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Evolutionary Game with Statistical Mechanics1)
* Mitsuru KIKKAWA

* Department of Economics, Graduate School of Economics,
Kwansei Gakuin University, Nishinomiya 662-8501 JAPAN

mitsurukikkawa@hotmail.co.jp

Abstract

This paper formulates evolutionary game theory with a new concept using statistical mechanics.
This study analyzes the following situations: each player on the lattice plays a game with its nearest
neighbor or with a randomly matched player. These situations are formulated using an analogy with
the Ising model and the Sherrington-Kirkpatrick model, the simplest models in statistical mechan-
ics. Moreover, this paper examines the relations, the order parameter, and the action)$s$ probability
distribution on the lattice with percolation.

As a result, theoretical calculations agree with classical evolutionary game theory in tems of the
parameter size. This paper shows that bifurcations occur in a quenched system with extemalities,
hence, this system has multiple equilibria. This model applies to a two-player model of reinforcement
learning with memory [11]. This paper analyzes Prisoner’s Dilemma Game, shows that this Nash
equilibrium is Pareto optimal in terms of the length of memory.

Keywords: Evolutionary Game Theory, Statistical Mechanics, Ising Model, SK Model, Percolation
JEL classiflcation: C15, C73, C78

1 Introduction
This paper formulates evolutionary game theory with a new concept using statistical mechanics. In evolu-
tionary game theory, a large number of players is assumed to search at random for trading opportunities,
and when they meet the terms of game are started. We have described the above situations with the
classical approaches using the replicator dynamics $[15]^{2)}$ , or a perturbed finite-state Markov process $[8|$ .
In contrast to these approaches, our study formulates a large number of players playing games simultane-
ously using an analogy with the Ising model and the Sherrington-Kirkpatric model, the simplest models
in statistical mechanics.

Numerous papers published recently have used statistical mechanics in evolutionary game theory,
Blume [1], Diederich and Opper $[6|$ , McKelvey and Palkey $[$ 12, $13]^{3)}$ , Brock and Durlauf [2]. However,
these papers applied the Ising model [1] and the standard Sherrington-Kirkpatrick model [6], vigorously
researched in theoretical physics, in a straightforward manner. Furthermore, they paid very little atten-
tion to the basic elements. This paper presents a novel model using statistical mechanics for evolutionary
game theory with basic elements.

This paper is organized as follows. In \S 2, we formulate a model with nearest-neighbor interaction, and
compute the order parameter. In \S 3, we formulate a model for play with a randomly matched player in
annealed and quenched systems, and compute the optimal order parameter for each system. In \S 4, we
extend our model to add an extemality. In \S 5, we present the conclusions and discuss future work.

1 $)$ This paper is based on Kikkawa [9] submitted to Progress of Theoretical Physics Supplement and added. The author
thanks a referee for helpful comments, the Yukawa Institute for Theoretical Physics, Research Institute for Mathematical
Science at Kyoto University. Discussions during the YITP workshop YITP-W-07-16 on “Econophysics III-Physical Ap-
proach to Social and Economic Phenomena-” and RIMS Workshop on “2008 Mathematical Economics” were useful to
complete this work. Errors are the responsibility of the author.

2 $)$ replicator dynamics :
$\frac{\dot{x}_{i}}{x_{l}}=((Ax)_{i}-x\cdot Ax)$ , $i=1,$ $\ldots,n$ , $A$ : payoff $mal|\backslash l$

means that if the player’s payoff from the outcome $i$ is greater than the expected utility $x\cdot Ax$ , then the probability of the
action $i$ is higher than before.

3 $)$ This model ls called Quantal Response Equilibrium (QRE). They point out that this model flts a variety of experimental
data sets by using maximum likelihood estimation.
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2 Nearest Neighbor Interaction (Ising Model)

2.1 Theoretical Framework
In this section, we construct a nearest-neighbor interaction model with reference to the Ising model, the
simplest model in statistical mechanics.

Let $Z^{2}$ be the plane square lattice and we refer to the vertex $i$ as the site. Each site on the lattice is
the address of one player. Every site $i\in Z^{2}$ is directly connected to a finite number of other sites. The
set of sites $B=\{(ij)\}$ directly connected to site $i$ is the neighbor of $i,$ $j$ (See figure 1).

Figure 1: Square lattice and Nearest Neighbor.

A player who has chosen an action strategy receives a payoff from his neighbor, which is determined
by his strategy and his neighbor’s choice of action.

EXAMPLE 2.1 (Two players and two strategies, symmetric strategic game)
The set of actions of row player 1 is {Action 1, Action 2} and that of column player 2 is {Action 1,

Action 2}, and for instance, the row player’s payoff from the outcome (Action 1, Action 1) is $a$ , then the
column player’s payoff is also $a$ .

If the set of actions’ index is $\{+1, -1\}$ and payoff $a,$ $b>0$ , then this model corresponds to the Ising
model, where the payoff represents the energy.

Payoff Matrix 1

$\square$

PROPOSITION $2.2^{4)}$ We obtain the probability distributions of actions, {Si}, $i=1,$ $\cdots,$ $N$ , and the
player’s payoff ffom the outcome is $f$ ,

$P(\{S_{i}\})=Z^{-1}\exp(\gamma f)$ . (1)

where $\{S_{i}\}$ is a player $i$ ’s action, and $\gamma$ is a non-negative constant ; for instance, $\gamma$ is the optimal choice
behavior $[3]^{6)},$ $f$ is the player’s expected payoff from the outcome $\{S_{i}\}$ , and $Z$ is the normalization

parameter, with $\sum_{i=1}^{N}P(\{S_{i}\})=1$ .

This implies that if payoff $f$ is greater, then the probability of choosing the action is higher.

$\overline{4)_{We}}$omit this proof. There exist many ways of proving this proposition, however, this form is derived from the law of
the conservation of energy and the $p\dot{n}na|ple$ of equal a $pno’\dot{\tau}$ probability. In this model, the payoff represents the energy
in theoretical physics, but it admits negative valuee. Of course, the total payoff $2f$ is constant. See statistical mechanics
textbooks for details.

6 $)$ When parameter $\gamma$ approaches infinity, the model of behavior approaches the beet response model. When $\gamma=0$ , the
behavior is essentially random, as all strategies are played with equal probability.
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DEFINITION 2.3 We define an order parameter $m\in R$ , as how often a player has chosen an action
in this game.

$m= \sum_{i}^{N}S_{i}P(\{S_{i}\})$ . (2)

where $N$ is the number of the actions.

EXAMPLE 2.4 Considering EXAMPLE 2.1, the actions’ index $\{S_{i}\}=\{1,2\},$ $N=2$ , and the order
parameter for each case is computed as follows.

(i) If all the players’ actions are {Action 1}, then we obtain $m=1$ .
(ii) If all the players’ actions are {Action 2}, then we obtain $m=2$ .
(iii) If half of all the players’ actions are {Action 1}, then we obtain $m= \frac{3}{2}$ .

If the order parameter $m$ is near 1, then we know that there are many more players choosing {Action 1}
than {Action 2}. If the order parameter $m$ is near 2, then we know that more players chose {Action 2}
than {Action 1}.

If $\gamma$ is sufficiently large, then the actions for all players are chosen. If $\gamma$ is sufficiently small, then
the actions for all players are essentially random as all strategies are played with equal probability,
independent of the payoff size.

In particular, if the actions’ index $S_{i}$ is $\{-1,1\}$ , then the order parameter $m$ is 1,0(random), $-1$ for the
above cases (See figure 2),

Figure 2: Order parameter and parameter $\gamma$ (Ising model).

$\square$

DEFINITION 2.5 (Weibull [15]) $x\in\Delta$ is an evolutionary stable strategy (ESS) if for every strategy
$y\neq x$ , there exists some $\overline{\epsilon}_{y}\in(0,1)$ such that the following inequality holds for all $\epsilon\in(0,\overline{\epsilon}_{y})$

$u[x,$ $\epsilon y+(1-\epsilon)x]>u[y,$ $\epsilon y+(1-\epsilon)x]$ , (3)

where $\Delta=\{x\in R_{+}^{k}$ : $\sum_{i\in K}x_{i}=1\},$ $K=\{1,2, \cdots, k\}$ .

PROPOSITION 2.6 $x\in\Delta$ is an evolutionary stable strategy if and only if it meets these first-order
and second-order best-reply;

$u(y, x)\leq u(x, x)$ , $\forall y$ , (4)

$u(y,x)=u(x, x)\Rightarrow u(y, y)<u(x, y)$ , $\forall y\neq x$ . (5)

PROOF For a proof, see Weibull [15],

$\square$
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We characterize the evolutionary stable strategy with the order parameter $m$ .

PROPOSITION 2.7 $x\in\Delta$ is an evolutionary stable strategy in an evolutionary game with statistical
mechanics, if there exists some $m$ such that the inequality (7) holds for all $m^{*}$ .

$u(y, x)\leq u(x, x)$ , $\forall y$ , (Equilibrium Condition) (6)

$|m-m^{*}|<\epsilon$ .

where $m^{*}$ is the index of the equilibrium action.

PROOF Obvious.

(Stability Condition) (7)

$\square$

PROPOSITION 2.6 implies that $x\in\Delta$ is an evolutionary stable strategy, if and only if it meets Nash
equilibrium and asymptotic stability conditions. On the other hand, PROPOSITION 2.7 implies that
the Lyapunov stable condition is replaced by the stability condition in PROPOSITION 2.6.

Let this model add an order parameter; we can analyze an asymmetric two-person game in the same way.
In conclusion, we formulate the simplest symmetric and asymmetric two-person games with statistical
mechanics in evolutionary game theory.

Lipowski, et al. [11] introduces a two-player model of reinforcement leaming with memory by statistical
mechanics approach. It shows numerically that it is advantageous to have a large memory in symmetric
games, but it is better to have a short memory in asymmetric ones. The parameter $\gamma$ which we defined
is about memory in Lipowski, et al. [11]. This means that the longer memory is, the more likely you will
be able to choose the action.

EXAMPLE 2.8 We consider the Prisoner’s Dilemma Game, a two-player game in which each player
has only two pure strategies. A player $i(i=1,2)$ is equipped with a memory of length $l.$ , where it
sequentially stores the last $l_{i}$ decisions made by its opponent.

LEMMA (Lipowski, et al. $[11|)$ It is advantageous to have a large memory in symmetric games
$(l_{1}=l_{2})$ . It is better to have a short memory in asymmetric ones $(l_{1}\neq l_{2})$ .

PROOF The player’s each expected utility chosen the Action 1 or 2 is 3$p^{2},$ $-4p^{2}+3p+1$ . If these
expected utilities are equivalent, we obtain $p^{*}= \frac{3+\sqrt{37}}{14}$ . So we can understand that it is advantageneous
to choose the Action 1 when $p>p^{*}$ and the Action 2 when $p<p^{*}$ by the function’s form.

If the probability $p$ is large, the length of memory is long. Conversely, if the probability $p$ is small, the
length of memory is short. Therefore, if both players are long memory, the Nash equilibrium of this game
is (Action 1, Action 1). We can see that the Prisoner’s Dilemma is avoided. However, if both players are
short memory, the Nash equilibrium of this game is (Action 2, Action 2). Therefore, it is advantageous
to have a large memory in symmetric games $(l_{1}=l_{2})$ .

Next, we take that both player’s length of memory are different. We can consider the following two
cases. (i) if player l’s length of the memory is long and player $2$ ’s one is short, then the Nash equilibrium
is (Action 1, Action 2). So, we can see that player 2 who has a short memory obtains higher payoff than
player 1 who has a long memory.

(ii) if player $1$ ’s length of the memory is short and player $2$ ’s one is long, then the Nash equilibrium is
(Action 2, Action 1). So, we can see that player 1 who has a short memory obtains higher payoff than
player 2 who has a long memory. Therefore, it is better to have a short memory in asymmetric ones
$(l_{1}\neq l_{2})$ .

$\square$
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2.2 Spatial Pattern: Percolation
We examine the relations, the order parameter, and the action’s probability distribution on the lattice
with $percolation^{6)}$ .

First, we introduce some definitions and notation. For $S\in\Omega$ , let $S_{i}^{-1}(+1)=\{x\in Z^{2}|S\iota=+1\}$ .
$S_{\dot{*}}^{-1}(-1)$ is defined in the same way. $C_{z}^{+}(S)$ denotes the connected component of $S_{i}^{-1}(+1)$ containing the
point $z^{7)}$ . $C_{\overline{z}}(S)$ is defined in the same way.

If $S_{i}(z)=+1$ ,
$C_{z}^{+}(S_{i})=\{x\in Z^{2}|$ there $e\dot{m}t$ the points $\{x_{i}\}_{i=1}^{N}\subset S_{i}^{-1}(+1)$ , such that

$|x_{i}-x_{i-1}|=1,1\leq i\leq N+1$ , where $x_{0}=z,$ $x_{n+1}=x\}$ (8)

If $S_{i}(z)=-1,$ $C_{z}^{+}(S_{i})=\emptyset$ .
If $z$ is the orgin, then we deal with $C_{0}^{+}(S_{1})$ . For $W\in Z^{2},$ $|W|$ is the cardinality of $W$ , or the number
of vertices of a graph $W$ . We analyze the behavior of $\{$ Si $||C_{0}^{+}(S_{t})|=\infty\}$ on the pair $(\gamma, h)$ . The
parameter $h$ represents an effect of extemality. In this section, we mainly deal with $h=0$ .

Coniglio, et $d$ . $[4]$ proves the fundamental relationship between percolation and phase transition.

THEOREM 2.9 (Coniglio, et $d$. $[4]$ ) In the two-dimensional Ising model, we obtain,
(i) if $\gamma>\gamma_{c}$ , $\mu_{\gamma,0}^{+}(\{|C_{0}^{+}|= oo\})>0$ , $\mu_{\gamma,0}^{-}(\{|C_{0}^{-}|= oo\})>0$ .
where $\mu^{\epsilon},$ $s=t+,$ $-$ } is Gibbs measures.
(ii) if $\mu$ is external to the set of all Gibbs states $\mathcal{G}(\gamma, h)$ ,

$\mu(|C_{0}^{+}|=\infty)\mu(|C_{0}^{-}|=\infty)=0$ .

REMARK 2.10 If $\mu$ is extemal to the set of all Gibbs states $\mathcal{G}(\gamma, h)$ , then $\mu(\bigcup_{x\in Z^{2}}\{|C^{+}x(\omega)|=$

$\infty\})=0$ or 1 [10]. If this value is 1, then there exists a.e., an infinite cluster of the corresponding sign
and no inflnite clusters of the opposite sign –this is called percolation.

The above theorem implies that for $\gamma>\gamma_{c},$ $h=0$, there exists a.e., an infinite cluster of the corre$\cdot$

sponding sign and no infinite clusters of the opposite sign $((i))$ . For $0<\gamma<\gamma_{c},$ $h=0$ , there exists an
infinite cluster for neither actions ((ii)),

For $0<\gamma<\gamma_{c}$ and $h=0$ (i.e., an infinite cluster exists for neither action), what kind of pattern do
the actions’ distribution on the lattice make ? We know two typical patterns : the concentric circle and
chess patterns. The former is a cluster of $+$ actions surrounded by a bigger cluster of–actions, which
is surrounded by a bigger cluster of $+$ actions, $\cdots$ . The latter is a cluster of $+$ actions and –actions
placed alternately (Figure 3). We definite the connectivity to characterize these patterns.

DEFINITION 2.11 A subset $A\subset Z^{2}$ is called $(*)$ connected if and only if for every $x,$ $y\in A$ , there
exists a sequence of points $\{x_{1}\rangle x_{2}, \cdots, x_{n}\}\subset A$ such that $x_{0}=x,$ $x_{n+1}=y$ and for every $1\leq i\leq n+1$ ,

$\Vert x_{i}-x_{i+1}\Vert=1$ .
$\overline{6)p_{ercolationi\epsilon}}$known $\ln$ the simplat models as phase transition. We define a typical percolation problem.

[d-dlmenslonal Percolation] Let $Z^{d}(d\geq 2)$ be the plane cube lattice and $p$ be a number satisfying $0\leq p\leq 1$ . We
examine each edge of $Z^{d}$ , and consider it to be open with probability $p$ and closed otherwise, independent of all other edges.
The edges of $Z^{d}$ represent the inner passageways of the stone, and the parameter $p$ is the proportion of passages that are
broad enough to allow water to pass along them. Suppose we immerse a large porous stone in a bucket of water. What is
the probability that the center of the stone is wetted 7

7 $)$ Here, we define connected and related matter.
DEFINITION A subset $A\subset B^{2}$ is called connect$ed$ if and only if for every $x,$ $y\in A$ , there exists a sequence
$\{b_{1}, b_{2}, \cdots , b_{n}\}\in A$, such that
(a) $x\in b_{1}$ and $y\in b_{n}$ .
(b) For every $1\leq i\leq n-1$ , there exists a point $x_{t}\in Z^{2}$ , such that $b_{i}\cap b.+1=x.$ .

DEFINITION For $A\subset B^{2},$ $C\subset A$ is called $A$ ’s connected component if and only if
(a) $C$ is connected,
(b) for every $b\in A\backslash C,$ $C\cup\{b\}$ is not $\infty nnected$ .
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Figure 3: (LEFT) Concentric Circle Pattern, (RIGHT) Chess Pattern.

where $x=(x^{1}, x^{2})\in Z^{2}$ , $\Vert x\Vert=\max\{|x^{1}|,$ $|x^{2}|\}$ .

Using the above definition, we can flnd that the concentric circle pattern has finite $(*)$ connections
and the chess pattern has infinite $(*)$ connections for each action. The latter is called the coexistence of
infinite $(*)$-clusters.

THEOREM 2.12 (Higuchi [7]) For every sufficiently small $\gamma>0$ , there exists $h$ such that $\gamma’h’<$

$\frac{1}{2}\log\frac{p_{c}}{1-p_{c}}-4\gamma’,$ $\gamma h>\frac{1}{2}\log\frac{1-p_{c}}{p_{c}}+4\gamma$ , implying the coexistence of infinite $(*$ $)$ -clusters with respect

to the Gibbs state for $\mu_{\gamma,h}$ .

PROOF For detail, Higuchi [7].
$\square$

To conclude this section, the condition of the existence of infinite clusters was computed. If infinite
clusters do not exist, then we know the kind of pattems the distribution of actions makes on the lattice.
These pattems are either a concentric c\’ircle or a chess pattern. If $\gamma$ is sufficiently small and meets certain
conditions, then infinite $(*$ $)$-clusters coexist in a chess pattern.

3 Random Matching Interaction (Sherrington-Kirkpatrick Model)

In \S 2, we discussed a nearest-neighbor model based on the Ising model. In this section, the players
are assumed to search at random for trading opportunities and when they meet the terms of game are
started. This randomly matched model was formulated by Sherrington-Kirkpatrick [14].

Each player’s payoff from the outcome is as follows:

$H( \{J_{ij}\})=\sum_{i\neq j}J_{ij}S_{i}S_{j}$
, where $P(J_{ij})= \frac{1}{\sqrt{2\pi J^{2}}}\exp\{-\frac{(J_{ij}-J_{0})^{2}}{2J^{2}}\}$ , (9)

where $i,j$ are players, and $S_{k}=\{-1,1\},$ $k=i,j,$ $P(J_{ij})$ are Gaussian random variables with a mean of
$J_{0}$ and a variance of $J^{2}$ .

3.1 Annealed System
We analyze two models, an annealed system and a quenched system in spin-glass physics. First, we
analyze the annealed system, where $J_{jj}$ is chosen randomly, but then each player moves to obtain a
better payoff. Second, we analyze the quenched system, where $J_{ij}$ is chosen randomly, but then is fixed.

A particular spin-glass will have a social welfare $function^{8)}$ and the partition function is defined by

$F=\gamma\log\langle Z\rangle$ , (10)

$\langle Z\rangle=\sum_{\{S_{i}\}}\int_{-\infty}^{\infty}\prod_{(ij)}dI_{lj}P\{J_{ij}\}\exp(\gamma H\{J_{1j}\})$

$\circ)A$ social welfare function is a mapping from allocations of goods or rights among people to the real numbers.
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$= \sum_{\{S_{i}\}}\exp[\sum_{(ij)}\{\gamma J_{0}S_{t}S_{j}+\frac{(\gamma J)^{2}}{2}(S_{i}S_{j})^{2}\}]$ . (11)

We obtain the following proposition.

PROPOSITION 3.1 In the annealed system, the order parameter is the points that maximize the
social welfare function in the model. If there are infinite players on this lattice, then the order parameter
is $0$ .

PROOF We maximize the social welfare for the order parameter $m$ .

$\frac{\partial F}{\partial m}=2\gamma^{2}J_{0}n^{2}m+2\gamma^{3}J^{2}n^{4}m^{3}=0$, $m=0$ $or$ $\pm\sqrt{\frac{-J_{0}}{\gamma J^{2}n^{2}}}$. (12)

We can understand $J_{0}<0$ , because $m$ is a real number. The limit of optimal order parameter $m$ is $0$ , as
$n$ approaches to $\infty$ .

$\square$

This implies that the optimal order parameter is a point, like a replicator system.

3.2 Quenched System
We analyze the quenched system, where $J_{ij}$ is chosen randomly, but then is fixed. Diederich and Opper [6]
analyzed such a quenched system.

In a quenched system, the social welfare function is given by

$F=\gamma\langle\log Z\rangle$ . (13)

The partition function is the same as (11). We obtain the next proposition.

PROPOSITION 3.2 In a quenched system, the order parameter maximizes the social welfare of the
model.

$m= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\exp(-\frac{1}{2}z^{2})\tanh(\gamma\tilde{J}\sqrt{q}z+\gamma\tilde{J}_{0}n)dz$ . (14)

PROOF We omit the detailed proof. The above equation computes the maximization of the social
welfare for order parameter $m$ by employing standard methods.

$\square$

3.3 Extention: TAP Equation
To this subsection, we compute the optimal order parameter in general case for $J_{ij}$ . Here, if we take
a exampie for $\{J_{ij}\}$ , we analyze it. In detail, we find that the order parameter’s equation (TAP equa-
tion [14] $)$ has the condition of a phase transition, using the property of the eigenvalues of the matrix.
We compute the FVobenius root and the boundary condition between stability and instability from the
Pemn-Robenius theorem. The player’s payoff from the outcome varies randomly because the players are
randomly matched and play a game. These situations can be expressed using the random matnx theory.
This th$\infty ry$ has several laws, because the elements of this matrix are varied randomly. Moreover, if we
assume that $J_{ij}=J_{ji}$ for the elements of the random matrix, then this elements can be transformed into
a Hermite matrix, since the payoff matrix is invariant under positive affine transformations of payoffs.
As a result, we can compute the Frobenius root from Wigner’s semi-circle law, and this condition $hom$

the $Perron- \mathbb{R}obenius$ theorem.
Let a model add another parameter $h_{j}$ (an effect of extemality). We consider that the payoff is affected

by around games. In this case, the payoff is defined as

$H( \{J_{1j}\})=\sum_{i\neq j}J_{ij}S_{*}S_{j}+\sum_{j}h_{j}S_{j}$
. (15)
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We obtain the following propositions for annealed and quenched systems.

PROPOSITION 3.3 In an annealed system with externality, no phase transition occurs.

PROOF We compute the social welfare in the same way. We obtain

$h_{j}=2\gamma m(1-N)(J_{0}+J^{2}m^{2})$ . (16)

This implies that no phase transition occurs.
$\square$

This proposition implies that no phase transition occurs because each player in an annealed system
moves to obtain a better payoff.

Second, we analyze the variation in the order parameter in a quenched system. In this case, we obtain
the following proposition.

PROPOSITION 3.4 In a quenched system with externality, there exist discontinuous variations in
the order parameter. Bifurcations occur, hence, this system has multiple equilibria.

PROOF First, we compute the order parameter in the same manner, as mentioned earlier. The Weiss
approximation is given by

$m_{i}= \tanh\langle\gamma(h_{i}+\sum_{j}J_{ij}m_{j})\rangle$ ,

using the approximation $\langle f[s]\rangle\approx f[\langle s\rangle]$ , i.e., by approximating the expected value of a function of $s$

with the function of the expected values. This approximation neglects fluctuations.
If we expand this equation for $J_{0}=0$ ,

$m_{i}= \gamma\sum_{j}J_{ij}m_{i}-\gamma\sum_{j}J_{ij}^{2}m_{i}+\gamma h_{i}+\cdots$
.

We expand $NxNJ_{ij}$ matrices using the eigenvector. Let the eigenvector $\{\langle i|\lambda\rangle\}$ be a completely
normalized orthogonal system and $J_{\lambda}$ be the eigenvalue,

$\sum_{j}J_{ij}\langle i|\lambda\rangle=J_{\lambda}\langle i|\lambda\rangle$
. Let $m_{\lambda}= \sum_{*}m_{i}\langle i|\lambda\rangle$

,

i.e., the projection of the magnetization vector onto eigenvector $|\lambda\rangle$ of matrix $J$ , with the corresponding
eienvalue $J_{\lambda}$ and

$h_{\lambda}= \sum_{\mathfrak{i}}h_{i}\langle i|\lambda\rangle$
in the same way. Thus let it add $\lambda$ mode to parameters $J_{ij},$ $m,$ $h$ , then

the order parameter ls given by

$m_{\lambda}= \frac{1}{T-J_{\lambda}}h_{\lambda}$ , where $T= \frac{1}{\gamma}$ .

On the other hand, according to the random matrix theory, the maximal eigenvalue of $J_{\Lambda}$ is $2J$ , the
minimal eigenvalue is $-2J$ , and the semi circle law is realized, i.e.,

$\rho(J_{\lambda})=\frac{2}{\pi J_{\Lambda}^{2}}(J_{Z\Lambda}-J_{\lambda}^{2})^{1/2}$

This implies that the critical point $T_{C}$ is $2J_{\lambda}$ . There exist discontinuous variations for the order parameter.
Bifurcations occur, hence, this system has multiple equilibria. (See figure 4)

$\square$

4 Concluding Remarks
In this paper, a statistical framework is presented for modeling nearest-neighbor and random interactions
in evolutionary game theory. This fiiamework is different from classical evolutionary game theory. The
limit behavior, as $\gamma$ approaches infinity, is closely connected to the modeling of game theory with rational
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Figure 4: Order parameter bifurcates and multiple equilibria.

players. When $\gamma=0$ , behavior is essentially random, as all strategies are played with equal probability.
We compute the optimal order parameter for each system. In a quenched system with extemality, there
are multiple equilibria.

This framework can be extended in various ways because of the simplicity of the models. For example,
we will analyze the hamework in the case the action number is more than three or infinity. We will let
the important parameter $\gamma$ be endogenous; this is known as superstatistics. This model extends Cont
and Bouchaud [5] $mode1^{9)}$ with detailed microeconomic structure.10)
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