+a_1} & 0 & 0 \\ u^{t_n+pa_n-a_1+1} & 0 & 0 \end{array} \right) N_{i+1} = 0
\]

for \(2 \leq i \leq n \). Here we have \(v_n \left(\phi(v_1) v_2 u^{t_1} \right) \geq 0 \), because \(s_1 - pa_1 - a_2 \geq 0 \) and \(v_n \left(u^{s_1-pa_1-a_2} - \phi(v_1) v_2 u^{t_1} \right) \geq 0 \). Hence \(x_1 \) and \(x_3 \) lie on the same connected component by Lemma 2.1.

We are going to compare \(M_{0,F} \) and \(M_{3,F} \). First, we treat the case \(e \geq p \). We consider the operations that decrease \(| a_i | \) by 1 for an index \(i \) keeping the condition of \(\phi \)-stability. By Lemma 2.2, these operations do not affect which of the connected components \(x_3 \) lies on. We prove that we can continue the operations until we have \(a_i = 0 \) for all \(i \), that is, \(x_0 \) and \(x_3 \) lie on the same connected component. Suppose that we cannot continue the operations and there is some nonzero \(a_i \). The condition of \(\phi \)-stability is equivalent to

\[
C_1 : 0 \leq s_1 - pa_1 - a_2 \leq e, \ C_2 : 0 \leq s_2 - pa_2 + a_3 \leq e,
\]

\[
\ldots, \ C_n : 0 \leq s_n - pa_n + a_1 \leq e.
\]

Note that if \(a_i \neq 0 \) or \(a_{i+1} \neq 0 \), we can decrease \(| a_i | \) or \(| a_{i+1} | \) keeping \(C_i \), because \(e \geq p \).

We put

\[
c_i = \sharp \{ i \leq j \leq i + 1 \mid \text{we can decrease } | a_j | \text{ keeping } C_i \},
\]

and claim that \(\sharp \{ j \mid a_j \neq 0 \} = \sum_{i=1}^n c_i \). First, if \(a_i \neq 0 \), we have \(c_{i-1} \geq 1 \) and \(c_i \geq 1 \) from the above remark. So we have \(\sharp \{ j \mid a_j \neq 0 \} \leq \sum_{i=1}^n c_i \). Second, we count \(a_i \neq 0 \) in not both of \(C_{i-1} \) and \(C_i \), because we cannot continue the operations. So we have \(\sharp \{ j \mid a_j \neq 0 \} \geq \sum_{i=1}^n c_i \). Hence we have equality. From this equality, we have \(a_i \neq 0 \) and \(c_i = 1 \) for all \(i \). For \(2 \leq i \leq n \), we have \(a_i a_{i+1} > 0 \) because \(c_i = 1 \). So we have \(a_i a_2 > 0 \), but this contradicts \(c_1 = 1 \).
In the case $e = p - 1$. We have $|pa_1 + a_2| \leq p - 1$ by C_1, and $|pa_i - a_{i+1}| \leq p - 1$ by C_i for $2 \leq i \leq n$. Summing up these inequalities after multiplying some p-powers so that we can eliminate a_j for $j \neq i$, we get $|(p^n + 1)a_i| \leq p^n - 1$. So we have $a_i = 0$ for all i.

Hence x_0 and x_3 lie on the same connected component. This completes the proof.

References

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502 Japan

E-mail address: naoki@kurims.kyoto-u.ac.jp