Coefficient conditions for certain classes concerning starlike functions of complex order (Study on Non-Analytic and Univalent Functions and Applications)

Author(s) Hayami, Toshio; Owa, Shigeyoshi

Citation 数理解析研究所講究録 (2009), 1626: 1-6

Issue Date 2009-01

URL http://hdl.handle.net/2433/140325

Type Departmental Bulletin Paper

Textversion publisher Kyoto University
Coefficient conditions for certain classes concerning starlike functions of complex order

Toshio Hayami and Shigeyoshi Owa

Abstract
For functions $f(z)$ which are starlike of complex order b ($b \neq 0$) in the open unit disk U, some interesting sufficient conditions for coefficient inequalities of $f(z)$ are discussed.

1 Introduction and Preliminaries

Let \mathcal{A} be the class of functions $f(z)$ of the form

\[(1.1)\quad f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (a_0 = 0, \; a_1 = 1)\]

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$.

Furthermore, let \mathcal{P} denote the class of functions $p(z)$ of the form

\[(1.2)\quad p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n\]

which are analytic in U. If $p(z) \in \mathcal{P}$ satisfies $\text{Re} \; p(z) > 0 \; (z \in U)$, then we say that $p(z)$ is the Carathéodory function (cf. [1]).

If $f(z) \in \mathcal{A}$ satisfies the following inequality

\[\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \alpha \quad (z \in U)\]

for some α ($0 \leq \alpha < 1$), then $f(z)$ is said to be starlike of order α in U. We denote by $S^*(\alpha)$ the subclass of \mathcal{A} consisting of functions $f(z)$ which are starlike of order α in U. Similarly, we say that $f(z)$ is a member of the class $\mathcal{K}(\alpha)$ of convex functions of order α in U if $f(z) \in \mathcal{A}$ satisfies the following inequality

\[\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha \quad (z \in U)\]

for some α ($0 \leq \alpha < 1$).

2000 Mathematics Subject Classification: Primary 30C45.
Keywords and Phrases: Coefficient inequality, analytic function, univalent function, starlike function of complex order, λ-spiral like function.
As usual, in the present investigation, we write

\[S^* \equiv S^*(0) \quad \text{and} \quad K \equiv K(0). \]

Classes \(S^*(\alpha) \) and \(K(\alpha) \) were introduced by Robertson [5].

Next, a function \(f(z) \in A \) is called \(\lambda \)-spiral like of order \(\alpha \) in \(U \) if and only if

\[
\text{Re} \left[e^{i\lambda} \left(\frac{zf'(z)}{f(z)} - \alpha \right) \right] > 0 \quad (z \in U)
\]

for some real \(\lambda \left(-\frac{\pi}{2} < \lambda < \frac{\pi}{2} \right) \) and \(\alpha \left(0 \leq \alpha < 1 \right) \). We denote this class by \(SP(\lambda, \alpha) \).

Moreover, for some non-zero complex number \(b \), we consider the subclasses \(S_b^* \) and \(K_b \) of \(A \) as follows:

\[
S_b^* = \left\{ f(z) \in A : \text{Re} \left[1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \right] > 0 \ (b \neq 0; \ z \in U) \right\}
\]

and

\[
K_b = \left\{ f(z) \in A : \text{Re} \left[1 + \frac{1}{b} \left(\frac{zf''(z)}{f'(z)} \right) \right] > 0 \ (b \neq 0; \ z \in U) \right\}.
\]

If a function \(f(z) \) belongs to the class \(S_b^* \) or \(K_b \), we say that \(f(z) \) is starlike or convex of complex order \(b \ (b \neq 0) \), respectively. In [3], Nasr and Aouf introduced the class \(S_b^* \).

Then, we can see that

\[
S_{1-\alpha}^* = S^*(\alpha), \quad K_{1-\alpha} = K(\alpha) \quad \text{and} \quad S_{(1-\alpha)e^{-i\lambda}c\infty\lambda}^* = SP(\lambda, \alpha).
\]

Example 1.1

\[
f(z) = \frac{z}{(1-z)^{2b}} = z + \sum_{n=2}^{\infty} \frac{\prod_{j=2}^{n}(j+2(b-1))}{(n-1)!} z^n \in S_b^* \quad (b \neq 0)
\]

and

\[
f(z) = \begin{cases}
\frac{1 - (1-z)^{1-2b}}{1 - 2b} = z + \sum_{n=2}^{\infty} \frac{\prod_{j=2}^{n}(j+2(b-1))}{n!} z^n \in K_b \quad (b \neq \frac{1}{2}) \\
\log \left(\frac{1}{1-z} \right) = z + \sum_{n=2}^{\infty} \frac{1}{n} z^n \in K_{\frac{1}{2}} = K \left(\frac{1}{2} \right)
\end{cases}
\]

We apply the following lemma to obtain our results.

Lemma 1.2 A function \(p(z) \in P \) satisfies \(\text{Re} \ p(z) > 0 \ (z \in U) \) if and only if

\[
p(z) \neq \frac{x - 1}{x + 1} \quad (z \in U)
\]

for all \(|x| = 1 \).
Then, by using Lemma 1.2, various conditions for starlike functions are studied. The following results are enumerated as the same examples.

Lemma 1.3 A function \(f(z) \in \mathcal{A} \) is in \(S^*(\alpha) \) if and only if

\[
1 + \sum_{n=2}^{\infty} A_n z^{n-1} \neq 0 \quad (z \in \mathbb{U}; \ |x| = 1)
\]

where

\[
A_n = \frac{n+1-2\alpha + (n-1)x}{2-2\alpha} a_n.
\]

Silverman, Silvia, and Telage [6] have given

Remark 1.4 The relation (1.3) of Lemma 1.3 is equivalent to

\[
\frac{1}{z} \left(f(z) * \frac{z + \frac{x + 2\alpha - 1}{2 - 2\alpha}}{(1 - z)^2} \right) \neq 0 \quad (z \in \mathbb{U}, \ |x| = 1)
\]

where \(*\) means the convolution or Hadamard product of two functions.

Furthermore, letting \(\alpha = 0 \) in Lemma 1.3, Nezhmetdinov and Ponnusamy [4] have given the sufficient conditions for coefficients of \(f(z) \) to be in the class \(S^* \).

Hayami, Owa and Sirivastava [2] have shown the following results.

Theorem 1.5 If \(f(z) \in \mathcal{A} \) satisfies the following condition

\[
\sum_{n=2}^{\infty} \left| \sum_{k=1}^{n} \left\{ \sum_{j=1}^{k} (j+1-2\alpha)(-1)^{k-j} \binom{\beta k-j}{k-j} a_j \right\} \binom{\gamma n-k}{n-k} \right| \leq 2(1 - \alpha)
\]

for some \(\alpha (0 \leq \alpha < 1) \), \(\beta \in \mathbb{R} \), and \(\gamma \in \mathbb{R} \), then \(f(z) \in S^*(\alpha) \).

Theorem 1.6 If \(f(z) \in \mathcal{A} \) satisfies the following condition

\[
\sum_{n=2}^{\infty} \left| \sum_{k=1}^{n} \left\{ \sum_{j=1}^{k} j(j+1-2\alpha)(-1)^{k-j} \binom{\beta k-j}{k-j} a_j \right\} \binom{\gamma n-k}{n-k} \right| \leq 2(1 - \alpha)
\]

for some \(\alpha (0 \leq \alpha < 1) \), \(\beta \in \mathbb{R} \), and \(\gamma \in \mathbb{R} \), then \(f(z) \in \mathcal{K}(\alpha) \).
Theorem 1.7 If \(f(z) \in \mathcal{A} \) satisfies the following condition
\[
\sum_{n=2}^{\infty} \left| \sum_{k=1}^{n} \left\{ \sum_{j=1}^{k} (j - \alpha + (1 - \alpha)e^{-2i\lambda})(-1)^{k-j} \binom{\beta}{k-j} a_j \right\} \binom{\gamma}{n-k} \right| + \left| \sum_{k=1}^{\infty} \left\{ \sum_{j=1}^{k} (j-1)(-1)^{k-j} \binom{\beta}{k-j} a_j \right\} \binom{\gamma}{n-k} \right| \leq 2(1 - \alpha) \cos \lambda
\]
for some \(\alpha \) (\(0 \leq \alpha < 1 \)), \(\lambda \) (\(-\frac{\pi}{2} < \lambda < \frac{\pi}{2} \)), \(\beta \in \mathbb{R} \) and \(\gamma \in \mathbb{R}_l \) then \(f(z) \in \mathcal{S}\mathcal{P}(\lambda, \alpha) \).

2 Main results

Main result for starlike of complex order \(b \) is contained in

Theorem 2.1 If \(f(z) \in \mathcal{A} \) satisfies the following condition
\[
\sum_{n=2}^{\infty} \left| \sum_{k=1}^{n} \left\{ \sum_{j=1}^{k} (j - 1 + 2b)(-1)^{k-j} \binom{\beta}{k-j} a_j \right\} \binom{\gamma}{n-k} \right| + \left| \sum_{k=1}^{\infty} \left\{ \sum_{j=1}^{k} (j-1)(-1)^{k-j} \binom{\beta}{k-j} a_j \right\} \binom{\gamma}{n-k} \right| \leq 2|b|
\]
for some \(b \in \mathbb{C} (b \neq 0), \beta \in \mathbb{R}, \) and \(\gamma \in \mathbb{R}_2 \), then \(f(z) \in \mathcal{S}_b^* \).

Proof. Let us define the function \(p(z) \) by \(p(z) = 1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \) for \(f(z) \in \mathcal{A} \).

Applying Lemma 1.2, \(f(z) \in \mathcal{S}_b^* \) if and only if
\[
p(z) = 1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \neq \frac{x-1}{x+1} \quad (z \in \mathbb{U})
\]
for all \(|x| = 1 \).

Then, we need not consider Lemma 1.2 for \(z = 0 \), because it follows that
\[
p(0) = 1 \neq \frac{x-1}{x+1} \quad (|x| = 1).
\]

Hence, the relation (2.1) is equivalent to
\[
2bz + \sum_{n=2}^{\infty} \left\{ (n - 1 + 2b) + x(n - 1) \right\} n^2 a_n z^n \neq 0.
\]

Dividing the both sides of (2.2) by \(2bz \) \((z \neq 0) \), we obtain that
\[
1 + \sum_{n=2}^{\infty} B_n z^{n-1} \neq 0
\]
where
\[
B_n = \frac{(n - 1 + 2b) + x(n - 1)}{2b} n^2 a_n \quad (n \geq 2).
\]
Therefore, it is sufficient that we prove
\[
\left(1 + \sum_{n=2}^{\infty} B_n z^{n-1} \right) (1 - z)^{\beta} (1 + z)^{\gamma} = 1 + \sum_{n=2}^{\infty} \left[\sum_{k=1}^{n} \left\{ \sum_{j=1}^{k} B_j (-1)^{k-j} \binom{\gamma}{k-j} \right\} \binom{\delta}{n-k} \right] z^{n-1} \neq 0
\]
where \(\beta, \gamma \in \mathbb{R} \) and \(B_1 = 1 \). Thus, if \(f(z) \) satisfies
\[
\sum_{n=2}^{\infty} \left\{ \sum_{j=1}^{n} \left(j - 1 + 2b \right) (-1)^{k-j} \binom{\beta}{k-j} a_j \right\} \binom{\gamma}{n-k} z^{n-1} \leq 2|b|
\]
then \(f(z) \in S_b^* \). The proof of Theorem 2.1 is completed.

We next derive the coefficient condition for functions \(f(z) \) to be in the class \(\mathcal{K}_b \).

Theorem 2.2 If \(f(z) \in \mathcal{A} \) satisfies the following condition
\[
\sum_{n=2}^{\infty} \left\{ \sum_{k=1}^{n} \left(j - 1 + 2b \right) (-1)^{k-j} \binom{\beta}{k-j} a_j \right\} \binom{\gamma}{n-k} z^{n-1} \leq 2|b|
\]
for some \(b \in \mathbb{C} (b \neq 0) \), \(\beta \in \mathbb{R} \), and \(\gamma \in \mathbb{R} \), then \(f(z) \in \mathcal{K}_b \).

Proof. Since \(zf'(z) \in S_b^* \) if and only if \(f(z) \in \mathcal{K}_b \) and since
\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad \text{and} \quad zf'(z) = z + \sum_{n=2}^{\infty} n a_n z^n,
\]
replacing \(a_j \) in Theorem 2.1 by \(ja_j \), we easily prove Theorem 2.2.

Putting \(\beta = \gamma = 0 \) in Theorem 2.1 and Theorem 2.2, we have

Corollary 2.3 If \(f(z) \in \mathcal{A} \) satisfies the following inequality
\[
\sum_{n=2}^{\infty} \left\{ |n - 1 + 2b| + (n - 1) \right\} |a_n| \leq 2|b|
\]
for some \(b \in \mathbb{C} (b \neq 0) \), then \(f(z) \in S_b^* \).
Corollary 2.4 If \(f(z) \in A \) satisfies the following inequality

\[
\sum_{n=2}^{\infty} n\left\{|n - 1 + 2b| + (n - 1)\right\}|a_n| \leq 2|b|
\]

for some \(b \in \mathbb{C} \) \((b \neq 0)\), then \(f(z) \in K_b \).

Finally, taking \(b = 1 - \alpha \) in Theorem 2.1 and Theorem 2.2, or \(b = (1 - \alpha)e^{-\lambda}\cos \lambda \) in Theorem 2.1, we arrive Theorem 1.5, Theorem 1.6 and Theorem 1.7.

References

Toshio Hayami
*Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
E-mail: ha_ya_to112@hotmail.com*

Shigeyoshi Owa
*Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
E-mail: owa@math.kindai.ac.jp*