DESINGULARIZATION AND SINGULARITIES OF SOME MODULI SCHEME OF SHEAVES ON A SURFACE

KIMIKO YAMADA

Abstract. Let X be a nonsingular projective surface over \mathbb{C}, and H_- and H_+ be ample line bundles on X in adjacent chamber of type (c_1, c_2). Let $0 < a_- < a_+ < 1$ be adjacent minichambers, which are defined from H_- and H_+, such that the moduli scheme $M(H_-)$ of rank-two a_--stable sheaves with Chern classes (c_1, c_2) is non-singular. We shall construct a desingularization of $M(a_+)$ by using $M(a_-)$. As an application, we study whether singularities of $M(a_+)$ are terminal or not in some cases where X is ruled or elliptic.

1. Introduction

Let X be a projective non-singular surface over \mathbb{C}, H an ample line bundle on X. Denote by $M(H)$ the coarse moduli scheme of rank-two H-stable sheaves with fixed Chern class $(c_1, c_2) \in \text{NS}(X) \times \mathbb{Z}$. In this paper we think about singularities and desingularization of $M(H)$ from the view of wall-crossing problem of H and $M(H)$.

Let H_- and H_+ be ample line bundles on X separated by only one wall of type (c_1, c_2). For a parameter $a \in (0, 1)$, one can define the a-stability of sheaves in such a way that a-stability of sheaves with fixed Chern class equals H_--stability (resp. H_+-stability) if a is sufficiently close to 0 (resp. 1), and there is a coarse moduli scheme $M(a)$ of rank-two a-stable sheaves with Chern classes (c_1, c_2). Let a_- and $a_+ \in (0, 1)$ be parameters which are separated by only one miniwall. Assume $M_- = M(a_-)$ is non-singular. One can find such a_- when X is ruled or elliptic. We construct a desingularization $\tilde{\pi}_+ : \tilde{M} \to M_+$ of $M_+ = M(a_+)$ by using M_- and wall-crossing methods, and apply it to consider whether singularities of M_+ are terminal or not when X is ruled or elliptic.

Let $\overline{M}(H)$ denote the Gieseker-Maruyama compactification of $M(H)$. By [10], when X is minimal and its Kodaira dimension is positive, $\overline{M}(H)$ has the nef canonical divisor if $\dim \overline{M}(H)$ equals its expected dimension and if H is sufficiently close to K_X. Thus, to understand minimal models of a moduli scheme of stable sheaves, it can be meaningful to study singularities on $\overline{M}(H)$. As a problem to be solved, it is desirable to extend results in this article to the case where M_- is not necessarily non-singular but its singularities are terminal (Remark 2.5).

Notation. For a k-scheme S, X_S is $X \times S$ and $\text{Coh}(X_S)$ is the set of coherent sheaves on X_S. For $s \in S$ and $E_s \in \text{Coh}(X_S)$, E_s means $E \otimes k(s)$. For E and $F \in \text{Coh}(X)$, $\text{ext}^i(E, F) := \dim \text{Ext}^i_X(E, F)$ and $\text{hom}(E, F) = \dim \text{Hom}_X(E, F)$. $\text{Ext}^i_X(E, E)^0$ indicates $\text{Ker}(\text{tr} : \text{Ext}^i(E, E) \to \text{H}^0(\mathcal{O}_X))$. For $\eta \in \text{NS}(X)$, we define $W^\eta \subset \text{Amp}(X)$ by $\{ H \in \text{Amp}(X) \mid H \cdot \eta = 0 \}$.

1
We begin with background materials. Let H_- and H_+ be ample divisors lying in neighboring chambers of type $(c_1, c_2) \in \NS(X) \times \mathbb{Z}$, and H_0 an ample divisor in the wall W of type (c_1, c_2) which lies in the closure of chambers containing H_- and H_+ respectively. (Refer to [8] about the definition of wall and chamber.) Assume that $M = H_+ - H_-$ is effective. For a number $a \in [0, 1]$ one can define the a-stability of a torsion-free sheaf E using

$$P_a(E(n)) = \{ (1 - a)\chi(E(H_-)(nH_0)) + a\chi(E(H_+(nH_0))) \}/ \text{rk}(E).$$

There is the coarse moduli scheme $\overline{M}(a)$ of rank-two a-semistable sheaves on X with Chern classes (c_1, c_2). Denote by $M(a)$ its open subscheme of a-stable sheaves. When one replace H_\pm by NH_\pm if necessary, $M(0)$ (resp. $M(1)$) equals the moduli scheme of H_--semistable (resp. H_+-semistable) sheaves. There exist finite numbers $a_1 \ldots a_t \in (0, 1)$ called minichambers such that $M(a)$ and $M(a)$ changes only when a passes a minwall. Refer to [2, Section 3] for details. Fix numbers a_- and a_+ separated by the only one miniwall, and indicate $M_\pm = M(a_\pm)$ and $M_\pm = M(a_\pm)$ for short. From [9, Section 2], the subset

$$M_- \supset P_- = \{ [E] \mid E \text{ is not } a_+ \text{-semistable} \}
\supset \text{resp. } M_+ \supset P_+ = \{ [E] \mid E \text{ is not } a_- \text{-semistable} \}$$

is contained in M_- (resp. M_+) and endowed with a natural closed subscheme structure of M_- (resp. M_+). Let η be a element of

$$A^+(W) = \{ \eta \in \NS(X) \mid \eta \text{ defines } W, 4c_2 - c_1^2 + \eta_2 \geq 0 \text{ and } \eta \cdot H_+ > 0 \}.$$

After [2, Definition 4.2] we define

$$T_\eta = M(1, (c_1 + \eta)/2, n) \times M(1, (c_1 - \eta)/2, m),$$

where n and m are numbers defined by

$$n + m = c_2 - (c_1 - \eta)^2/4 \text{ and } n - m = \eta \cdot (c_1 - K_X)/2 + (2a_0 - 1)\eta \cdot (H_+ - H_-),$$

and $M(1, (c_1 + \eta)/2)$ is the moduli scheme of rank-one torsion-free sheaves on X with Chern classes $((c_1 + \eta)/2, n)$. If F_{T_η} (resp. G_{T_η}) is the pull-back of a universal sheaf of $M(1, (c_1 + \eta)/2, n)$ (resp. $M(1, (c_1 - \eta)/2, m)$) to X_{T_η}, then we have an isomorphism

$$P_- \simeq \prod_{\eta \in A^+(W)} \mathbb{P}_{T_\eta} \left(\text{Ext}^1_X(F_{T_\eta}, G_{T_\eta}(K_X)) \right)$$

(1)

from [9, Section 5].

Proposition 2.1 ([9] Proposition 4.9). The blowing-up of M_- along P_- agrees with the blowing-up of M_+ along P_+. So we have blowing-ups

$$M_- \xrightarrow{\pi_-} B_{P_-}(M_-) = B_{P_+}(M_+) \xrightarrow{\pi_+} M_+.$$

By taking $4c_2 - c_1^2$ to be sufficiently large with respect to H_- and H_+, we can assume from [6] and [7] that $M_\pm \supset \text{Sing}(M_\pm) := \{ E \mid \text{ext}^2(E, E)^0 \neq 0 \}$ satisfies $\text{codim}(M_\pm, \text{Sing}(M_\pm)) \geq 2$ and that $P_\pm \subset M_\pm$ is nowhere dense, and hence both M_- and M_+ are normal l.c.i. schemes and birationally equivalent. Suppose that
\(A^+(W) = \{ \eta \} \) for simplicity and denote \(T_\eta = T \). From Hironaka’s desingularization theorem, there is a sequence of blowing-ups
\[
M_N \rightarrow M_{N-1} \cdots \rightarrow M_-
\]
along non-singular centers \(Z_i \subset M^i \) such that the ideal sheaf of \(\mathcal{O}_{M_\eta} \) generated by pull-back of the ideal sheaf of \(P_- \subset M_- \) is invertible.

Claim 2.2. If we set
\[
l_i = \max \{ \text{ext}^i(F_t, G_t(K_X)) \mid t \in T \},
\]
then we can take the center \(Z_i \) in (2) so that the dimension of \(Z_i \) is not greater than \(l_i - 1 + \dim T \).

Proof. Since one can readily show \(\text{ext}^2(F_t, G_t(K_X)) = \text{hom}(G_t, F_t) = 0 \) for all \(t \in T \), (1) implies that \(P_- \) is embedded in a \(\mathbb{P}^1 \)-bundle over \(T \). Thus for \(s \in P_- \), the rank of \(\Omega_{P_-} \otimes k(s) \) is not greater than \(\dim T + l_i - 1 \). From the exact sequence
\[
CN_{P_/|M_-} \rightarrow \Omega_{M_-}|_{P_-} \rightarrow \Omega_{P_-} \rightarrow 0,
\]
we can choose local coordinates \(g_i \in \mathcal{O}_{M_-} \) so that \(g_i \) lies in \(I_{P_-} \) for \(i \leq \dim M_- - (\dim T + l_i - 1) \). From [1, Thm. 1.10], one can choose the center \(Z_i \) in such a way that the ideal sheaf of \(Z_i \) contains the weak transform of \(I_{P_-} \) by \(M_i \rightarrow M_- \), say \(I_t \). If \(y \) is a local generator of the exceptional divisor of \(M_1 \rightarrow M_- \), then \(g_i/y \) \((i \leq \dim M_- - (\dim T + l_i - 1)) \) are partial coordinating parameters of \(M_i \) and belong to \(I_1 \). Since \(I_{Z_t} \) contains \(I_1 \), the claim holds for \(i = 1 \). For general \(i \), one can verify the claim in the same way. \(\square \)

From Proposition 2.1, we obtain a morphism
\[
M_N \rightarrow B(M) := B_{P_-}(M_-) = B_{P_+}(M_+) \rightarrow M_+
\]
and a diagram
\[
\begin{array}{ccc}
\hat{M} := M_N & \xrightarrow{\pi} & \hat{P}_+ \\
\downarrow \pi_- & & \downarrow \pi_+ \\
M_- & \xrightarrow{\pi_-} & B(M) \xrightarrow{\pi_+} M_+
\end{array}
\]
Therefore we can regard \(\hat{M} \) as a desingularization of \(M_+ \).

Next let us calculate \(\pi_-^* K_{M} - \pi_+^* K_{M_+} \). If we denote by \(D_i \subset \hat{M} \) the pull-back of the exceptional divisor of \(M^i \rightarrow M^{i-1} \), then
\[
K_{\hat{M}} - \pi_+^* K_{M_+} = \sum_i [\dim M_- - \dim Z_i - 1] D_i.
\]

Next consider \(\pi_-^* (K_{M_-}) - \pi_+^* (K_{M_+}) \). By the proof of Proposition 2.1, which uses elementary transform, we have the following.

Proposition 2.3. Denote the exceptional divisor \(\pi_-^{-1}(P_-) = \pi_+^{-1}(P_+) \subset B(M) \) by \(D \). Suppose we have a universal family \(E_{M_-} \in \text{Coh}(X_{M_-}) \) of \(M_- \) and a universal family \(E_{M_+} \in \text{Coh}(X_{M_+}) \) of \(M_+ \). If \(p : D \rightarrow P_+ \rightarrow T \) is a natural map, then there
are line bundles \(L_\pm \) on \(P_\pm \) and a line bundle \(L_0 \) on \(B(M) \) such that we have exact sequences
\[
0 \to \pi_* E_{M_+}^+ \otimes L_0 \to \pi_* E_{M_-}^- \to p^* G_T \otimes \pi_* L_+ \to 0 \tag{5}
\]
in \(\text{Coh}(X_{B(M)}) \) and
\[
0 \to \pi_* F_T \otimes \pi_* L_- \to \pi_* (E_{M_-}^-)|_{X_D} \to p^* G_T \otimes \pi_* L_+ \to 0 \tag{6}
\]
in \(\text{Coh}(X_D) \).

The exact sequence (6) is the relative a_±-Harder Narashimhan filtration of \(E_{M_-}^- \).

Here we remark that generally a universal family of \(M_- \) exists only \(\text{etale-locally} \),
but one can generalize this proposition to general case with straightforward labor.
Suppose \(L_\pm \) and \(L_0 \) in this proposition are trivial for simplicity. From (5)
\[
\pi_* K_{M_-} - \pi_* K_{M_+}
= \pi_* \det \mathbf{RHom}_{X_{B(M)/B(M)}}(E_{M_-}^-, E_{M_-}^-) - \pi_* \det \mathbf{RHom}_{X_{B(M)/B(M)}}(E_{M_+}^+, E_{M_+}^+)
= \det \mathbf{RHom}_{X_{B(M)/B(M)}}(\pi_* E_{M_-}^-, \pi_* E_{M_-}^-)
- \det \mathbf{RHom}_{X_{B(M)/B(M)}}(\pi_* E_{M_+}^+, \pi_* E_{M_+}^+)
= \det \mathbf{RHom}_{X_{B(M)/B(M)}}(E_{B(M)}^-, G_D) + \det \mathbf{RHom}_{X_{B(M)/B(M)}}(E_{B(M)}^+, \pi_* G_T)
+ \det \mathbf{RHom}_{X_{B(M)/B(M)}}(\pi_* G_T, E_{B(M)}^+)
= \det \mathbf{RHom}_{X_{B(M)/B(M)}}(E_{B(M)}^-, G_D) + \det \mathbf{RHom}_{X_{B(M)/B(M)}}(G_D, E_{B(M)}^+).
\]
If \(i : D \hookrightarrow B(M) \) is inclusion, then by (6)
\[
\det \mathbf{RHom}_{X_{B(M)/B(M)}}(E_{B(M)}^-, G_D) = \det i_* \mathbf{RHom}_{X_D/D}(E_{B(M)}^-, G_D) =
\det i_* \mathbf{RHom}_{X_D/D}(F_D, G_D) + \det i_* \mathbf{RHom}_{X_D/D}(G_D, G_D). \tag{7}
\]
Since \(\det \mathcal{O}_D = D \), (7) equals \([\chi(F_t, G_t) + \chi(G_t, G_t)] D \) for any \(t \in D \). By the Serre duality
\[
\det \mathbf{RHom}_{X_{B(M)/B(M)}}(G_D, E_{B(M)}^+)
= \det \mathbf{RHom}_{B(M)}(\mathbf{RHom}_{X_{B(M)/B(M)}}(E_{B(M)}^+, G_D(K_X)), \mathcal{O}_{B(M)})
= - \det \mathbf{RHom}_{X_{B(M)/B(M)}}(E_{B(M)}^+, G_D(K_X))
= - \det i_* \mathbf{RHom}_{X_D/D}(E_{B(M)}^+, G_D(K_X))
= - [\chi(F_t, G_t(K_X)) + \chi(G_t, G_t(K_X))] D = -[\chi(G_t, F_t) + \chi(G_t, G_t)] D.
\]
Therefore
\[
\pi_* K_{M_-} - \pi_* K_{M_+} = [\chi(F_t, G_t) - \chi(G_t, F_t)] D = 2(c_1(F_t) - c_1(G_t)) \cdot K_X.
\tag{8}
\]
Moreover, we put
\[
\tilde{\pi}^* D = \sum_{i=0}^{N-1} \lambda_i D_i. \tag{9}
\]
When \(\dim M_- - (l_1 - 1 + \dim T) > 0 \), all \(\lambda_i \) are 1. Indeed, the proof of Claim 2.2 says that some element \(g \in I_{P_-} \) satisfies that if \(y \) is a local generator of the exceptional divisor of \(M_1 \to M_- \), then \(g/y \) is a partial coordinating parameter of \(M_1 \). Thus the pull-back of \(I_{P_-} \) by \(M_1 \to M_- \) is divided by \(y \), but cannot be divided by \(y^2 \), which implies \(\lambda_1 = 1 \). One can show \(\lambda_i = 1 \) similarly. Consequently, from (4), (8) and (9), we have shown the following.

Proposition 2.4. In the diagram (3) it holds that

\[
K_M - \hat{\pi}^* K_{M_+} = \sum_{i=0}^{N-1} \left[\dim M_- - \dim Z_i - 1 + \lambda_i 2(c_1(F_i) - c_1(G_i)) \cdot K_X \right] D_i.
\]

with \(\lambda_i \geq 1 \). If \(\dim M_- > l_1 - 1 + \dim T \), then \(\lambda_i = 1 \) and

\[
\dim M_- - \dim Z_i - 1 + 2\lambda_i (c_1(F_i) - c_1(G_i)) \cdot K_X \geq \dim M_- - (l_1 - 1 + \dim T) - 1 + 2(c_1(F_i) - c_1(G_i)) K_X.
\]

One can use this proposition to verify whether singularities in \(M_+ \) is terminal or not.

Remark 2.5. It is desirable to extend this article to the case where \(M_- \) is not necessarily non-singular but its singularities are terminal. It is a problem that we can not use (4) since \(M_- \) is not non-singular.

3. Examples: ruled or elliptic surface

We shall give examples of \(M_\pm \) with \(M_- \) non-singular. If a surjective morphism \(X \to C \) to a nonsingular curve \(C \) exists, then by [3, p.142] we have a \((c_1, c_2)\)-suitable polarization, that is, an ample line bundle \(H \) such that \(H \) does not lie on any wall of type \((c_1, c_2)\), and for any wall \(W = W^\eta \) of type \((c_1, c_2)\), we have \(\eta \cdot f = 0 \) or \(\text{Sign}(f \cdot \eta) = \text{Sign}(H \cdot \eta) \). From [3, p.159, p.201], if \(X \) is a ruled surface or an elliptic surface, then any rank-two sheaf \(E \) of type \((c_1, c_2)\) which is stable with respect to \((c_1, c_2)\)-suitable polarization is good, i.e. \(\text{Ext}^2(E, E)^0 = 0 \).

(A) First we suppose that \(X \) is a (minimal) ruled surface. When \(c_1 \cdot f \) is odd \(M(H) \) is empty for \((c_1, c_2)\)-suitable polarization. Thus we assume \(c_1 = 0 \). If a rank-two sheaf \(E \) of type \((c_1, c_2)\) is stable with respect to a polarization \(H \) such that \(H \cdot K_X < 0 \), then \(E \) is good and so \(M(H) \) is nonsingular. Hence we assume that \(W^{K_X} \cap \text{Amp}(X) \neq \emptyset \), so \(2 \leq g = g(C) \) and \(e(X) \leq 2g - 2 \) from the description of \(\text{Amp}(X) \) [4, Prop. V.2.21]. Since \(\dim \text{NS}(X) = 2 \), if we move polarization \(H \) from a \((c_1, c_2)\)-suitable one, then \(M(H) \) may begin to admit singularities when \(H \) passes the wall \(W^{K_X} \). Let \(H_- \) and \(H_+ \) be ample line bundles separated by only one wall \(W^{K_X} \). \(M(H_-) \) is non-singular, and \(E^+ \in P_+ \) has a non-trivial exact sequence

\[
0 \to G = L \otimes I_{Z_1} \to E^+ \to F = L^{-1} \otimes I_{Z_2} \to 0
\]

with \(-2L \sim mK_X \). About this filtration we have \(\text{Ext}^2(E^+, E^+) = 0 \) since \(p_g(X) = 0 \) (See [5, p. 49] for \(\text{Ext}_+ \)), and

\[
\text{ext}^2(E^+, E^+) = \text{ext}^2(E^+, E^+) = \text{ext}^2(L \otimes I_{Z_1}, L^{-1} \otimes I_{Z_2}) = \text{hom}(I_{Z_1}, O(K_X + 2L) \otimes I_{Z_2}).
\]
Since W^K_X defines a wall, $H^0(\mathcal{O}(K_X + 2L)) = 0$ unless $2L + K_X = 0$. Hence $\text{ext}^2(E^+, E^+) \neq 0$ if and only if $-2L = K_X$ and $Z_l \subset Z_r$. As a result when one defines a-stability using H^i_+,

$$
\chi^a(E^+) - \chi^a(L \otimes I_{Z_l}) = Aa + B + l(Z_l)
$$

for some constant A and B, and so the moduli scheme $M(a)$ of a-stable sheaves begins to admit singularities just when a passes a miniwall a_0 defined by

$$
l(Z_l) = \begin{cases}
c_2/2 - (g - 1) & \text{if } c_2 \text{ is even} \\
(c_2 - 1)/2 - (g - 1) & \text{if } c_2 \text{ is odd}
\end{cases}
$$

Let a_- and a_+ be minichambers separated by only one miniwall a_0. $M(a_+) = M_+$ has singularities along $P_+ \times_T T'$, where

$$
T' = \{(L \otimes I_{Z_l}, L^{-1} \otimes I_{Z_r}) \mid -2L = K_X\}_\text{red} \subset M(1, K_X/2, l(Z_l)) \times M(1, -K_X/2, l(Z_r))
$$

(B) Suppose that X is an elliptic surface with a section σ and $c_1 = \sigma$. In contrast to ruled surfaces, $K_X^2 = 0$ and so $W^K_X \cap \text{Amp}(X)$ is always empty, though one can study some singularities appearing in $M(H)$ by Proposition 2.4. Let $\pi : X \to C$ be an elliptic fibration, $f \in \text{NS}(X)$ its fiber class, $d = -\text{deg} R^1 \pi_*(\mathcal{O}_X) - \sigma^2 \geq 0$. We have a natural map to a ruled surface $\kappa : X \to \mathbb{P}(\pi_*(\mathcal{O}(2\sigma))) = \mathbb{P}(\mathcal{E}_2)$. Since $\kappa_* (\sigma)$ is a section of $\mathbb{P}(\mathcal{E}_2)$, and since the pull-back of an ample line bundle by a finite map is ample, $L = af$ satisfies $W^{2L-c_1} \cap \text{Amp}(X) \neq \emptyset$ if $a > 0$ from the description of the ample cone of a ruled surface. Let c_1 be σ and $c_2 = (c_1 - L) \cdot L = a$. Then any sheaf E with non-trivial exact sequence

$$
0 \longrightarrow F = L \longrightarrow E \longrightarrow G = L^{-1} \otimes c_1 \longrightarrow 0,
$$

(12)
whose Chern class equals (c_1, c_2), is stable with respect to a (c_1, c_2)-suitable ample line bundle. Indeed, $(2L-c_1) \cdot f < 0$ and so $\pi_*(\mathcal{O}(2L-c_1)) = 0$ and $R^1 \pi_*(\mathcal{O}(2L-c_1))$ commutes with base change. Thus the exact sequence

$$
0 \longrightarrow H^1(C, \pi_*(\mathcal{O}(2L-c_1))) \longrightarrow H^1(X, \mathcal{O}(2L-c_1)) \longrightarrow H^0(E, R^1 \pi_*(\mathcal{O}(2L-c_1)))
$$

shows that the restriction of the exact sequence (12) to a general fiber is non-trivial, and so a corollary of Artin's theorem for vector bundles on an elliptic curve [3, p. 89] and a basic property of a suitable polarization [3, p. 144] deduce that E is stable with respect to a suitable polarization. Thereby such E is good. Let $H_- and H_+$ be ample line bundles which lie in no wall of type (c_1, c_2) with $(2L-c_1) \cdot H_- < 0 < (2L-c_1) \cdot H_+$. One can define a-stability by them. Let a_0 be a miniwall such that $\chi^{a_0}(\mathcal{O}(L)) = \chi^{a_0}(\mathcal{O}(2L-c_1))$, $a_- < a_0 < a_+ minichambers$, and $M_\pm = M(a_\pm)$. Then some connected components of $P_+ \subset M_+$ contains any sheaf E with non-trivial exact sequence (12), and some neighborhood of them in M_- is non-singular. It induces a desingularization of some open neighborhood of connected components K_+ of P_+ consisting of sheaves E^+ with a non-trivial exact sequence

$$
0 \longrightarrow L^{-1} \otimes c_1 \longrightarrow E^+ \longrightarrow L \longrightarrow 0
$$
as in Section 2.

We have in case of (A) $\text{ext}^1(G, F) \leq 1$, and in case of (B) $\text{ext}^1(G, F) = h^0(c_1 - 2L + K_X) - \chi(c_1 - 2L) \leq 2c_2 + C(X)$ with some constant $C(X)$ independent of c_2 because $h^0(c_1 - 2L + K_X) = 0$ if $a = c_2$ is sufficiently large. Thus in both
cases one can show that, if c_2 is sufficiently large, then all singularities of M_+ along above-mentioned sheaves are terminal.

REFERENCES

E-mail address: kyamada@math.kyoto-u.ac.jp

Department of mathematics, Kyoto University, Japan