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1. Introduction 

 

A variety of medical and surgical strategies have been developed for the treatment of heart 

failure. However, heart failure still remains a major cause of morbidity and mortality in 

developed countries. Medical interventions for heart failure, which include adjustment of the 

preload, afterload and sometimes contractility, have limited efficacy in patients. Various 

types of surgery, including ventricular restoration, ventricular assist device implantation and 

transplantation, can be applied for only a limited number of patients. Therefore, a new 
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strategy to improve the cardiac function and inhibit cardiac remodeling needs to be 

established. A number of strategies to regenerate heart tissue have been devised to resolve 

the shortage of available transplantation organs, including the transplantation of 

cardiomyocytes or cardiomyogenic stem cells.  

 Several tissue-specific stem and progenitor cells, such as mesenchymal stem cells 

[1] and endothelial progenitor cells [2], have been reported to possesses the potential to 

differentiate into cardiomyocytes. In addition, resident cardiac stem cells in the heart have 

also been reported to be able to differentiate into cardiomyocytes. In 2003, Beltrami et al. 

reported a population of resident cardiac progenitors with the expression of c-Kit is 

multipotent, differentiating into cardiomyocytes, smooth cells, and endothelial cells.[3] 

Cardiac side population cells with the potential for Hoechst dye exclusion and Sca-1+ cells 

have also been reported to have the potential to express cardiomyocyte-specific genes [4, 

5] . Islet-1, a LIM homeodomain transcription factor, is expressed in the progenitor cells of 

the secondary heart field, and they maintain the ability to differentiate into functional 

cardiomyocytes both in vivo and in vitro [6]. However, whether these cells are present in the 

adult human heart remains to be elucidated. While these tissue stem or progenitor cells are 

an attractive source for stem cell-based cardiac regeneration, their self-renewal potential is 

limited, and in vitro cardiac differentiation is inefficient. 
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 Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are 

pluripotent cells that can be propagated indefinitely, and can differentiate into cell types from 

all three germ layers both in vitro and in vivo. The therapeutic effects of human ESC- and 

iPSC-derived progeny have been reported in animal models for several diseases [7-11]. 

 

2. Establishment of iPS cells 

2. 1 Discovery of iPS cells 

ESCs are derived from the inner cell mass of mammalian blastocysts, and mouse 

ESCs were first isolated in 1981 [12, 13]. The human ES cells derived from human 

blastocysts were first established by James Thomson et al. in 1998 [14]. 

The iPS cells were first established in 2006 by Takahashi and Yamanaka[15] by the 

retrovirus-mediated transduction of four transcription factors (c-Myc, Oct3/4, SOX2, and 

Klf4) into mouse fibroblasts. These reprogrammed cells, which were selected by the 

expression of a beta-geo cassette (a fusion of the beta-galactosidase and neomycin 

resistance genes) driven by the mouse Fbx15 promoter, failed to contribute to adult 

chimeras. To obtain high-quality iPS cells, reprogrammed cells was selected for their 

expression of either Nanog or Oct3/4 expression, both of which are closely involved in 

pluripotency. These cells successfully contributed to adult chimeras, while also showing 
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germline transmission [16-18].  

Human iPS cells were established in 2007, by the transduction of either the same 

set of transcription factors (c-Myc, Oct3/4, SOX2, Klf4) or another set of transcription factors 

(Oct3/4, SOX2, Nanog, Lin28) into human fibroblasts [19, 20]. These human iPS cells are 

similar to human ES cells in their morphology, gene expression, and the epigenetic status of 

pluripotent cell-specific genes, and they can differentiate into the cell types of the three germ 

layers in vitro and in vivo. Human iPS cells have been reported to be established from skin 

fibroblasts [19-21], keratinocytes[22], and mobilized CD34+ hematopoietic stem/progenitor 

cells [23], and differentiated T cells from peripheral blood [24-26]. The human iPS cells 

provided us with a chance to develop new treatment modalities in the field of regenerative 

medicine, as well as being useful for in vitro disease modeling for drug screening [27, 28]. 

 

2. 2 Advancement of the methods in iPSC generation 

 

iPS cells were initially derived from somatic cells by the retroviral or lentiviral transduction of 

transcription factors, and transgenes were randomly inserted into the genome of the hosts. 

There are thus risks associated with the integrated transgenes, such as tumorgenicity. In 

fact, the chimeras and progenies derived from mouse iPSC have an increased incidence of 



5 
 

tumor formation primarily due to the reactivation of the c-Myc retrovirus [17]. To avoid these 

risks, iPS cells without transgenic insertion of c-Myc have been established, even with a low 

reprogramming efficiency [29]. These Myc – iPS cells achieve germline transmission and, 

Martinez-Fernandez et al. reported Myc – iPS cells to demonstrate robust cardiac 

differentiation properties [30, 31]. Recently Nakagawa et al reported that L-Myc, which has 

little transformation activity, instead of c-Myc, increased the reprogramming efficiency in 

human cells, and promoted germline transmission, but not tumor formation, in iPSC-derived 

chimeric mice [32]. 

Several methods for delivering these transcription factors other than through retroviral or 

lentiviral transduction have also been devised. iPSCs can now be established by the 

transduction of the reprogramming factors with adenoviruses, sendaiviruses, plasmid 

vectors, and removable transposon systems [33-38]. Moreover, mouse and human iPSCs 

could be established by the direct delivery of recombinant reprogramming proteins [39, 40]. 

The repeated administration of synthetic modified messenger RNA has recently been 

reported to be able to reprogram the human somatic cells into iPS cells with a high efficiency 

[41]. (Figure 1) 

Efforts have been made to improve the reprogramming efficiency and establish iPS 

cells with either substantially fewer or no genetic alterations. Various growth factors and 
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chemical compounds, such as DNA methyltransferase inhibitor (5’-azacytidine and RG108), 

histone deacetylase inhibitors (e.g. valproic acid), histone methyltransferase inhibitor 

(BIX-01294), Wnt3A, and ALK5 inhibitor, have recently been found to improve the induction 

efficiency of iPS cells [42-45]. Hypoxic cultivation or supplementation of vitamin C has also 

found to increase the efficiency of reprogramming [46, 47]. The tumor suppressor protein 

p53 and cell-cycle regulator INK4A have been reported to act as a barrier to reprogramming 

of somatic cells to iPS cells, and the blockade of these genes also increases the 

reprogramming efficiency.[48-52] Some transcription factors, such as ESRRB and UTF1, 

have been found to enhance the reprogramming efficiency [53, 54]. In addition, some 

microRNAs, including miR-291-3p, miR-294 and miR-295, have also been reported to 

increase the efficiency of iPSC generation [55].  

 

3. Characterization of pluripotent stem cell clones 

 

As iPS cells have been derived from various tissues, it is unclear whether these cells 

derived from various tissues have the same characteristics as pluripotent stem cells. 

To characterize ES/iPS cell lines, an expression analysis using RT-PCR for mRNA 

and immunocytochemistry for proteins can be used. Embryoid body formation can be 
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applied to assess the in vitro differentiation of iPS cells. Directed differentiation into specific 

cell types, such as neurons, can be performed to assess the differentiation capacity of iPS 

cell lines. Miura et al. reported that mouse iPS cells established from fetal and adult 

fibroblasts vary in the frequency of refractory cells, which remain undifferentiated after 

undergoing neuronal differentiation [56] .  

The most stringent criterion for mouse ES/iPS cells is their ability to generate 

germline-competent adult mouse chimeras, and thus undergo germline transmission. 

Mouse iPS cells generated with OSK and Tbx3, a transcription factor related to the 

maintenance of pluripotency, have recently been reported to improve the germ-cell 

contribution to the gonads and germline transmission frequency [57]. 

These in vitro and in vivo data clearly show that there are intrinsic qualitative 

differences between iPS cell lines and that the strict characterization of iPS cell lines is 

necessary. 

Mouse ES cells are derived from the inner cell mass of blastocysts, and another 

type of pluripotent stem cells (epiblast stem cells) have recently been reported to have been 

generated [58, 59]. The mouse ES cells and epiblast stem cells differ in their morphology, 

responses to signaling pathways that support self-renewal, and epigenetic status. Mouse 

ES cells require LIF/STAT signaling for self-renewal and WNT/β-catenin signaling supports 
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the maintenance of pluripotency in ES cells. The FGF/ERK pathway promotes the 

differentiation of mouse ES cells. Mouse ES cells have been reported to be maintained by 

adding a GSK3β inhibitor which promotes WNT/β-catenin signaling and a MEK inhibitor to 

block the FGF/ERK pathway [60]. 

Human ES cells share several features with mouse epiblast stem cells and thus are 

different from mouse ES cells. Human ES cells do not respond to LIF, and FGF/ERK signal 

promotes self-renewal. In lines of human ES cells derived from females, inactivation of the X 

chromosome is observed (XaXi) [61]. Hanna et al. reported the ectopic induction of Oct4, 

Klf4, and Klf2, combined with LIF, GSK3β inhibitor, and MEK inhibitor, to make it possible to 

convert the ES cells into a more immature state with an active X-chromosome (XaXa) [62]. 

These converted human ES cells have growth properties, gene expression profiles, and a 

signaling pathway-dependence similar to mouse ES cells. It was also reported that human 

ES cells with two active X chromosomes (XaXa) could be generated under hypoxic 

conditions (5% oxygen) [63].  

As noted above, there are variations in the characteristics of ES/ iPS cell lines, and 

the optimal method to best establish and maintain appropriate ES/iPS cell lines for ES/iPS 

cell technology applications still remains to be elucidated. Further studies are therefore 

required. 
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Although the demonstration of germline-competent chimera formation and teratoma 

formation is very important to evaluate the pluripotency of stem cells, whether or not it 

should be applied for evaluating all iPS cells is controversial [64, 65]. For the purposes of 

either regenerative medicine or disease modeling, the optimal source cells do not have to be 

germline-competent or teratoma-competent, as long as they have the ability of self-renewal 

and differentiation into the necessary target cells [66].  

 

4. Generation of cardiomyocytes from pluripotent stem cells 

 

Mouse and human ES/iPS cells can differentiate into various cell types, including 

cardiomyocytes, neuronal cells, and embryonic erythrocytes [67-70]. However, the efficiency 

of cardiomyocyte differentiation is poor and the differentiated cells are a heterogeneous 

mixture of various types of cells. To improve the efficiency of cardiomyocyte differentiation, 

the directed differentiation of ES/iPS cells into cardiomyocytes was induced by the 

supplementation of signaling molecules, such as Activin A and BMP4 [8, 10].  

It has so far been reported that human cardiomyocytes could be induced from pluripotent 

stem cells by several methods (Figure 2). Using an embryoid body formation assay, human 

ES/iPS cells can differentiate into beating cardiomyocytes in the presence of fetal bovine 
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serum [71-73], Under the serum-free conditions, with the supplementation of several 

cytokines, including Activin A and BMP4, the embryoid body can efficiently differentiate into 

cardiomyocytes [10]. Coculture with END-2 cells, visceral endoderm-like cells, also induce 

the cardiomyocytes from undifferentiated human ES cells [74, 75] . In a monolayer culture 

system of human ES/iPS cells, the directed differentiation of hES cells into cardiomyocytes 

can be achieved by sequential treatment with activin A and BMP4 [8].  

The identification and isolation of a cardiac precursor cell population is expected to provide 

a source of cells for tissue regeneration, while also providing valuable insight into cardiac 

development. Several recent studies focused on identifying these progenitor cells. These 

studies have reported that cardiac cells including cardiomyocytes, endothelial cells, and 

smooth muscle cells, may arise from cardiovascular progenitor populations with the 

expression of specific markers, such as Flk-1, c-kit, and Isl-1.[10, 76-80] Recently, Yang et al. 

reported a population of cardiovascular progenitor cells with low KDR and no c-Kit 

expression to be able to efficiently differentiate into cardiomyocytes in an in vitro 

differentiation system using human ES cells [10].  

A high-throughput screening system has also been utilized to identify small 

molecules that simulate the generation of cardiomyocytes from pluripotent stem cells. Using 

the high-throughput screening system, ascorbic acid was found to enhance the 
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differentiation of ES cells into cardiomyocytes [81]. 

Insight into the development of the heart can be further acquired through the 

observation of differentiation of ES cells into cardiomyocytes. Several studies have therefore 

focused on the development of cardiac tissue during mouse ES cell differentiation in 

vitro.[67, 82]. Developmental studies of human cardiomyocytes are now possible as a result 

of the recent availability of human ES/iPS cells. Moreover, ES/iPS cell-derived 

cardiomyocytes can also be used for the study of disease-specific cells, screening for new 

drugs, as well as for clinical application as a novel cell therapy.  

 

5. Transplantation of cardiomyocytes derived from ES/ iPS cells 

 

Human myocardium has recently been reported to form in infarcted rodent hearts using 

human ES cell-derived cardiomyocytes [8, 83, 84]. Nelson et al. reported that the 

intramyocardial delivery of mouse iPS cells also achieved the in situ regeneration of cardiac 

tissue, while also improving the post-ischemic cardiac function [85]. The poor survival of 

transplanted cells hinders the effective grafting of the working myocardium. The formation of 

an aggregation of derived cardiomyocytes or layered cell sheets of the cultured 

cardiomyocytes has been reported to improve the survival of grafted cardiac cells [86, 87]. 
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As other types of transplanted cells, such as myoblasts or mononuclear bone marrow cells 

can be delivered by surgical procedures (epicardial approach) or cardiac catheter 

procedures (endocardial or intracoronary approach) [88, 89], these delivery methods will be 

able to be applied to the transplantation of iPS cell-derived cardiac cells. However, several 

safety issues including teratoma formation still need to be addressed, before these 

technologies can be successfully used in clinical applications.  
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Figure legends 

Figure 1 

 

Comparison of iPS cells generated by viral and non-viral methods. The iPS cells without 

genomic integration of exogenous sequences are generated by plasmid vectors, adenovirus, 

sendaivirus, and recombinant proteins. In iPS cells generated by piggyBac transposons, the 

piggyBac insertions can be removed by transposase. 

 

Figure 2 

 

A schematic representation of in vitro cardiomyocyte differentiation from ES/ iPS cells. 
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