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Summary 

Glucocorticoid (GC) is widely used for therapeutic purposes in immunological and 

hematological disorders. Annexin A1 (ANXA1/lipocortin-1/lipomodulin), a 

GC-inducible molecule, was regarded as a vital anti-inflammatory mediator of GC. 

Thioredoxin binding protein-2 (TBP-2/VDUP1/TXNIP), a regulator of redox reactions, 

cell growth and lipid metabolism, was also reportedly induced by GC. HTLV-I infected 

T cells undergo the transition from the IL-2 dependent to IL-2 independent growth 

during the long-term culture in vitro. We found that these T cells responded to GC with 

growth arrest and apoptosis in the IL-2 dependent growth stage, whereas they failed to 

respond to GC after their growth had shifted into the IL-2 independent stage. Here we 

employed these T cell lines and studied the roles of ANXA1 and TBP-2 in mediating 

GC-induced apoptosis. In GC-sensitive T cells, ANXA1 expression was negligible and 

unaffected by GC treatment, whereas TBP-2 was expressed and induced by GC 

treatment. In GC-resistant T cells, however, ANXA1 was highly expressed regardless of 

GC treatment and promoted cellular proliferation. In contrast, TBP-2 expression was 

lost and could not mediate the GC-induced apoptosis. In conclusion, these results 

suggest that TBP-2, but not ANXA1, is directly involved in the switching of GC 

sensitivity and GC resistance in HTLV-I infected T cell lines, whereas ANXA1 may be 
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a biomarker indicative of the advanced stage of the transformation. 

Keywords:  Human T-cell leukemia virus type 1, Adult T cell leukemia, 

Glucocorticoid, Annexin A1, Thioredoxin binding protein-2/Thioredoxin interacting 

protein, Apoptosis 
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1. Introduction 

As one of the most frequently prescribed drugs worldwide, glucocorticoid (GC) is a 

milestone in the history of drug discovery. The pleiomorphic effects of GC have been 

well described, including its effects on immune regulation, immune development, 

metabolism, and cell death[1,2]. Due to its potent apoptosis-inducing effects, GC has 

been commonly used in the treatment of lymphoid malignancies[3]. Extensive studies 

have demonstrated that GC response is mainly mediated through the ligand-bound 

glucocorticoid receptor (GR), which further regulates the expression of multiple 

downstream genes in the nucleus. It has been estimated that around 1% genes of the 

human genome can be regulated by GC[4]. It is now known that GC regulates the target 

genes in a cell-type-specific manner, which may explain the biological effects of GC in 

specific situations. Therefore, it is important to decipher how the molecules involved in 

the GC signaling pathways are functionally integrated in vivo. 

Annexin A1 (ANXA1/lipocortin-1/lipomodulin), belonging to the Ca2+-dependent 

phospholipid-binding superfamily of annexin proteins, can be induced by GC in 

different cell types. The expression of ANXA1 was regulated by the ligand-bound GR, 

due to the existence of glucocorticoid response element (GRE) in the promoter area of 

this gene[5,6]. Since ANXA1 was reported to inhibit the activity of phospholipase A2, 
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the GR/ANXA1 pathway is commonly considered to be an endogenous pathway 

mediating the anti-inflammatory actions of GC[4]. Furthermore, it has been reported 

that ANXA1 plays diverse roles in cell proliferation and differentiation, apoptosis, 

protein traffic, and membrane fusion[7]. Although many studies suggested the 

importance of ANXA1 in carcinogenesis, the conclusions were inconsistent[8-11]. 

Therefore, it has been suggested that ANXA1 may behave in a cell-type-specific 

manner when exerting its specific functions. 

Thioredoxin binding protein-2 (TBP-2/VDUP1/TXNIP), identified as an 

endogenous binding partner and negative regulator of thioredoxin (TRX) [12], was 

reported to play a critical role in cell proliferation and lipid metabolism[13-15]. In 

separate studies, both TBP-2 and TRX were reported to be involved in the regulation of 

the immune responses in vivo[16-18]. Very recently, redox regulation by 

TBP-2/thioredoxin system was reported to play a key role in the activity of NLRP3 

inflammasome, a regulator of innate immunity[19]. GC was reported to induce TBP-2 

in murine thymocytes and murine T-cell lymphoma line WEHI7.1[20], although the 

significance of TBP-2 in the mediation of GC responses has not been widely 

recognized. 

In order to explore the roles of GR/ANXA1 and GR/TBP-2 in mediating the effect 
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of GC-induced apoptosis, we utilized a unique model of cultured T cell lines infected by 

human T cell leukemia virus type I (HTLV-I) virus[21,22]. Adult T cell leukemia (ATL) 

and other autoimmune-like disorders are caused by HTLV-I infection and developed 

after decades of incubation periods[23-27]. Clinically, although GC has been included 

in the standard therapies for ATL, this reagent is normally effective only in the early 

stage of the disease, suggesting the impairment of GC signaling pathway in the late 

stage of ATL. HTLV-I-transformed T cell lines were cultured in the presence of IL-2 

when established from ATL patients, although their growth tended to be free from the 

requirement of IL-2 during long-term cultures[21,22]. Previously, we reported the loss 

of TBP-2 in IL-2-independent HTLV-I infected T cells[13,28]. Therefore these cell 

lines may provide a suitable model for studying the dysregulation of GC responses.  

In the present study, we found that T cells in the IL-2 dependent growth stage were 

sensitive to the GC-induced apoptosis, whereas the same T cells became to GC-resistant 

after their growth had shifted into the IL-2 independent stage. We found that TBP-2, but 

not ANXA1, was directly involved in GC responses in GC-sensitive ATL cells. In 

GC-resistant ATL cells, TBP-2 expression was lost and could not mediate the effect of 

GC. Furthermore, we found that ANXA1 was constitutively highly expressed in 

GC-resistant ATL cells, which suggested a role of ANXA1 in the proliferation of the 
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advanced stage of ATL cells. 

 

2. Materials and methods 

2.1. Cell cultures 

HTLV-I-transformed T cells were cultured in RPMI 1640 medium (Sigma-Aldrich, 

MO) containing 10 % heat-inactivated fetal calf serum (Invitrogen, CA) and antibiotics 

(100 U/ml penicillin and 100 µg/ml streptomycin, Nacalai Tesque, Kyoto, Japan) at 

37°C in a humid atmosphere of 5 % CO2 in air. To maintain IL-2-dependent T cells, 

recombinant human IL-2 (1 U/ml; PeproTech EC, London, UK or Shionogi and Co., 

Osaka, Japan) was further added to the culture medium. Each set of IL-2-dependent and 

IL-2-independent cells has the same clonal origin, as confirmed by the T-cell receptor-β 

gene rearrangement and HTLV-I proviral integration sites[21,22,29]. 

2.2. Plasmids 

The full-length cDNA of human TBP-2 was cloned in-frame into the pEGFP-C1 

vector (Clontech, CA). Briefly, when constructing the pEGFP-C1-TBP-2 plasmid, the 

cDNA was first amplified by PCR, using two primers (Forward: 

5’-GAATTCTATGGTGATGTTCAAGAAGAT, and Reverse: 

5’-GTCGACTCACTGCACATTGTTGTTGA). The PCR product was then subcloned 
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into the pCR-BluntII-TOPO vector (Invitrogen, CA) to obtain 

pCR-BluntII-TOPO-TBP-2, which was further digested with EcoRI and SalI restriction 

enzymes (TOYOBO, Tokyo, Japan). The fragment was finally cloned into the 

pEGFP-C1 vector to obtain pEGFP-C1-TBP-2 plasmid. The plasmid was verified by 

DNA sequencing before it was used. 

2.3. Transient transfection and RNA interference (RNAi) assay 

Plasmids (TBP-2 expression vector or control vectors) were transfected into cells 

(1×106 cells) employing the Nucleofector II and AMAXA cell line kit V (Lonza 

Cologne, Cologne, Germany), according to the manufacturer’s instruction. 2 µg of DNA 

was used for each transfection. Expression of the target protein was verified by western 

blotting and by fluorescent microscopy. In the RNA interference assay, 100 pmol of 

duplex oligonucleotides (RNAi#1:UUAGUUAGAAUGUCAAUGAUGGUUG, or 

RNAi#2: UAACCAUUAUGGCCUUAUGCAAGGC) (Invitrogen, CA) for selective 

silencing of the ANXA1 or control oligonucleotides (Stealth RNAi negative control) 

(Invitrogen, CA) were transfected respectively into cells (1×106 cells each time), 

employing the Nucleofector II and AMAXA cell line kit V. 

2.4. Treatment with glucocorticoid or other reagents 

IL-2 dependent ED40515 T cells (D-ED T cells) were first deprived of IL-2 for 24 
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hours to exclude the carry-over effect of IL-2 on growth proliferation. Then, viable cells 

were enriched using LSM Lymphocyte Separation Medium (MP Biomedicals, OH) 

according to the manufacturer’s instructions. Dexamethasone (Nacalai Tesque, Kyoto, 

Japan) or GC antagonist RU486 (Sigma-Aldrich, CA) at the indicated concentration, 

were further added to the culture medium, while ethanol (0.004 % v/v) was added as a 

vehicle control. For IL-2 independent ED40515 T cells (I-ED T cells), dexamethasone 

(Nacalai Tesque, Kyoto, Japan) at the indicated concentration was added directly to the 

cells. 

2.5. RNA extraction and quantitative RT-PCR 

Total RNA was extracted using TRIzol reagent (Invitrogen, CA) according to the 

manufacturer’s instructions. 1 µg total RNA was used as a template for cDNA synthesis 

employing the PrimeScript RT reagent Kit (TAKARA, Otsu, Japan) according to the 

manufacturer’s instructions. A 1:20 fraction of each reverse transcriptase reaction 

mixture was further used as a template for semi-quantitative RT-PCR employing the 

KODPlus polymerase kit (TOYOBO, Tokyo, Japan) or real-time quantitative RT-PCR 

employing the SYBR Premix Ex TaqII kit (TAKARA, Otsu, Japan). The primers used 

for the amplifications were as follows: ANXA1, 5’-GCAGGCCTGGTTTATTGAAA 

(forward) and 5’-GCTGTGCATTGTTTCGCTTA (Reverse); β-actin, 
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5’-GGACTTCGAGCAAGAGATGG (forward) and 

5’-AGCACTGTGTTGGCGTACAG (reverse); TBP-2, 

5’-GCCACACTTACCTTGCCAAT-3’ (forward) and 

5’-GGAGGAGCTTCTGGGGTATC-3’ (reverse), or GAPDH, 

5’-ACCCACTCCTCCACCTTTG-3’ (forward) and 

5’-CTCTTGTGCTCTTGCTGGG-3’ (reverse). Semi-quantitative RT-PCR was 

performed employing under the following conditions: 25 cycles for ANXA1 

(denaturing at 94℃ for 15 s, annealing at 55℃ for 30 min, and extension at 68℃ for 1 

min), 22 cycles for β-actin (denaturing at 94℃ for 15 s, annealing at 55℃ for 30 min, 

and extension at 68℃ for 1 min). The PCR products were visualized by electrophoresis 

in 2 % agarose gel (Nacalai Tesque, Kyoto, Japan). For real-time quantitative RT-PCR, 

fluorescent detection and analysis were performed on an ABI Prism 7000 Sequence 

Detection System (Applied Biosystems, CA) under the conditions: 95℃ for 30 s, 40 

cycles of amplification (95℃ for 5 s and 60℃ for 31 s), followed by a dissociation 

stage (95℃ for 15 s, 60℃ for 1 min and 95℃ for 15 s). 

2.6. Immunoblotting 

After washing twice in cold PBS, cell pellets were resuspended in lysis buffer (0.5 

% NP-40, 50 mM Tris-Cl pH7.2, 150 mM NaCl) supplemented with 1× protease 
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inhibitor cocktail (Roche, Tokyo, Japan) and 1 mM phenylmethylsulphonyl fluoride 

(Nacalai Tesque, Kyoto, Japan). Cell lysates were fractionated by SDS-PAGE using 

4-12 % Nupage Bis-Tris pre-cast gel (Invitrogen, CA) and further transferred to PVDF 

membranes (GE lifesciences, PA). For immunoblotting, primary anti-ANXA1 antibody 

(H-65, 1:200, Santa Cruz, CA), anti-β-actin (1:2000, Sigma-Aldrich, MO or 

ACTBD11B7, 1:200, Santa Cruz, CA), anti-α-tubulin (1:2000, Sigma-Aldrich, MO), 

anti-cleaved caspase-3 (1:1000, Cell Signaling, MA), anti-PARP (1:1000, Cell 

Signaling, MA), or anti-GFP (1:1000, Nacalai Tesque, Kyoto, Japan) were probed 

respectively. HRP-conjugated secondary anti-mouse-IgG or anti-rabbit-IgG (GE 

lifesciences, PA) was further applied according to the species of the primary antibodies. 

The whole process of immunoblotting is performed by SNAP i.d. protein detection 

system (Millipore, MA). Finally, luminescence was detected using a Chemi-Lumi One 

L kit (Nacalai Tesque, Kyoto, Japan). 

2.7. Flow cytometry assay 

After washing twice in PBS, cell pellets were resuspended in 1× Annexin V binding 

buffer (BD Pharmingen, CA). For apoptosis analysis, cells were immediately stained 

using the Annexin V-FITC apoptosis detection kit (BD Pharmingen, CA) and detected 

employing the BD FACSCanto II Flow Cytometry System (BD biosciences, CA). After 
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appropriate gating to exclude debris population, Annexin V-positive and propidium 

iodide (PI)-negative quadrant was assessed to represent the population undergoing early 

apoptosis, while the Annexin V-positive population was used to assess the overall cell 

apoptosis. Data in triplicate were analyzed using FlowJo software (Treestar, OR) and 

column graphs were made using Prism 5.0 software (Graphpad, La Jolla, CA). For PI 

staining assays, cells were first fixed with 70 % ethanol and then treated with 5 µg/ml 

RNaseA (Sigma-Aldrich, MO). Cells were stained with 50 µg/ml propidium iodide 

(Nacalai Tesque, Kyoto, Japan) and filtered through 40 µm nylon mesh (BD Falcon) 

before detection. Data in triplicate were analyzed using FlowJo software (Treestar, OR) 

and the Sub-G1 population shown in the histogram represents the cells undergoing 

apoptosis. 

2.8. Cell proliferation assay 

Cells (0.5-1×104cells) were seeded in 96-well flat-bottom microtitre culture plates 

(Corning, NY). Cell growth was monitored using SF cell count reagent (Nacalai Tesque, 

Kyoto, Japan) according to the manufacturer’s instructions. Briefly, colored substrate of 

formazan, derived from reduced tetrazolium salt (WST-8) in viable cells after SF 

reagent addition, was measured using a Microplate Reader (Molecular devices, CA) at 

OD450-650 nm wavelengths. In addition, a cell proliferation BrdU ELISA kit (Roche, 
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Tokyo) was also used in I-ED T cells according to the manufacturer’s instructions. 

2.9. Statistical analysis 

Results obtained from the independent experiments (n=3-6) were shown as 

mean±SD. Statistical analysis was assessed using the unpaired Student's t-test 

(two-tailed). The results were considered statistically significant when p<0.05. 

 

3. Results 

3.1. T cells were sensitive to GC in the IL-2 dependent growth stage of HTLV-I-induced 

transformation 

Loss of GC efficacy is often observed in the treatment of the late stage ATL patients, 

while an in vivo model of multi-step transformation by HTLV-I has been postulated[30]. 

Consistently, HTLV-I infected T cell lines in vitro, go through the transition from the 

IL-2-dependent to IL-2-independent growth stage. Thus, we hypothesized that the early 

and late stages of HTLV-I infected T cell lines show differential sensitivities to GC. 

To explore this hypothesis, we utilized ED40515 T-cell lines, which include the 

IL-2-dependent ED40515 T cell line (D-ED T cells) and the IL-2-independent ED40515 

T cell line (I-ED T cells), and tested the sensitivity of T cells under dexamethasone 

treatment (1 µM Dex). In accordance with the hypothesis, D-ED T cells showed growth 
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retardation after the GC treatment (Fig. 1A) and GC induced apoptosis in a 

dose-dependent manner (Fig. 1B). However, I-ED T cells were resistant to GC in both 

cell growth and apoptosis (Fig. 1C, 1D). 

3.2. Dysregulated expressions of ANXA1 and TBP-2 in the GC-sensitive T cells 

In view of the previous reports that ANXA1 and TBP-2 are involved in GC 

signaling, we first investigated the expressions of both genes in HTLV-I-transformed T 

cells. Unexpectedly, ANXA1 expression, at both mRNA (Fig.2A, 2B) and protein 

(Fig.2C) levels, was constitutively high in four separate IL-2 independent T cell lines 

(“I” stage of ED40515, ATL43, ATL2, ATL35), all of which were resistant to GC 

treatment. However in IL-2 dependent T cell lines (“D” stage), which harbored intrinsic 

sensitivities to GC, the expression of ANXA1 was negligible, as shown in Fig 2A, 2B, 

2C. 

TBP-2 expression was investigated in HTLV-I infected T cell lines (ED40515, 

ATL43, ATL2, Sez627) as a reasonable target molecule of GC in human T cells. In 

accordance with our previous report that TBP-2 expression was lost in T cells during 

the transformation by HTLV-I, TBP-2 was expressed only in IL-2-dependent T cell 

lines (Fig. 2D). 

3.3. TBP-2, rather than ANXA1, played a role in mediating GC-induced apoptosis in the 
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GC-sensitive T cells 

Due to the differential expression patterns of ANXA1 and TBP-2 in GC-sensitive T 

cells, we investigated whether either of the molecules could mediate GC effects, as 

reported by others[5,20]. In GC-sensitive ATL cells (D-ED T cells), ANXA1 remained 

unchanged after Dex treatment (21.5, 48, 72 hours), compared with the treatment using 

vehicle controls (Fig. 3A). On the contrary, at the same time, TBP-2 was significantly 

induced after Dex treatment (Fig. 3B). It seems more plausible that TBP-2, rather than 

ANXA1, mediated the GC-induced apoptosis in the D-ED T cells. To confirm that 

TBP-2 is directly regulated by GR, GR antagonist (RU486) was included in the D-ED 

cell cultures. RU486 treatment blocked the TBP-2 induction by GC(Fig. 3C), 

confirming that the expression of TBP-2 was regulated by GR. Inclusion of RU486 also 

blocked the GC-induced apoptosis, as shown by the inability to cleave apoptotic marker 

nuclear poly (ADP-ribose) polymerase (PARP) (Fig. 3C). Furthermore, in GC-resistant 

ATL cells (I-ED T cells), ANXA1 and TBP-2 remained unchanged after Dex treatment 

(72 hours), compared with treatment using vehicle controls (Fig. 3D and 3E). These 

data suggest the role of TBP-2, but not the ANXA1, in the response of the GC-sensitive 

ATL cells to GC, while the loss of TBP-2 is involved in the loss of GC sensitivity. 

3.4. Constitutively high expression of ANXA1 promoted cell proliferation in the 
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GC-resistant T cells 

Since the GC sensitivity of HTLV-I infected T cells and ANXA1 expression 

changed during the viral transformation, there may be a link between ANXA1 

overexpression and GC resistance. To address this possibility, we investigated the 

knockdown effect of ANXA1 on cell proliferation in IL-2 independent ED40515 T cells 

(I-ED T cells). Even in the absence of GC treatment, I-ED cells knocked down by 

siRNAs targeted to ANXA1 (Fig.4A) showed a retardation of cell growth (Fig.4B) and 

enhanced cell apoptosis (Fig.4C and 4D), compared with the treatment of control 

siRNAs. These data suggest that the constitutively high expression of ANXA1 

contributes to the promotion of cell proliferation in I-ED T cells, representing an 

advanced stage of leukemogenesis, during which T cells are multi-resistant to apoptosis 

induced by chemotherapies including GC. 

Finally, we explored whether ectopic expression of TBP-2 in GC-resistant T cells 

could mediate apoptosis. As shown in Figure 4E and 4F, transfection of TBP-2 in I-ED 

cells inhibited cell growth and induced apoptosis at 72 hours after treatment. These data 

further suggest that TBP-2 is involved in GC-induced apoptosis, while impairment of 

the GR/TBP-2 pathway in an advanced stage of leukemogenesis leads to the GC 

resistance. 
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4. Discussion 

The role of GC-induced apoptosis in regulating the immune system is important 

under physiological or pathological conditions. GC-induced apoptosis is implicated in 

the development of the immune repertoire and regulation of the immune responses. On 

the other hand, GC has been used for therapeutic purposes to induce apoptosis in 

hematological malignancies. 

The HTLV-I infected T cell lines, established from ATL patients, were cultured in 

vitro initially in the presence of IL-2 with the spontaneous transition from the IL-2 

dependent to IL-2 independent growth stage, which could mimic the multi-step 

transformation of T cells by HTLV-I virus. In this study we showed that the GC 

sensitivity of T cells changed during the in vitro transformation. IL-2 dependent ATL 

cells (D-ED T cells), which mimic the early stage of transformation are sensitive to GC, 

while IL-2 independent ATL cells (I-ED T cells), which mimic the late stage of 

transformation are resistant to GC. Therefore, these HTLV-I infected T cell lines may 

provide useful models for the study of the molecular mechanisms of GC responses. Our 

findings may also be useful in studying GC effects in other immunological disorders, 

such as allergy, asthma and autoimmune diseases. 

The pleiomorphic functions of GC are mainly achieved through genomic 
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mechanisms, although minor non-genomic mechanisms have also been reported[31]. 

The genomic mechanism of GC function is the regulation of target gene expression, 

which is mediated by the ligand-bound glucocorticoid receptor (GR). It was considered 

that ANXA1, a GC-inducible gene, played a key role in mediating the 

anti-inflammatory and anti-proliferative effects of GC[4]. TBP-2 was reported to be 

induced by GC treatment in murine lymphoma cells WEHI7.2[20]. In our study, we 

proposed differential roles of ANXA1/TBP-2 in the mediation of GC-induced apoptosis 

in HTLV-I infected T cells. Unexpectedly, the classical GR/ANXA1 signal pathway 

was not effective in mediating GC-induced apoptosis in HTLV-I infected T cells. 

Although the mechanism of this defect is still elusive, the significant suppression of 

ANXA1 in GC-sensitive ATL cells seems to be relevant to the impairment of the 

GR/ANXA1 pathway in these cells. It appeared that GC was unable to affect the 

expression of ANXA1. Interestingly, the classical way to induce ANXA1 expression by 

GC has been challenged in recent studies conducted on mice and humans[32,33]. On the 

contrary, we found that the GR/TBP-2 signal pathway was not impaired. TBP-2 was 

expressed and induced by GC in the GC-sensitive ATL cells. TBP-2 expression in 

response to GC was directly regulated through GR, since a GR antagonist blocked the 

TBP-2 induction. TBP-2 knockdown abrogated the GC-induced apoptosis in 
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GC-sensitive T cells (manuscript in preparation). Therefore, for GC-sensitive T cells 

representing the early stage of viral transformation, TBP-2 is more important than 

ANXA1 in mediating the effects of GC. 

  On the other hand, in IL-2-independent HTLV-I infected T cells, which are resistant 

to GC, the expression of TBP-2 was lost due to epigenetic modifications[28]. In fact, 

the expression of GR was also suppressed (data not shown), leading to the complete 

impairment of the GR/TBP-2 pathway. Here we showed that GC failed to replenish 

TBP-2 expression in this stage. ANXA1 expression was also unaffected by GC 

treatment. We have reported that stable transfectants of TBP-2 in this stage showed 

growth retardation in the G1 cell cycle[13]. Here we also found that transient expression 

of TBP-2 induced cell apoptosis. Thus the recovery of TBP-2 expression seems to be a 

promising strategy in treating ATL, particularly in a more advanced multi-drug resistant 

stage. The blockade of the GR/TBP-2 pathway is involved in the GC resistance in these 

cells. 

Interestingly, our results showed a constitutively high expression of ANXA1 in the 

IL-2 independent and GC-resistant stage of HTLV-I infected T cells. ANXA1 seems to 

promote the growth of the leukemic cells, as ANXA1 knockdown inhibited cell 

proliferation and induced apoptosis. Contradictorily, in several types of cancers, the 
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expression of ANXA1 was reported to be significantly lower in a more advanced 

stage[9], leading to the assumption that it was a tumor suppressor. However it is now 

reconsidered that the expression of ANXA1 in cancers seems to be 

cell-type-specific[8,11]. Due to our findings, it may be promising to perform a 

large-scale clinical research to evaluate the significance of ANXA1 as a biomarker for 

disease progression in ATL as well as other lymphoproliferative disorders. Of note, the 

immunosuppressive status in ATL patients is well known[34]. As ANXA1 is reported to 

be an anti-inflammatory molecule, it is reasonable to hypothesize that ANXA1 

overexpression is involved in the mechanism of immunosuppression in ATL patients. 

ANXA1, which is likely to be expressed and secreted constitutively in ATL cells, may 

contribute to the negative regulation of immune system in ATL patients. To address this 

hypothesis, further studies using fresh leukemic cells from ATL patients are scheduled. 

Furthermore, there may be a possible link between ANXA1 overexpression and GC 

resistance in the more advanced stage of ATL. The expression of ANXA1 was reported 

to be constitutively higher in TNF- α resistant monocytic cells, rendering these cells 

resistant to TNF-α-induced apoptosis[35,36]. Moreover, we showed that the expression 

of ANXA1 was suppressed in IL-2 dependent and GC-sensitive T cells in an early stage 

of transformation by HTLV-I. However, at least in the case of ATL, more evidences are 
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required regarding the causative role of ANXA1 in the mediation of GC sensitivity. 

Compared with ANXA1, TBP-2 is a more direct mediator of GC response since it was 

significantly induced in the GC-sensitive stage. 

In conclusion our results suggest that TBP-2, but not ANXA1, is directly involved 

in the switching of GC sensitivity and GC resistance. GC resistance occurs when the 

expression of TBP-2 is lost. Furthermore, ANXA1 is constitutively highly expressed in 

GC-resistant ATL cell lines, suggesting a possible role of ANXA1 in promoting 

leukemogenesis and also in immunosuppression associated with HTLV-I infection. 

It is also necessary to clarify the possible roles of TBP-2 in mediating the 

GC-dependent immunoregulatory mechanism for the control of allergy and autoimmune 

diseases using TBP-2 as a promising drug target. 
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Figure Legends 

Figure 1. T-cell is sensitive to GC in the IL-2 dependent stage of HTLV-I-induced 

transformation 

(A, B) D-ED T cells (IL-2-dependent ED40515 T cells) were deprived of IL-2 for 24 

hours to remove the carry-over effect of IL-2. Thereafter, cells were treated with 

different concentrations of dexamethasone (1nM, 10nM, 100nM, 1000nM) or the same 

amount (0.04% v/v) of empty ethanol vehicle. (A) Cell proliferation was monitored at 

12, 24, 48 and 72 hours after treatment using SF cell count reagent, as described in the 

"Materials and methods" section. Untreated cells (-) were used as controls to further 

exclude any interference of growth due to ethanol. Data were shown as mean±SD (n=6 

at each time point for each concentration). (B) At 48 hours after treatment, cell 

apoptosis was assessed by Annexin V-FITC staining. Representative histograms from a 

triplicate showed Annexin V-positive populations. (C, D) I-ED T cells 

(IL-2-independent ED40515 T cells) were treated directly with 1 µM dexamethasone or 

ethanol. (C) Cell proliferation was monitored before treatment or at 72 hours after 

treatment, using a cell proliferation ELISA BrdU (colorimetric) kit (n=3 at each time 

point). (D) Cell apoptosis was assessed as (B). Representative histograms from a 

triplicate set of experiments were shown. *P<0.05; **P<0.01; ***P<0.001. 

Figure 2. Dysregulated expressions of ANXA1 and TBP-2 in T cells during the 
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transformation induced by HTLV-I 

(A, B) Cell pellets from four paired HTLV-I infected T cell lines (ED40515, ATL2, 

ATL43, ATL35), undergoing IL-2 dependent or IL-2 independent growth, were used to 

detect the mRNA expression of Annexin A1. D: IL-2-dependent stage; I: 

IL-2-independent stage. (A) Semi-quantitative RT-PCR for detecting the expression of 

ANXA1 was performed as described in the “Materials and methods” section. β-actin 

served as a loading control. A representative gel image from a triplicate was shown here. 

(B) Quantitative RT-PCR was performed. Data of relative mRNA expressions of 

Annexin A1, which were normalized to the expressions of GAPDH, were shown as 

mean±SD (n=3 for each cell lines). (C) Immunoblotting was performed to detect the 

protein expression of Annexin A1 in ED40515, ATL2, and ATL43 cell lines. α-tubulin 

served as a loading control. (D) Semi-quantitative RT-PCR for detecting the expression 

of TBP-2 was performed in ED40515, ATL2, ATL43 and Sez627 cell lines. 

Figure 3. TBP-2, but not ANXA1, was a GC-regulated gene in GC-sensitive T cells 

(A, B, C) D-ED T cells were treated as shown in Figure 1A. (A, B) At 21.5, 48, and 72 

hours after treatment, pellets of cells treated with 1µM Dex or ethanol vehicle, were 

collected respectively. The relative mRNA expressions of ANXA1 (A) or TBP-2 (B), 

normalized to the expressions of GAPDH, were detected, using real-time quantitative 
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RT-PCR (n=4 for each sample). ***P<0.001. (C) D-ED T cells were treated with 10nM 

Dex, 10nM Dex and 100nM RU486, or 100nM RU486, respectively, for 48 hours. 

Ethanol vehicle was employed as a control. Immunoblotting was performed to detect 

the apoptosis markers PARP and TBP-2. α-tubulin was used as a loading control. (D, E) 

I-ED T cells were treated as shown in Figure 1C. At 0 and 72 hours after treatment, 

pellets of cells treated with 1µM Dex or ethanol vehicle were collected respectively. 

Real-time quantitative RT-PCR was performed. Relative mRNA expressions of 

ANXA1 (D) or TBP-2 (E), normalized to the expressions of GAPDH, were detected. 

TBP-2 remained undetected (“0”) in I-ED T cells within the detection cycles (n=40). 

Figure 4. Constitutively high expression of ANXA1 promoted cell proliferation in 

GC-resistant T cells 

(A, B, C, D) Two sets of specific oligonucleotides targeting ANXA1 or the negative 

control siRNA were transfected respectively into I-ED T cells, as described in the 

"Materials and methods" section. (A) At 48 hours after the transfection, knockdown 

efficiency was assessed using immunoblotting, and α-tubulin served as a loading 

control. (B) At 12, 24, and 48 hours after transfection, cell proliferations were assessed 

using SF cell count reagent. Data were shown as mean±SD (n=3 at each time point for 

each sample) (C) At 48 hours after siRNA, cell apoptosis was assessed using double 
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staining of Annexin V and PI. A representative dot-blot from a triplicate of experiments 

was shown here. Early apoptosis proportions, shown as Annexin V+ and PI-, were 

plotted in the column graph. Data were shown as mean±SD (n=3). (D) At 48 hours after 

siRNA, cell pellets were collected and immunoblotting was performed to detect the 

apoptotic marker protein, cleaved caspase-3, and α-tubulin served as a loading control. 

(E, F) pEGFP-C1 or pEGFP-C1-TBP-2 plasmids were transfected respectively into 

I-ED T cells, as described in the "Materials and methods" section. (E) At 72 hours after 

transfection, transfection efficiency was assessed using immunoblotting, and β-actin 

served as a loading control. (F) PI staining for DNA to detect apoptotic sub-G1 

populations in fixed cells was employed at 72 hours after transfection, as described in 

“Materials and methods”. A representative histogram from a triplicate of experiments 

was shown here. Sub-G1 proportions were plotted in a column graph. 

Figure 5. A simplified scheme for the mechanism of switching GC-sensitivity and 

GC-resistance in the HTLV-I-transformed T cells 

HTLV-I transformed T cells go through the transition from the IL-2 dependent to IL-2 

independent growth stage. In IL-2 dependent growth stage, TBP-2 was expressed while 

ANXA1 expression was negligible. In IL-2 independent growth stage of the same cells, 

ANXA1 was highly expressed and TBP-2 expression was lost. As distinct from 
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ANXA1, TBP-2 was induced and directly involved in the growth arrest and apoptosis 

by GC treatment, while loss of TBP-2 induction by GC occurred in the GC-resistant T 

cells during the transition. ANXA1 may play a role in promoting leukemogenesis and 

immunosuppression in HTLV-I infection. 
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