<table>
<thead>
<tr>
<th>Title</th>
<th>Drawing the complex projective structures on once-punctured tori (Geometry related to the theory of integrable systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Komori, Yohei</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2008, 1605: 81-89</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/139947</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Drawing the complex projective structures on once-punctured tori

Yohei Komori (Osaka City Univ.)

1 Introduction

This report is based on my talk at RIMS International Conference on "Geometry Related to Integrable Systems" organized by Reiko Miyaoka. In my talk I showed many interesting pictures of one-dimensional Teichmüller spaces and related spaces created by Yasushi Yamashita (Nara Women's Univ.) which were already appeared in [3]. In this report I would like to explain the background of these pictures, which are explained more extensively in [2]. I would like to thank Yasushi Yamashita for his kind assistance with computer graphics, and Yoshihiro Ohnita for his constant encouragement for me to write this report.

2 Definition of $T(X)$

Let X be a Riemann surface of genus g with n punctures. Here we assume that X is uniformized by the upper half plane \mathbb{H} in \mathbb{C}, which implies the inequality $2g - 2 + n > 0$. The Teichmüller space $T(X)$ of X is the set of equivalent classes of quasi-conformal homeomorphisms from X to other Riemann surface Y, $f : X \to Y$: two maps $f_1 : X \to Y_1$ and $f_2 : X \to Y_2$ are equivalent if $f_2 \circ f_1^{-1} : Y_1 \to Y_2$ is homotopic to a conformal map. If we assume $f : X \to Y$ as a quasi-conformal deformation of X, $T(X)$ can be considered as the space of quasi-conformal deformations of X.

We will consider a complex manifold structure on $T(X)$, embed it holomorphically into complex affine space and try to draw its figure. For this purpose, we give another characterization of $T(X)$ due to Ahlfors and Bers in the next section.
3 Complex structure on $T(X)$

Let $\Gamma \subset PSL_2(\mathbb{R})$ be a Fuchsian group uniformizing $X = \mathbb{H}/\Gamma$. A measurable function $\nu(z)$ on the Riemann sphere $\mathbb{C}P^1$ whose essential sup norm is less than 1 is called a Beltrami differential for Γ if μ is equal to 0 on the lower half plane \mathbb{L} in \mathbb{C} and satisfies

$$\mu(\gamma(z)) \cdot \frac{\gamma'(z)}{\gamma'(z)} = \mu(z)$$

for all $z \in \mathbb{C}P^1$ and $\gamma \in \Gamma$. This functional equality implies that μ on \mathbb{H} is a lift of $(-1, 1)$ form on X. We denote the set of Beltrami differentials by $B_1(\Gamma, \mathbb{H})$ which has a structure of a unit ball of complex Banach space. The measurable Riemann’s mapping theorem due to Ahlfors and Bers guarantees that for any $\mu \in B_1(\Gamma, \mathbb{H})$ there exists a quasi-conformal map $f^\mu : \mathbb{C}P^1 \to \mathbb{C}P^1$ such that f^μ satisfies the Beltrami equation

$$\frac{\partial f^\mu}{\partial \bar{z}}(z) = \mu(z) \frac{\partial f^\mu}{\partial z}(z).$$

Also f^μ is unique up to post-composition by Möbius transformations.

Here we have two remarks: (i) f^μ is conformal on \mathbb{L}. (ii) The quasi-conformal conjugation of Γ by f^μ, $\Gamma^\mu = f^\mu \Gamma (f^\mu)^{-1}$ is also a discrete subgroup of $PSL_2(\mathbb{C})$ acting conformally on $f^\mu(\mathbb{H})$.

Now we say $\mu_1 \sim \mu_2$ for $\mu_1, \mu_2 \in B_1(\Gamma, \mathbb{H})$ if $\Gamma^{\mu_1} = \Gamma^{\mu_2}$. Then $T(X)$ can be identified with the quotient space $B_1(\Gamma, \mathbb{H})/\sim$ as follows: For any $[\mu] \in B_1(\Gamma, \mathbb{H})/\sim$, we have a quasi-conformal deformation of X

$$f^\mu : X = \mathbb{H}/\Gamma \to f^\mu(\mathbb{H})/\Gamma^\mu$$

which defines a point of $T(X)$. $T(X)$ becomes a complex manifold of $\dim_{\mathbb{C}} T(X) = 3g - 3 + n$ through the complex structure of $B_1(\Gamma, \mathbb{H})$. We will embed $T(X)$ holomorphically into the complex linear space by means of complex projective structures on \tilde{X}, the mirror image of X which will be explained in the next section.

4 Complex projective structures on \tilde{X}

Let S be a surface. A complex projective structure, so called $\mathbb{C}P^1$-structure on S is a maximal system of charts with transition maps in $PSL_2(\mathbb{C})$. Since
elements of $PSL_2(\mathbb{C})$ are holomorphic, any $\mathbb{C}P^1$-structure on S determines its underlying complex structure. Suppose we consider a $\mathbb{C}P^1$-structure whose underlying complex structure is equal to $\bar{X} = \mathbb{L}/\Gamma$, the mirror image of X. For a local coordinate function of this $\mathbb{C}P^1$-structure, we can take its analytic continuation along any curve on \bar{X} and have a multi-valued locally univalent holomorphic map from \bar{X} to $\mathbb{C}P^1$. This map is lifted to \mathbb{L} a locally univalent meromorphic function $W : \mathbb{L} \to \mathbb{C}P^1$ called the developing map of this $\mathbb{C}P^1$-structure. It is uniquely determined by the $\mathbb{C}P^1$-structure up to post-composition by Möbius transformations.

When we take an analytic continuation of a local coordinate function along a closed curve on \bar{X} and come back to the initial point, it differs from the previous one by a Möbius transformation since the transition maps are in $PSL_2(\mathbb{C})$. Consequently we have a homomorphism $\chi : \Gamma \cong \pi_1(\bar{X}) \to PSL_2(\mathbb{C})$ which is called the holonomy representation and satisfies $\chi(\gamma) \circ W = W \circ \gamma$ for all $\gamma \in \Gamma$. Therefore the $\mathbb{C}P^1$-structure on \bar{X} determines the pair (W, χ) up to the action of $PSL_2(\mathbb{C})$ and vice versa. Here we show the most basic example of $\mathbb{C}P^1$-structures on \bar{X}: Let W be the identity map $W : \mathbb{L} \hookrightarrow \mathbb{C}P^1$ and χ also be the identity homomorphism $\chi : \Gamma \hookrightarrow PSL_2(\mathbb{R})$ which induces a local coordinate function as a local inverse of the universal covering map $\mathbb{L} \rightarrow \bar{X}$. We call this $\mathbb{C}P^1$-structure the standard $\mathbb{C}P^1$-structure on \bar{X}.

Let $P(\bar{X}) = \{(W, \chi)\}/PSL_2(\mathbb{C})$ be the set of $\mathbb{C}P^1$-structures on \bar{X}. We will parametrize $P(\bar{X})$ by holomorphic quadratic differentials on \bar{X} as follows: A holomorphic function φ on \mathbb{L} is called a holomorphic quadratic differential for Γ if it satisfies

$$\varphi(\gamma(z))\gamma'(z)^2 = \varphi(z)$$

for all $z \in \mathbb{L}$ and $\gamma \in \Gamma$. It is a lift of holomorphic quadratic differentials on $\bar{X} = \mathbb{L}/\Gamma$. Let $Q(\bar{X})$ be the set of holomorphic quadratic differentials for Γ whose hyperbolic sup norm $||\varphi|| = \sup_{z \in \mathbb{L}} |\Re z|^2 |\varphi(z)|$ is bounded. $Q(\bar{X})$ has a structure of complex linear space of $dim_{\mathbb{C}} Q(\bar{C}) = 3g - 3 + n$ which is equal to the dimension of $T(X)$. We show that there is a canonical bijection between $P(\bar{X})$ and $Q(\bar{X})$ which maps the standard $\mathbb{C}P^1$-structure to the origin: Given a $\mathbb{C}P^1$-structures on \bar{X}, take the Schwarzian derivative of W

$$S_W := \frac{1}{2}(f''/f')' - \frac{1}{2}(f''/f')^2$$

which is an element of $Q(\bar{X})$. Conversely given a holomorphic quadratic differential φ for Γ, solve the differential equation $S_f = \varphi$ on \mathbb{L}. In practice
to find the solution \(f \), we consider the following linear homogeneous ordinary differential equation of the second order

\[2\eta'' + \varphi \eta = 0 \]

on \(\mathbb{L} \). Since \(\mathbb{L} \) is simply connected, a unique solution \(\eta \) exists on \(\mathbb{L} \) for the given initial data \(\eta(-i) = a \) and \(\eta'(-i) = b \). Let \(\eta_1 \) and \(\eta_2 \) be the solution defined by the conditions \(\eta_1(-i) = 0 \) and \(\eta_1'(-i) = 1 \), and \(\eta_2(-i) = 1 \) and \(\eta_2'(-i) = 0 \). Then the ratio \(f_\varphi = \eta_1 / \eta_2 \) is a locally univalent meromorphic function on \(\mathbb{L} \), the developing map associated with \(\varphi \). A direct computation shows that \(\eta(\gamma(z)) (\gamma'(z))^{-\frac{1}{2}} \) also satisfies the above equation hence there is a matrix of \(SL_2(\mathbb{C}) \) such that

\[
\left(\begin{array}{c} \eta_1(\gamma(z))(\gamma'(z))^{-\frac{1}{2}} \\ \eta_2(\gamma(z))(\gamma'(z))^{-\frac{1}{2}} \end{array} \right) = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \left(\begin{array}{c} \eta_1 \\ \eta_2 \end{array} \right)
\]

for all \(\gamma \in \Gamma \). As a result we have a homomorphism \(\chi_\varphi : \Gamma \to PSL_2(\mathbb{C}) \), the holonomy representation associated with \(\varphi \). We can also consider \(\chi_\varphi \) as the monodromy representation of the above differential equation.

5 Bers embedding of \(T(X) \)

Now we embed \(T(X) \) into \(Q(\bar{X}) \cong \mathbb{C}^{3g-3+n} \) by means of the identification \(P(\bar{X}) \cong Q(\bar{X}) \). For each element \([\mu] \in T(X) = B_1(\Gamma, \mathbb{H})/\sim, f^\mu|_L \) is conformal and \(\Gamma^\mu = f^\mu \Gamma (f^\mu)^{-1} \) is a quasi-fuchsian group. Therefore it determines a \(CP^1 \)-structure on \(\mathbb{L}/\Gamma \) where the developing map is \(W = f^\mu|_L \) and the holonomy representation \(\chi : \Gamma \to \Gamma^\mu \) is defined by \(\chi(\gamma) = f^\mu \gamma (f^\mu)^{-1} \). After the identification \(P(\bar{X}) \cong Q(\bar{X}) \), \(T(X) \) can be embedded into \(Q(\bar{X}) \), which is called the Ber embedding of \(T(X) \).

We will show not only the picture of \(T(X) \) but also other \(CP^1 \)-structures on \(\bar{X} \): Let \(K(\bar{X}) \) be the set of \(CP^1 \)-structures on \(\bar{X} \) whose holonomy groups are Kleinian groups, discrete subgroups of \(PSL_2(\mathbb{C}) \). Shiga [4] showed that the connected component of the interior of \(K(\bar{X}) \) containing the origin coincides with \(T(X) \). Shiga and Tanigawa [5] proved that any \(CP^1 \)-structure of the interior of \(K(\bar{X}) \) has a quasi-fuchsian holonomy representation. Nehari showed that \(T(X) \) is bounded in \(Q(\bar{X}) \) with respect to the hyperbolic sup norm \(||\varphi|| = \sup_{z \in \mathbb{L}} |\Im z|^2 |\varphi(z)| \), while Tanigawa proved that \(K(\bar{X}) \) is unbounded.
6 Pictures of $T(X)$ and $K(X)$

We will show pictures of $T(X)$ and $K(X)$, all of which depends on the underlying complex structure of \overline{X}. All pictures were drawn by Yasushi Yamashita. Figure 1 and figure 2 are the case that \overline{X} has a hexagonal symmetry. Figure 3 and figure 4 are the case that \overline{X} has a square symmetry. Black colored region consists of φ whose holonomy representation has an indiscrete image. For both cases, $T(X)$ looks like an isolated planet, while $K(X)$ itself looks like the galaxy: Some planets seem to bump each other... When we take \overline{X} anti-symmetric, $T(X)$ and $K(X)$ become distorted, which we can see in figure 5 and figure 6.

To draw these pictures we need

1. to calculate the holonomy representation χ_φ for $\varphi \in Q(\overline{X})$, and

2. to check whether $\chi_\varphi(\Gamma)$ is discrete or not.

First we will explain (1). To determine χ_φ, we must solve $S_f = \varphi$ on \mathbb{L}. In general $\varphi \in Q(\overline{X})$ is highly transcendental function on \mathbb{L} and it is very difficult for us to handle it. Here is an idea: If $\dim \mathbb{C}T(X) = 3g - 3 + n = 1$, then $(g, n) = (0, 4)$ or $(1, 1)$. Take $\overline{X} = \mathbb{C}\mathbb{P}^1 - \{0, 1, \infty, \lambda\}$, then we can find a basis of $Q(\overline{X})$ like $Q(\overline{X}) = \mathbb{C} \cdot \pi^* \left(\frac{1}{w(w-1)(w-\lambda)} \right)$. Even in this case, it is still difficult to solve

$$S_f = \pi^* \left(\frac{t}{w(w-1)(w-\lambda)} \right)$$

where $\pi : \mathbb{L} \rightarrow \mathbb{C}\mathbb{P}^1 - \{0, 1, \infty, \lambda\}$ and $t \in \mathbb{C} \cong Q(\overline{X})$. But we can push down the above equation onto $\overline{X} = \mathbb{C}\mathbb{P}^1 - \{0, 1, \infty, \lambda\}$

$$S_{f \circ \pi^{-1}} = \frac{t}{w(w-1)(w-\lambda)} + \left(\frac{1}{2w^2(w-1)^2} + \frac{1}{2(w-\lambda)^2} + \frac{c(\lambda)}{w(w-1)(w-\lambda)} \right)$$

where $c(\lambda)$ is called the accessory parameter of $\pi : \mathbb{L} \rightarrow \overline{X}$.

To get the solution we take the ratio of two linearly independent solution of

$$2y'' + \left(\frac{1}{2w^2(w-1)^2} + \frac{1}{2(w-\lambda)^2} + \frac{t + c(\lambda)}{w(w-1)(w-\lambda)} \right)y = 0$$

and calculate the monodromy group of this equation with respect to closed paths of $\pi_1(\overline{X}) \cong F_3$. Since the above ordinary differential equation has rational coefficients on $\mathbb{C}\mathbb{P}^1$, we can use computer to get the image of 3
generators of $\pi_1(\bar{X})$ in $PSL_2(\mathbb{C})$ numerically. Here we remark that to draw the picture of $K(X)$ up to parallel translation, we don’t need to determine the accessory parameter $c(\lambda)$ in practice.

For (2), we apply Shimizu lemma to check whether $\chi_\varphi(\Gamma)$ is indiscrete, and Poincaré theorem to construct the Ford fundamental domain to check whether $\chi_\varphi(\Gamma)$ is discrete. This part is so called Jorgensen theory and has been proved recently by Akiyoshi, Sakuma, Wada and Yamashita [1].

References

Figure 1: $T(X)$ for hexagonal symmetry

Figure 2: $K(X)$ for hexagonal symmetry
Figure 3: $T(X)$ for square symmetry

Figure 4: $K(X)$ for square symmetry
Figure 5: distorted $T(X)$

Figure 6: distorted $K(X)$