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Owing to the enhanced sensitivity of nonlinear acoustic methods to material damage, the nonlinear

Lamb wave propagation is pertinent to the nondestructive evaluation of platelike structures, and it

is typically manifested as generation of higher harmonics. For dispersive waves such as Lamb

waves, however, the cumulative growth of harmonics requires that the primary mode and the

generated higher harmonic modes possess identical phase and group velocities. In this paper, this

issue of the phase and group velocity matching in Lamb waves is explored based on a systematic

analysis of the Rayleigh-Lamb frequency equations. The analysis shows that for certain values of

the phase velocity, the Rayleigh-Lamb frequency equations are satisfied at equi-spaced frequencies

which are multiples of the smallest. Such frequencies, together with the corresponding phase

velocities and the Lamb modes, are determined analytically. Four such types of Lamb modes are

identified: (i) Lamé modes, (ii) symmetric modes with dominant longitudinal displacements, (iii)

intersections of symmetric and antisymmetric modes and (iv) extra Rayleigh modes. For the first

three types, it is also established that the primary and the harmonic modes have the same group

velocity, and that the surface motion of the plate is featured with vanishing vertical or horizontal

displacements. In contrast to these three types, the fourth type only exists for a special range of the

transverse to longitudinal wave speeds of the solid. This type is not featured with a common

group velocity, and neither of the vertical or horizontal displacement vanishes on the plate

surfaces. The obtained results are summarized as tables, and demonstrated graphically on the

dispersion curves for aluminum as well as iron plates. VC 2011 American Institute of Physics.

[doi:10.1063/1.3569864]

I. INTRODUCTION

Nonlinear ultrasonic methods offer a promising means

for nondestructive evaluation of structural integrity owing to

their enhanced sensitivity to material degradation as com-

pared to conventional techniques. In particular, the genera-

tion of higher harmonics by sinusoidal or narrow-band

incident waves has been extensively studied in the light of

characterization of plastic strains, fatigue damage, micro-

cracking and other types of material damage.1–6 While most

of foregoing studies on the acoustic harmonic generation

dealt with nondispersive modes such as bulk and Rayleigh

waves, the corresponding phenomenon in dispersive guided

waves, such as Lamb waves in a plate, is currently receiving

increasing attention for materials evaluation.7–12

Theoretically, the harmonic generation in Lamb wave

propagation has been investigated based on the perturbation

approach and the modal analysis technique.7–9 These studies

have revealed that, in general, the propagation of an incident

(primary) Lamb wave with a certain frequency does not

always generate its higher harmonics in a cumulative fash-

ion, i.e., the amplitudes of the harmonic Lamb modes do not

grow proportionally with the propagation distance. This is

due to the dispersive nature of Lamb waves which implies

that the primary Lamb wave and its harmonics generally pos-

sess different propagation velocities. The cumulative genera-

tion of higher harmonics is practically an important problem

in order to measure the nonlinear effect with sufficient sig-

nal-to-noise ratio.

In order to achieve cumulative harmonic generation,

Deng7,8 claimed that the primary and its harmonic Lamb

modes should have an identical phase velocity (phase match-

ing). The analysis was elaborated by de Lima and Hamilton,9

who pointed out the necessity of the so-called nonvanishing

power transfer from the primary to the harmonic mode. Sri-

vastava and Lanza di Scalea13 provided further analysis on

this issue and discussed the existence of symmetric or anti-

symmetric mode in each order of the harmonics. Further-

more, some authors12,14,15 have argued that the group

velocities of the primary and the harmonic modes should

also be equal. In order to fulfill these requirements, the mode

and the frequency of the primary Lamb wave to enable cu-

mulative harmonic generation cannot be arbitrary. It is then

of significant importance to understand what mode and fre-

quency of Lamb waves can bring about the cumulative har-

monic generation. In the above-mentioned studies, however,

only some specific modes and frequencies have been demon-

strated which exhibit this phenomenon. A comprehensive

analysis of the Lamb modes and frequencies for cumulative

harmonic generation deserves special attention from funda-

mental as well as practical points of view.

Recently, Müller et al.16 presented an analysis of the

phase and group velocity matching as well as the nonzero
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power transfer for the cumulative growth of the second har-

monics in Lamb waves. They identified five types of the pri-

mary Lamb modes that satisfy these conditions, two of them

being of an exact nature and three being asymptotic. In this

paper, the issue of phase and group velocity matching in

Lamb waves is examined in a different perspective. Namely,

a theoretical analysis is presented to derive the modes and

frequencies of Lamb waves whose higher harmonics have

the identical phase as well as group velocities. The present

analysis shows that for certain values of phase velocity, a se-

ries of equi-spaced angular frequencies exist, satisfying the

dispersion relations simultaneously. Therefore, the analysis

is pertinent to the cumulative generation of not only second

harmonics, but also higher harmonics of arbitrary orders.

The analysis in this paper is carried out in the spirit of

the perturbation analysis employed in the foregoing stud-

ies,7–9 which enables us to discuss this issue based on the

Rayleigh-Lamb frequency equations in the linear theory of

Lamb wave propagation as outlined in Sec. II. Some proper-

ties of these equations are exploited in a systematic manner

in Sec. III to derive the phase velocities for which the phase

matching is possible. For the corresponding sets of equi-

spaced frequencies, the matching of the group velocity is

also examined. In Sec. IV, it is shown that the derived condi-

tions for the phase velocity are indeed necessary for the

phase matching. The derived results are summarized in Sec. V

as four characteristic mode types. While two of these mode

types correspond to those of exact matching shown by Mül-

ler et al.16 for the second-harmonic generation, the present

analysis includes two other types which were not mentioned

by them. Some results of other foregoing studies are shown

to be included as special cases of the mode types character-

ized here. Discussions are also given on the characteristics of

the surface motions of the plate in the Lamb modes exhibiting

the phase matching. In Sec. VI, the phase and group velocity

matching are demonstrated graphically on the dispersion

curves for specific materials.

II. RAYLEIGH-LAMB FREQUENCY EQUATIONS

According to the perturbation approach to the wave

propagation in an isotropic elastic plate assuming weak

stress-strain nonlinearity, the analysis for the harmonic gen-

eration when a Lamb mode with a certain frequency propa-

gates can be decomposed into two linearized problems

corresponding to the unperturbed primary mode, and the har-

monic mode subject to the excitation source due to the non-

linear contribution of the primary mode. Readers are referred

to the foregoing papers7–9,13,16 for the explicit solution of

these problems. In this situation, the phase matching can be

discussed based on the Rayleigh-Lamb frequency equations

for a linear and isotropic elastic plate (thickness d¼ 2h). For

the present discussion, these equations are expressed in the

following forms, namely,

XS x; kð Þ � q2 � k2
� �2 sin qh

q

� �
cos ph

þ 4k2p sin ph cos qh ¼ 0; (1)

for the symmetric (S) modes, and

XA x; kð Þ � q2 � k2
� �2 sin ph

p

� �
cos qh

þ 4k2q sin qh cos ph ¼ 0; (2)

for the antisymmetric (A) modes, where

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
cL

� �2

� k2

s
; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
cT

� �2

� k2

s
: (3)

In the above expression, x and k are the angular frequency

and the wave number of the Lamb mode, respectively, and

cL and cT are the longitudinal and transverse wave speeds,

respectively, of the elastic solid.

For a given angular frequency x, the displacement fields

of the Lamb mode in the complex-value representation are

given by17

u1 x1; x3; tð Þ ¼ ikA cos px3 þ qB cos qx3ð Þ exp i kx1 � xtð Þ½ �;
u3 x1; x3; tð Þ ¼ �pA sin px3 � ikB sin qx3ð Þ exp i kx1 � xtð Þ½ �;

(4)

for the S modes, where A and B are given as an eigenvector

of

�2ikp sin ph
k2 � q2ð Þ cos qh

k2 � q2ð Þ sin qh
�2ikq cos qh

� �
A
B

� �
¼ 0

0

� �
: (5)

On the other hand, for the A modes,

u1 x1; x3; tð Þ ¼ ikC sin px3 � qD sin qx3ð Þ exp i kx1 � xtð Þ½ �;
u3 x1; x3; tð Þ ¼ pC cos px3 � ikD cos qx3ð Þ exp i kx1 � xtð Þ½ �;

(6)

where C and D are given by

2ikp cos qh
k2 � q2ð Þ sin ph

k2 � q2ð Þ cos qh
2ikq sin qh

� �
C
D

� �
¼ 0

0

� �
: (7)

In the above expressions, the wave motion is assumed to

take place in the x1x3 plane with the propagation in the x1

direction, as illustrated in Fig. 1.

For the following derivation, it is convenient to fix the

phase velocity, cp¼x/k, of the Lamb wave. Then, by substi-

tuting k¼x/cp in Eqs. (1) and (2), XS and XA can be

regarded as functions of x. The problem to be discussed in

FIG. 1. Geometry of an elastic plate.
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this paper is to find a phase velocity cp for which a set of

equi-spaced angular frequencies (x0, 2x0, 3x0, …) exists

and each of its elements meets either Eq. (1) or Eq. (2), pro-

vided x0 is real and positive. Once such a frequency set is

found, an arbitrary element of the set can be chosen as the

frequency of the primary Lamb mode, and its higher har-

monics of any order have the same phase velocity.

III. DERIVATION OF PHASE AND GROUP VELOCITY
MATCHING

In this section, the derivation of phase and group veloc-

ity matching is performed by exploiting periodicity proper-

ties of the trigonometric terms in Eqs. (1) and (2). It is useful

here to note that the parameters p and q in Eq. (3) are both

proportional to x. Below, the analysis is separately presented

for three different regions of the phase velocity, namely,

cp� cT (Region I), cT< cp� cL (Region II), and cp> cL

(Region III). It will be shown in Sec. IV that the derived con-

ditions for the frequencies are not only sufficient but also

necessary for the phase matching.

A. Region I

When cp� cT, the parameters p and q in Eq. (3) are both

imaginary (including q¼ 0), and it is convenient to rewrite

Eqs. (1) and (2) with sin ph¼ i sinh rh, cos ph¼ cosh rh, sin

qh¼ i sinh sh and cos qh¼ cosh sh, by defining real parame-

ters r and s as p¼ ir and q¼ is. Each term in Eqs. (1) and (2)

contains a product of a hyperbolic sine and a hyperbolic co-

sine. Since r and s are proportional to x, these trigonometric

terms are not periodic in x. Therefore, it is not expected that

there exists a series (x0, 2x0, 3x0, …) which satisfies Eq. (1)

or (2).

B. Region II

When cT< cp� cL, the parameter p is imaginary (includ-

ing p¼ 0), while q is real. In this circumstance, Eqs. (1) and

(2) are rewritten with sin ph¼ i sinh rh and cos ph¼ cosh rh
using r as defined above. Noting that only sin qh and cos qh
are periodic in x in Eqs. (1) and (2), it is found that when one

of the two terms of the left-hand side in each equation van-

ishes, the remaining term gives the desired series. In Eq. (1)

for the S mode, this occurs when

q2 � x
cp

� �2
" #2

¼ 0, cp ¼
ffiffiffi
2
p

cT; q ¼ xffiffiffi
2
p

cT

; (8)

or

r ¼ 0, cp ¼ cL: (9)

It is noted that Eq. (8) satisfies the condition cT< cp� cL if

Lamé’s constant k is non-negative, for cL
2 � (

ffiffiffi
2
p

cT)2¼ k/

q� 0. For a somewhat pathological case of negative k, the

condition in Eq. (8) corresponds to the Region III to be dis-

cussed below, but the discussion goes parallel.

In Eq. (2) for the A mode, the corresponding condition

is given by Eq. (8) only. The consequences of Eqs. (8) and

(9) are examined in detail separately below.

1. Case (II-1): cp 5
ffiffiffi
2
p

cT

In this case, the dispersion relations in Eqs. (1) and (2)

reduce to

S mode: cos qh ¼ 0 : [ qh ¼ 2n� 1ð Þp=2: (10)

A mode: sin qh ¼ 0: [ qh ¼ np; (11)

where n is an integer. Accordingly, the angular frequency

and the wave number are given by

S mode: x ¼ 2n� 1ð Þ pcTffiffiffi
2
p

h
; k ¼ 2n� 1ð Þ p

2h
; (12)

A mode: x ¼ 2n
pcTffiffiffi

2
p

h
; k ¼ 2n

p
2h
: (13)

From Eqs. (12) and (13), it is seen that for this value of phase

velocity, there exists a series of angular frequencies [(NpcT)/

(
ffiffiffi
2
p

h); N¼ 1,2,3, …] satisfying the dispersion relation of S

and A modes in an alternate manner.

The group velocity of the Lamb mode is obtained by

S mode: cg ¼ �
@XS=@k

@XS=@x
; (14)

A mode: cg ¼ �
@XA=@k

@XA=@x
; (15)

which yield for the above set of frequencies,

cg ¼
cTffiffiffi

2
p ; (16)

irrespective of the mode and the integer N.
Therefore, the above set of frequencies gives the Lamb

modes of not only an identical phase velocity but also of an

identical group velocity. These Lamb modes are specially

known as the Lamé modes (c.f. Graff17), which can be

expressed as the superposition of bulk shear waves propagat-

ing in the directions with angles 6p/4 to the x1-axis.

2. Case (II-2): cp 5 cL

When Eq. (9) holds, Eq. (1) reduces to

S mode: sin qh ¼ 0: [ qh ¼ np; (17)

with n being an integer, and x and k are given by

S mode: x ¼ np
h

cTcLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

L � c2
T

p ; k ¼ np
h

cTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

L � c2
T

p ; (18)

which gives the desired series with the S modes alone. The

corresponding group velocity can be obtained likewise as
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S mode: cg ¼
cL cT=cLð Þ2 þ 8P
h i

1þ 8P
; P ¼ 1� cT=cLð Þ2

2� cL=cTð Þ2
h i2

;

(19)

again irrespective of n. In passing, it is noted that the condi-

tion obtained here corresponds to the symmetric Lamb

modes with dominant longitudinal displacements as dis-

cussed by Pilarski et al.18 (see also Rose19).

C. Region III

Finally in this region with cp> cL, p and q are both real

in Eqs. (1) and (2). In these equations, when one of sin ph
and sin qh vanishes, the other necessarily vanishes, too. The

same is true for cos ph and cos qh. Therefore, both terms on

the left-hand side vanish together at certain values of x,

when one of the following two conditions holds for each

mode.

sin ph ¼ sin qh ¼ 0; (20)

cos ph ¼ cos qh ¼ 0: (21)

Moreover, when

q2 � x
cp

� �2
" #2

¼ 4
x
cp

� �2

pq (22)

holds, the two terms on the left-hand side of both Eqs. (1)

and (2) are combined to give

sin phþ qhð Þ ¼ 0: (23)

The three cases with Eqs. (20), (21), and (23) are examined

further below.

1. Case (III-1): sin ph 5 sin qh 5 0

In this case, p and q are given, using even integers m
and n, as

ph ¼ 1

2
mp; qh ¼ 1

2
np; (24)

where m< n since cT< cL implies p< q. From Eq. (24), the

phase velocity is, for both modes, given by

cp ¼ cT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

f2 � g2
;

s
(25)

where g¼m/n, f¼ cT/cL. In order for the phase velocity to

be real, the ratio g should be smaller than f, so g is restricted

in the range g< f< 1.

Substituting Eq. (25) into Eq. (3) and further into Eq. (24),

x and k are given by

x ¼ npcT

2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

1� f2
;

s
k ¼ np

2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � g2

1� f2
;

s
(26)

with n being an even integer, which gives a desired series. It

is noted here that the phase velocity of Eq. (25), and each

angular frequency given by Eq. (26), satisfy the dispersion

relation for the S and A modes, Eqs. (1) and (2), simultane-

ously. This means that these frequencies and phase velocities

give intersecting points of the dispersion curves of S and A

modes. At these frequencies, however, the corresponding

group velocities differ depending on the mode symmetry,

and given by Eqs. (14) and (15) as

S mode: cg ¼
1� g2ð Þ2

1� g2ð Þ2�4 f2 � g2
	 


1� f2
	 
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � g2

1� g2

s
cT;

(27)

A mode: cg ¼
1� 2f2 þ g2
	 
2þ4g2 f2 � g2

	 

1� f2
	 


f2 1� 2f2 þ g2
	 
2þ4g2 f2 � g2

	 

1� f2
	 


�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � g2

1� g2

s
cT: (28)

2. Case (III-2): cos ph 5 cos qh 5 0

In this case, p and q are given by

ph ¼ 1

2
mp; qh ¼ 1

2
np; (29)

using odd integers m and n, where again m< n. Equation (29)

gives the phase velocity in the same form as Eq. (25), while

Eq. (26) applies here for x and k, but with n being an odd in-

teger. The corresponding group velocities are identical to

Eqs. (27) and (28), respectively, where the correspondence to

the mode symmetry is interchanged, namely, Eq. (28) for the

S mode, and Eq. (27) for the A mode.

The set of angular frequencies in this case does not con-

form to the desired form, since the entries of the series in

Eq. (26) are proportional to odd integers only. When supple-

mented by the one derived in (III-1), however, it gives a

sought-for series. In fact, for an arbitrary g¼m/n with m and

n both being odd integers, one can always find a pair of even

integers 2m and 2n to give the same ratio g. Therefore, the

above series can be combined with the series of (III-1) to

make the following desired form

pcT

2h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

1� f2

s
;
2pcT

2h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

1� f2

s
;
3pcT

2h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

1� f2

s
; � � � � � �

" #
;

(30)

whose elements meet the dispersion relations with the same

phase velocity of Eq. (25).

3. Case (III-3): sin (ph 1 qh) 5 0

In this case, both Eqs. (1) and (2) lead to

phþ qh ¼ np; (31)

where n is an integer, and this gives the desired equi-spaced

frequencies once the value of cp is established.
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By putting x¼ cp/cT and f¼ cT/cL, Eq. (22) reduces to

x6 � 8x4 þ 8 3� 2f2
	 


x2 þ 16 f2 � 1
	 


¼ 0; (32)

which is identical to the characteristic equation for the Ray-

leigh wave. This equation has three roots for x2, one of which

always gives a real velocity, corresponding to the well-

known Rayleigh wave on the free surface of an isotropic

solid. The other two roots give real-valued velocities only

when

11� 62f2 þ 107f4 � 64f6 < 0, f > fcr � 0:5670 … …

(33)

is satisfied. Provided f satisfies this inequality, the three

phase velocities can be expressed as

cR1; cR2 ¼ cT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3
þ 4

3

�Q6
ffiffiffi
3
p

R

2

� �s
; (34)

cR3 ¼ cT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3
þ 4

3
Q

r
; (35)

where the plus (þ) and minus (�) signs in Eq. (34) corre-

spond to cR1 and cR2, respectively, and Q and R are real con-

stants given by

�17þ 45f2 þ 3
ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 11� 62f2 þ 107f4 � 64f6
	 
q

i

� �1=3

¼ Qþ iR: (36)

It is noted that there exist three choices for Q and R, as the

left-hand side of Eq. (36) has three cubic roots in the complex

domain. Different choices of Q and R, however, merely inter-

change the phase velocities among the values of Eqs. (34)

and (35). Without loss of generality, then, it can be assumed

that Eq. (35) corresponds to the velocity of the Rayleigh

surface wave.

With this choice of Q and R, the angular frequencies for

cR1 and cR2 are given by Eq. (34) as

xR1;xR2¼n
pcT

h

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2Q 6 2

ffiffiffi
3
p

R

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�2Q 6 2

ffiffiffi
3
p

R

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 8�2Q 6 2

ffiffiffi
3
p

R
	 


�3

q ;

(37)

respectively (n: integer). Equation (37) gives the desired

equi-spaced frequencies on the dispersion curves with com-

mon phase velocities. It is noted that these frequencies and

the corresponding phase velocity are on the intersections of

the A and S modes. For these frequencies, however,

Eqs. (14) and (15) do not yield a common group velocity.

For the Rayleigh surface wave, it is well known that cR3

is less than cT. Therefore, from Eq. (3), no real-valued fre-

quency exists on the dispersion curves for this phase veloc-

ity. It has been already concluded in the discussion for the

Region I that there is no set of equi-spaced frequencies that

satisfy the Rayleigh-Lamb frequency equation for a common

phase velocity. It is noted in passing, however, that Müller

et al.16 classified this case as the phase matching in an as-

ymptotic sense in the high-frequency limit.

IV. NECESSITY OF THE DERIVED CONDITIONS

In the previous section, some phase velocities have been

derived for which the Rayleigh-Lamb frequency equations

are satisfied at equi-spaced frequencies. In this Section, it is

shown that no other such phase velocities exist, namely, that

the possible phase velocities have been exclusively discussed

already. To this purpose, it suffices to show that the condi-

tions for the phase velocity derived above are necessary for a

primary and its second-harmonic modes to have the same

phase velocity.

For convenience, the discussion is started with the

Region III. Depending on the mode symmetry of the primary

and the second-harmonic modes, the following four cases

need to be considered separately, namely, the second-har-

monic generation of (a) an S mode into an S mode, (b) an A

mode into an A mode, (c) an S mode into an A mode and (d)

an A mode into an S mode (although the aspect of nonzero

power flow9,13 may preclude the second-harmonic genera-

tion into an A mode, the attention is paid to all formally pos-

sible cases here). Since these four cases can be examined in

a similar manner, only the case for (a) is described here

because of the limited space.

The conditions for the case (a), namely, that a primary S

mode and its second-harmonic S mode have the same phase

velocity, are that Eq. (1) are satisfied for XS (x,k)¼ 0 and

XS(2x, 2k)¼ 0, namely,

K1 sin qh cos phþ K2 sin ph cos qh ¼ 0; (38)

K1 sin 2qh cos 2phþ K2 sin 2ph cos 2qh ¼ 0; (39)

where the coefficients are simply put as K1¼ (q2 � k2)2,

K2¼ 4k2pq. Subtracting Eq. (39) multiplied by sin ph cos qh
from Eq. (38) multiplied by sin 2ph cos 2qh, one obtains

K1 sin ph sin qh cos ph� cos qhð Þ cos phþ cos qhð Þ ¼ 0;

(40)

after some manipulation. Since K1> 0 in the Region III,

Eq. (40) requires (i) sin ph¼ 0, (ii) sin qh¼ 0, (iii) cos ph
� cos qh¼ 0 or (iv) cos phþ cos qh¼ 0. Clearly from Eq.

(38), (i) and (ii) are equivalent and each leads to the case

(III-1) in Sec. III. On the other hand, both (iii) and (iv)

imply sin ph¼6 sin qh, which yields (III-1), (III-2) or

K1¼K2 from Eq. (38) as K1 and K2 are both positive. The

third case has been already discussed in the case (III-3).

For the case (b), similar reasoning as above leads to Eq.

(40), so this situation also corresponds to (III-1)–(III-3) al-

ready discussed. Likewise, in the cases (c) and (d), the

same three cases are recovered.

The above discussion has proved that the phase match-

ing of a primary and its second harmonic modes in the

Region III only occurs for the special values of the phase ve-

locity derived in Sec. III.
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Next, for the Region II, one can also examine the four

cases (a)–(d) of the second-harmonic generation to show that

the conditions derived in Sec. III cover all possibilities for

the phase matching, namely, the cases of (II-1) and (II-2) are

obtained as the necessary conditions.

For the Region I, a similar manipulation results in the

expressions involving only hyperbolic functions, so the

phase matching is not possible.

Obviously, the necessary conditions of the phase match-

ing for the second harmonic generation obtained here are

also necessary for the harmonic generation of arbitrary order.

As a result, the conditions for the phase velocity derived in

Sec. III cover all possible cases of the phase matching occur-

ring in Lamb waves for higher harmonics of arbitrary order.

V. DISCUSSION

A. Summary of phase and group velocity matching

The results derived in Sec. III can be summarized as the

following four mode types. Furthermore, for each type, the

connection of the order of each element in the frequency set

to the order of the Lamb mode is established below.

1. Type (i): Lamé modes

For the phase velocity cp¼
ffiffiffi
2
p

cT, the frequency set is

given by Eqs. (12) and (13), which corresponds, in terms of

the frequency-thickness product, to

fd ¼ NcTffiffiffi
2
p ; N ¼ 1; 2;… … (41)

The group velocity is given by Eq. (16). The frequencies or-

dered as above give an S mode and an A mode in an alternate

manner, i.e., S0, A1, S1, A2, and so on. In a general notation,

N in Eq. (41) is associated to the kth-order symmetric mode

when N is odd and k¼ (N � 1)/2, and to the kth-order anti-

symmetric mode when N is even and k¼N/2.

2. Type (ii): Symmetric modes with dominant
longitudinal displacements

For the phase velocity cp¼ cL, the frequency set is given

by Eq. (18), yielding

fd ¼ NcTcLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

L � c2
T

p ;N ¼ 1; 2;… … (42)

The group velocity is given by Eq. (19). The frequencies of

this set are all related to the S mode, and N in Eq. (42) corre-

sponds to the Nth-order symmetric mode. This type has been

previously identified by Müller et al.16 in the special case of

second-harmonic generation. Here, it is shown to character-

ize the harmonic generation of arbitrary order.

3. Type (iii): Intersections of symmetric and
antisymmetric modes

The phase velocity cp¼ cT[(1� g2)/(f2� g2)]1/2 in Eq. (25)

is characterized by the ratio g of two integers m and n, under

the condition of g¼m/n< f¼ cT/cL. The angular frequency

sets are given by Eq. (26), which applies whether n is odd or

even. In the case of second-harmonic generation, this type

has also been discussed by Müller et al.16 In order to demon-

strate the structure of the frequency sets for arbitrary har-

monics, this case is now re-categorized into the following

two types, depending on whether the frequency set consists

of frequencies given by (III-1) and (III-2) jointly or the fre-

quencies given by (III-1) only.

a. Type (iii-a): When m and n are both odd integers and

g¼m/n, the same g can be given as the ratio of even inte-

gers, i.e., 2m/2n. Then, denoting the smallest pair of odd

integers giving this ratio g by m0 and n0, Eq. (26) and the

corresponding frequency-thickness products can be

expressed in a unified manner as

x ¼ Nn0pcT

2h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

1� f2

s
;

fd ¼ Nn0cT

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

1� f2

s
; N ¼ 1; 2;… … (43)

where g¼m0/n0¼m/n and N¼ n/n0¼m/m0, combining the

two cases (III-1) and (III-2) discussed above. These frequen-

cies are associated with the same phase velocity, but with

two group velocities, namely, Eq. (28) for S modes with odd

N and for A modes with even N, and Eq. (27) for A modes

with odd N and for S modes with even N. Each group veloc-

ity is shared by A and S modes in an alternate order.

The above summary obviously includes the case when

m and n are both even and their ratio g¼m/n can be also

given as the ratio of two odd integers. The remaining case is

described below.

b. Type (iii-b): When m and n are both even integers

but their ratio g¼m/n cannot be given as the ratio of two

odd integers, the same expression in Eq. (43) gives the

desired frequency set, using the smallest pair of even inte-

gers m0 and n0 giving this ratio g. The frequencies are again

related to the above phase velocity but two different group

velocities as Eqs. (27) and (28) corresponding to S and A

modes, respectively. Each group velocity is separately linked

to A or S mode.

The order of the pertinent Lamb mode for the type (iii)

can be naturally identified through the careful analysis of the

number of roots of Eqs. (1) and (2) along a straight line

x¼ cpk. After some analysis, it reveals that the Lamb mode

characterized by two integers m and n in the mode type (iii)

corresponds to the Mth-order symmetric or antisymmetric

mode, where M¼ (mþ n)/2.

4. Type (iv): Extra Rayleigh modes

The phase velocities in Eq. (34) have been derived as

the two extraneous roots of the characteristic equation for

the Rayleigh wave. Hereafter, the Lamb modes with these

phase velocities are referred to as the extra Rayleigh modes.

Importantly, this mode type is possible only when cT/cL is
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greater than fcr defined in Eq. (33). From Eq. (37), the fre-

quency-thickness products for this type are given by

fd ¼ NcT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 2Q62

ffiffiffi
3
p

R

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 2Q62

ffiffiffi
3
p

R

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 8� 2Q62

ffiffiffi
3
p

R
	 


� 3

q ;

N ¼ 1; 2;… … (44)

with plus and minus signs for cp¼ cR1 and cp¼ cR2, respec-

tively. The phase velocities and the corresponding frequen-

cies lie on the intersecting points of symmetric and

antisymmetric modes, but this Lamb mode type is deliber-

ately separated from the mode type (iii) above, since this

type has some distinguished properties. For instance, the

matching of the group velocity cannot be established for this

type. By the argument similar to the one used for the previ-

ous type (iii), it can be seen that Eq. (44) corresponds to the

Nth-order symmetric and antisymmetric modes.

B. Surface motions of Lamb modes with phase
matching

Each of the four mode types as summarized above is

shown to have characteristic surface motions. These are

clarified by examining the through-thickness distribution of

the displacement components given by Eqs. (4) and (6).

1. Type (i): Lamé modes

Substituting Eq. (8) into Eq. (5) gives A¼ 0, which to-

gether with Eqs. (4) and (10) gives u1(x1, 6h,t)¼ 0 for the S

modes. Likewise, Eqs. (6)–(8) and (11) give C¼ 0 and

u1(x1, 6h,t)¼ 0 for the A modes. Therefore, these Lamb

modes consist of the S and A modes with vanishing horizon-

tal displacements on both surfaces of the plate.

2. Type (ii): Symmetric modes with dominant
longitudinal displacements

From Eqs. (4), (5), (9) and (17), the surface motion satis-

fies u3(x1, 6h,t)¼ 0, demonstrating that the vertical displace-

ment on both surfaces vanish for this mode type.

3. Type (iii): Intersections of symmetric and
antisymmetric modes

For this mode type, the surface motions are determined

by Eqs. (4)–(7), (20), and (21), and the parity of m and n. For

the S modes, u3(x1, 6h,t)¼ 0 when m and n are both even,

and u1(x1, 6h,t)¼ 0 when m and n are both odd. On the other

hand, for the A modes, u1(x1, 6h,t)¼ 0 when m and n are

both even, and u3(x1, 6h,t)¼ 0 when m and n are both odd.

Therefore, the Lamb modes considered here are those either

with vanishing vertical or horizontal displacement on both

surfaces of the plate, depending on the mode symmetry and

the parity of the integers m and n.

4. Type (iv): Extra Rayleigh modes

From Eqs. (4)–(7), (31) and (34), the displacements for

this type are given by

u1 ¼ iK
ffiffiffi
q
p

ffiffiffiffiffiffiffi
Np
ph

s
� 1

 !
cos px3 þ �1ð ÞNcos qx3

" #

� exp i kx1 � xtð Þ½ �;

u3 ¼ K
ffiffiffi
p
p � sin px3 þ �1ð ÞN

ffiffiffiffiffiffiffi
Np
ph

s
� 1

 !
sin qx3

" #

� exp i kx1 � xtð Þ½ �; (45)

for the S modes, and

u1 ¼ iK
ffiffiffi
q
p

ffiffiffiffiffiffiffi
Np
ph

s
� 1

 !
sin px3 � �1ð ÞNsin qx3

" #

� exp i kx1 � xtð Þ½ �;

u3 ¼ K
ffiffiffi
p
p

cos px3 þ �1ð ÞN
ffiffiffiffiffiffiffi
Np
ph

s
� 1

 !
cos qx3

" #

� exp i kx1 � xtð Þ½ �; (46)

for the A modes. The parameters p and q in the above

expressions are given in terms of Q and R defined in Eq. (36)

by

p ¼ Np
h

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 4� Q6

ffiffiffi
3
p

R
	 


� 3

2f2 4� Q6
ffiffiffi
3
p

R
	 


� 3

s !�1

;

q ¼ Np
h

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f2 4� Q6

ffiffiffi
3
p

R
	 


� 3

2 4� Q6
ffiffiffi
3
p

R
	 


� 3

s !�1

; (47)

with the plus and minus signs corresponding to cp¼ cR1 and

cp¼ cR2, respectively. The surface motion for this mode type

is therefore not horizontal or vertical, but it is featured with

an elliptic trajectory.

To summarize, in the first three mode types (i)–(iii)

among the four given above, the Lamb modes exhibit the

phase and group velocity matching and have special features

of their surface motion. Namely, they are characterized ei-

ther by vanishing vertical displacement or vanishing hori-

zontal displacement on the traction-free surfaces. On the

other hand, the mode type (iv) involves an elliptic particle

motion of the plate surfaces. In the case of second-harmonic

generation, similar features have been noted by Müller

et al.16 for the types (ii) and (iii).

These features may have certain significant implications

to the excitation of the primary Lamb mode and detection of

its harmonics in practical nonlinear ultrasonic measurements.

For example, the type (ii) is featured by purely horizontal

surface motions, so it is expected to be difficult to excite or

detect the pertinent Lamb modes with immersion methods or

by angle-beam transducers connected with liquid couplant.

The types (i) and (iv) are suitable for this purpose as the rele-

vant Lamb modes have vertical horizontal motions. For the

type (iii), this issue depends on the particular values of m
and n as well as the mode symmetry.
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C. Additional remarks

In the foregoing studies, some specific frequencies of

the primary Lamb mode that exhibit the phase matching

have been explicitly discussed. These are examined here in

the light of the conditions derived here.

Deng7 obtained an existence condition for cumulative

generation of the second harmonics as

tan ph ¼ tan qh, qh� ph ¼ kp; (48)

in the notation employed here, where k is an integer. This

expression can be obtained from Eq. (24) or Eq. (29) in the

present analysis. Our results in Eqs. (24) and (29), however,

specify the possible frequencies more restrictively. More-

over, the present discussion has revealed another condition

qhþ ph¼ kp for the phase matching (extra Rayleigh modes).

In fact, the crossing points corresponding to this condition

can be found in Deng’s plot (Fig. 4 in Ref. 7), with no partic-

ular mention though. In Sec. VI, this mode type is demon-

strated using the material constants from Ref. 7.

By graphical and numerical arguments, Deng recorded

some explicit values as (kh,cp)¼ (2.57, 5.47km/s) for an S

mode for an iron plate. This corresponds to the type (iii), the

S modes with dominant longitudinal displacements, with kh
given in Eq. (18). Deng also describes (3.01, 6.12 km/s) for

an S mode and (3.00, 6.14 km/s), (2.72, 8.32 km/s) for A

modes. These values can be readily obtained from our results

for the type (iii), the intersections of S and A modes.

Namely, the first two cases correspond to (m,n)¼ (1,3)

and the third case to (2,4), with cp given in Eq. (25) and k in

Eq. (26).

Deng8 later discussed the case of the cumulative second

harmonic generation from the primary A4 and S4 modes at fh
(¼ fd/2)¼ 5.03 MHz � mm and cp¼ 8.206 km/s for an alumi-

num plate. This is also a special case of the type (iii) with

(m,n)¼ (2,6). Deng et al.10 attempted an experimental verifi-

cation of cumulative growth of second harmonics in Lamb

waves, where they used the A2 and S2 modes at 2.70 MHz,

cp¼ 8.194 km/s, for a 1.85 mm-thick aluminum plate. This

also corresponds to the case (m,n)¼ (1,3) in Eq. (25) (with

odd n) and in Eq. (42).

Bermes et al.11 experimentally used the 2.15 MHz S1

mode for a 1.6 mm-thick aluminum plate and observed the

second harmonic generation into S2 mode. Likewise, Pruell

et al.12 measured the second harmonic generation from the

2.225 MHz S1 mode into S2 mode. These examples corre-

spond to the symmetric modes with dominant longitudinal

displacements of Eq. (42), with N¼ 1 for the primary mode.

It is noted that just recently, Matlack et al.20 provided some

quantitative experimental results for the second harmonic

generation corresponding to this mode type, i.e., S1 into S2,

and S2 into S4 modes.

In an experimental study, Lee et al.14 used the A1 pri-

mary mode at 2.2 MHz for a 2 mm-thick aluminum plate and

recorded the second harmonic generation in the A2 mode.

This case corresponds to the Lamé mode with the primary

mode given by Eq. (41), when N¼ 1. It is noted, however,

that the occurrence of the second harmonic generation into

antisymmetric Lamb modes is theoretically precluded

according to the analysis of Deng7,8 (see, also Srivastava and

Lanza di Scalea13).

Srivastava and Lanza di Scalea13 also made measure-

ments for higher harmonic generation in Lamb waves. For a

2.54 mm-thick aluminum plate, they used low-frequency

symmetric as well as antisymmetric modes at 0.32 MHz as

the input wave. These cases are, however, not of a cumula-

tive nature according to the results of the present discussion.

As mentioned in the Introduction, Müller et al.16

obtained five mode types which satisfy the phase and group

velocity matching between the primary and its second har-

monic Lamb modes. Namely, they are (C) crossing points of

symmetric and antisymmetric modes, (L) symmetric modes

with longitudinal phase velocity, (O) nonzero order modes

near cut-off frequencies, (T) nonzero order modes at high

wave numbers, and (R) the lowest-order modes at high wave

numbers (quasi-Rayleigh wave in their terminology). Among

them, the mode types (C) and (L) correspond to the mode

types (iii) and (ii), respectively, in the present formulation.

The counterparts of the mode types (i) and (iv) derived here

are not mentioned by Müller et al.16 Their mode types (O),

(T) and (R) are of asymptotic nature, where Lamb modes

attain either a cut-off or a nondispersive behavior. Such ap-

proximate matching conditions may be of some practical

use, but these are not discussed here.

Foregoing investigators also examined the nonzero

power transfer from the primary to the harmonic modes as a

necessary condition for their cumulative growth. For the sec-

ond harmonics, the previous studies7,8,13,16 have shown by

symmetry arguments that a symmetric mode may be cumula-

tively generated while an antisymmetric mode is excluded,

irrespective of the symmetry of the primary Lamb mode.

Considerations for the harmonic generation of other orders

are given by Srivastava and Lanza di Scalia.13 Such require-

ments certainly restrict the possible mode and frequency

among the mode types obtained in this paper for cumulative

harmonic generation. For example, the Lamé modes in the

type (i) always have A modes at even orders, so for any pri-

mary mode the second harmonic generation is impossible in

this sense. This fact, however, does not reduce the signifi-

cance of the Lamé modes, since they encompass e.g. the

third-harmonic generation in A modes due to the cubic

nonlinearity.

VI. GRAPHICAL DEMONSTRATIONS

Finally, the modes and the frequencies of Lamb

waves which meet the conditions for the phase and group ve-

locity matching are explicitly demonstrated for specific

materials.

For an aluminum plate, for which cL¼ 6350 m/s and

cT¼ 3130 m/s, Table I illustrates the three types derived and

summarized in Sec. V. Note that the type (iv), extra Rayleigh

modes, is not existent as cT/cL¼ 0.49… …< fcr. The mode

types (i) and (ii) are characterized by a single frequency set

and a single phase velocity for each. On the other hand, the

mode type (iii) involves infinite numbers of the phase veloc-

ity by different combinations of the integers m0 and n0, so

only the cases for which the first entry is the Lamb mode of
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the order not greater than six are shown in Table I. For the

mode type (iii), different frequency sets are distinguished by

the pair (m0, n0). For example, when (m0, n0)¼ (1,3), the S2,

A4, S6, … modes have the phase velocity 8.127 km/s and the

group velocity 3.766 km/s at the fd values of 5.088, 10.176,

15.264, … MHz � mm. At these fd values, the A2, S4, A6, …

modes, respectively, have the same phase velocity, but their

group velocity is 1.952 km/s.

In Table II, the four mode types (i)-(iv) are shown for an

iron plate, with cL¼ 5442 m/s and cT¼ 3303 m/s, following

the example considered by Deng.7 This example has cT/

cL¼ 0.61……> fcr, so the extra Rayleigh modes are possi-

ble. As described earlier, this type consists of the Lamb

modes at intersections of S and A modes, such as S1-A1, S2-

A2, and so on.

The modes and frequencies of the Lamb waves which

satisfy the phase and group velocity matching are now pre-

sented in the cp - fd diagram. For aluminum, these are shown

in Fig. 2(a) for the types (i) and (ii), and in Fig. 2(b) for the

type (iii). In Fig. 2(b), different phase velocities are distin-

guished by the label (m0, n0) to be easily linked to Table I,

and the pair (m, n) for each Lamb mode is attached to the

corresponding point of (fd,cp). The cg - fd diagram for alumi-

num is shown in Fig. 3(a) for the types (i) and (ii), and in

Fig. 3(b) and 3(c) for the type (iii). As mentioned in Sec. III,

the Lamb modes with the common phase velocity may

TABLE I. Mode types exhibiting the phase and group velocity matching for

an aluminum plate ([fd]¼1 denotes the smallest element of the matching fre-

quency-thickness set).

Lamb modes

[fd]N¼ 1

(MHz:mm)

Phase velocity

(km/s)

Group velocity

(km/s)

(i) Lamé modes

S0-A1-S1-…… 2.213 4.426 2.213

(ii) Symmetric modes with dominant longitudinal displacements

S1-S2-S3-…… 3.597 6.35 4.307

(iii) Intersections of symmetric and antisymmetric modes

(m0, n0)

(1, 3) S2-A4-S6-……
5.088 8.127

3.766

A2-S4-A6-…… 1.952

(1, 5) S3-A6-S9-……
8.812 6.807

4.812

A3-S6-A9-…… 2.907

(1, 7) S4-A8-S12-……
12.46 6.567

5.372

A4-S8-A12-…… 3.186

(1, 9) S5-A10-S15-……
16.09 6.477

5.690

A5-S10-A15-…… 3.302

(2, 8) A5-A10-A15-……
13.93 7.134

4.380

S5-S10-S15-…… 2.594

(3, 7) S5-A10-S15-……
11.38 11.61

2.899

A5-S10-A15-…… 1.060

(1, 11) S6-A12-S18-……
19.70 6.434

5.881

A6-S12-A18-…… 3.362

(iv) Extra Rayleigh modes: non-existent (f¼ 0.49…< 0.567)

TABLE II. Mode types exhibiting the phase and group velocity matching

for an iron plate ([fd]N¼ 1 denotes the smallest element of the matching fre-

quency-thickness set).

Lamb modes

[fd]N¼ 1

(MHz�mm)

Phase velocity

(km/s)

Group velocity

(km/s)

(i) Lamé modes

S0-A1-S1-…… 2.336 4.671 2.336

(ii) Symmetric modes with dominant longitudinal displacements

S1-S2-S3-…… 4.156 5.442 5.127

(iii) Intersections of symmetric and antisymmetric modes

(m0, n0)

(1, 3) S2-A4-S6-……
5.878 6.140

3.047

A2-S4-A6-…… 3.699

(1, 5) S3-A6-S9-……
10.18 5.647

3.605

A3-S6-A9-…… 4.478

(2, 4) A3-A6-A9-……
7.199 8.314

2.583

S3-S6-S9-…… 1.976

(1, 7) S4-A8-S12-……
14.40 5.542

4.071

A4-S8-A12-…… 4.672

(3, 5) S4-A8-S12-……
8.312 28.86

0.9934

A4-S8-A12-…… 0.3907

(1, 9) S5-A10-S15-……
18.59 5.501

4.417

A5-S10-A15-…… 4.749

(2, 8) A5-A10-A15-……
16.10 5.783

3.334

S5-S10-S15-…… 4.243

(3, 7) S5-A10-S15-……
13.14 6.944

2.815

A5-S10-A15-…… 2.187

(1, 11) S6-A12-S18-……
22.76 5.481

4.663

A6-S12-A18-…… 4.864

(iv) Extra Rayleigh modes

cR1 S1A1-S2A2-…… 2.627 6.947 No matching

cR2 S1A1-S2A2-…… 3.838 5.472 No matching

FIG. 2. Lamb modes with phase and group velocity matching on the fre-

quency-phase velocity curves for aluminum (solid lines: A modes, broken

lines: S modes). (a) Lamé modes and symmetric modes with dominant lon-

gitudinal displacements and (b) intersections of symmetric and antisymmet-

ric modes.
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associate two different group velocities in the type (iii). This

is illustrated in Fig. 3(b) and 3(c), only for (m0, n0)¼ (1, 3)

and, (2, 8) respectively. The subscript S or A attached to the

label (m,n) denotes the symmetry of the Lamb mode.

For iron, the corresponding cp - fd and cg - fd diagrams

are shown in Figs. 4 and 5, respectively. In Fig. 4, the four

types are separately shown in Fig. 4(a) for the types (i), (ii)

and (iv), and in Fig. 4(b) for the type (iii). The three types

exhibiting the group velocity matching are shown, in Fig.

5(a) for the types (i) and (ii), and in Figs. 5(b) and 5(c) for

the type (iii) with (m0, n0)¼ (1,3) and (2,4), respectively. In

Fig. 5(d), the group velocities of the Lamb modes in the type

(iv) are shown, which take different values for different

frequencies. The difference among the group velocities of

the S modes is, however, very small for the case with the

phase velocity cR2. Such near matching of the group velocity

can be of equal relevance to the exact matching from a prac-

tical point of view.

Figures 2–5 demonstrate the phase and group velocity

matching in Lamb waves in a straightforward manner. The

frequency and the corresponding velocities for each point in

these figures can be readily found in Tables I and II. The

finding of the present analysis is thus suitable for the precise

determination of the pertinent frequency or the velocity for

the cumulative harmonic generation in Lamb waves.

VII. CONCLUDING REMARKS

In this paper, the phase and group velocity matching

between the primary and the harmonic Lamb modes has

been analyzed theoretically. By exploiting the Rayleigh-

Lamb frequency equations in a systematic manner, four

mode types have been identified which satisfy matching

of the phase velocity, namely, (i) Lamé modes, (ii) symmet-

ric modes with dominant longitudinal displacements,

(iii) intersections of symmetric and antisymmetric modes,

and (iv) extra Rayleigh modes. The first three types (i)–(iii)

have been shown to exhibit the group velocity matching, too.

The type (iv) is, however, only possible for a certain range

of the transverse to longitudinal wave speeds, and does not

exhibit the group velocity matching. It has been also shown

FIG. 4. Lamb modes with phase and group velocity matching on the fre-

quency-phase velocity curves for iron (solid lines: A modes, broken lines: S

modes). (a) Lamé modes, symmetric modes with dominant longitudinal dis-

placements and extra Rayleigh modes, and (b) intersections of symmetric

and antisymmetric modes.

FIG. 3. Lamb modes with phase and group velocity matching on the fre-

quency-group velocity curves for aluminum (solid lines: A modes, broken

lines: S modes). (a) Lamé modes and symmetric modes with dominant lon-

gitudinal displacements (b) intersections of symmetric and antisymmetric

modes when (m0, n0)¼ (1,3) and (c) intersections of symmetric and antisym-

metric modes when (m0, n0)¼ (2,8).
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that the Lamb modes that satisfy the exact phase matching

necessarily fall into one of these four types, so the present

discussion covers all possibilities of the phase matching in

Lamb waves.

The present results have been shown to include those

obtained in the previous studies as special examples. From

the tabular and graphical demonstrations given in this paper,

one can readily find a particular primary Lamb mode and

the frequency which exhibit the phase and group velocity

matching for cumulative harmonic generation. The surface

motions of the relevant Lamb modes have been shown to be

purely vertical or horizontal for the types (i)–(iii) and elliptic

for the type (iv): such information may be useful in consider-

ing experimental arrangements. Among the possible modes

and frequencies thus found, however, one needs to select

the primary and the harmonic Lamb modes between which

nonzero power transfer is possible. The possibility or the ef-

ficiency to transfer the energy from the primary to the har-

monic modes can be analyzed based on the modal analysis

approach established in the foregoing literature. More direct

numerical simulations are now in progress by the present

authors, which will be presented elsewhere. Supplemented

by these approaches, the results in this paper can facilitate

practical nonlinear ultrasonic measurements for Lamb

waves.
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