Title	Observation of Gravity to Reveal a Buried Fault A ssociated with the Fukui Earthquake
Author(s)	TA KEUCHI, Fumiaki; HIRA NO, Norio; SA TOMURA, Mikio; KONO, Y oshiteru
Citation	Bulletin of the Disaster Prevention Research Institute (1983), $33(4): 147-162$
Issue Date	1983-12
URL	http:/hdl.handle.net/2433/124922
Right	Departmental Bulletin Paper
Type	publisher
Textversion	

Observation of Gravity to Reveal a Buried Fault Associated with the Fukui Earthquake

By Fumiaki Takeuchi, Norio Hirano, Mikio Satomura and Yoshiteru Kono

(Manuscript received September 20, 1983)

Abstract

Gravity observation was carried out in and around the Fukui plain to locate a buried fault associated with the Fukui Earthquake on June 28, 1948.

By a two-dimentional analysis of the Bouguer anomaly, a fault with a vertical offset of 200 m was revealed beneath the fissure zone that was formed at the time of the Fukui Earthquake. This offset value suggests that the Fukui Earthquakes other than the event in 1948 took place repeatedly in the past and were associated with the present fault.

1. Introduction

The Fukui Earthquake occurred on June 28, 1948 with a magnitude of 7.3 in Fukui prefecture ${ }^{1)}$. The number of persons killed was 3769 and more than twenty thousand persons were injured ${ }^{2}$. Houses collapsed and railway tracks and roads seriously damaged, especially near the epicentral area, where 100% of the houses totally collapsed ${ }^{2}$.

No active fault was found in and around the Fukui plain by eye witness, whereas many cracks and fissures were found in the plain, and some of them formed fissure zones of a few kilometers long. ${ }^{1)}$ The existence of an underground fault associated with the event was pointed out by precise leveling surveys soon after the earthquake. ${ }^{1)}$ The results show a subsidence of the ground in the western part of the plain, and an uplift in the eastern part ${ }^{1)}$. A deformation boundary that separates these two parts strikes north to slightly west, about 3 km west of Maruoka town. The maximum value of the relative vertical movement between the neighboring leveling points across the boundary was $70 \mathrm{~cm}^{1}$. A focal mechanism study of this event shows that the earthquake was of a strike-slip type, one of the nodal lines trending $\mathrm{N} 10^{\circ} \mathrm{E}^{3}$. This mechanism agrees well with the strike of the boundary mentioned above. Kanamori (1973) ${ }^{4}$ showed a fault model by comparing synthetic seismograms with the records obtained at the Abuyama Seismological Observatory. He stated that the fault plane was vertical with an area of $30 \times 13 \mathrm{~km}^{2}$. But he also pointed out the possibility of the fault dipping steeply to the east.

The recurrence intervals of large earthquakes in the Japanese islands might be between 1000 and 10000 years 5,6, so it is possible that the previous Fukui Earthquakes took piace repeatedly associated with the same fault as the present event in
1948. If so, the accumulated dislocation of the vertical component would exceed some 100 m in these one million years or so, and the offset is enough to be detected by a sensitive gravimeter. Kono et al, (1982) ${ }^{7}$ and Kono et al. (1982) ${ }^{8}$ have revealed a Bouguer anomaly map over the northern part of central Japan by compiling their own data and others'. Kono et al. (1981) ${ }^{9)}$ showed a possible underground structure in the region of the Fukui Earthquake. But their observation points were not distributed densely enough to conclude the accumulation of vertical dislocations by repeated earthquakes. The aims of the present work are to find out the location of the fault and to estimate the accumulated dislocation by gravity observations at densely distributed points.

2. Observation and Data Processing

Observations were carried out twice at the points in Fig. 1. The first one was in August 1980 to find a rough image of the plain and the buried fault. The other was in July 1982 to delineate a more detailed structure. Observation points are grouped into O, E, K, S and F lines symbolizing Oono city, Eiheiji-temple, Katsuyama city, Sabae city and the fault itself, respectively. Observations along

Fig. 1. Map of observation points. They are grouped into F, K, E, O, S and X lines. Dashed lines indicate the locations of earthquake faults after the Research Group for Active Faults ${ }^{10}$. These are recognized as active faults by the distribution of cracks and fissures and by the results of the precise leveling surveys soon after the Fukui Earthquake.

F line alone were carried out in 1982, and the others in 1980.
The complete Bouguer anomalies at the observation points are listed in Table 1, together with their locations, heights and correction terms. The line of X is also shown in Fig. 1 as the westward extended route of O line, but their values are omitted from the table, since the results have already been treated with in another paper ${ }^{7}$. K line and X-O lines traverse over the fault, and E and S lines are additional routes to study the general features of the region. The observation points were chosen from the bench marks, leveling points, and spot heights in precise topographic maps, such as the Topographic maps of $1: 25000$ issued by the Geographical Survey Institute (GSI) and Town planning maps of the town offices. The distance from one observation point to another was settled on 500 m , if possible. The heights of the observation points are presented in these maps with a precision of 10 cm . But the accuracy which can be expected for the leveling points and spot heights may actually be 1 m or so, since at the time of observation it was often hard for us to find the very points which were plotted in the maps. In such cases, we chose a point that might be very near the plotted place, and used the value in the map as the height of the observation point.

Two LaCoste \& Romberg gravimeters (Model G) were employed. One is G-348 of Kanazawa University, and the other G-210 of University of Tokyo. A series of observations for G-348 started from the room 166 in the Department of Earth Sciences, Faculty of Science, Kanazawa University, where the gravity value had been determined as

$$
g=979857.990(\text { mgal }) .
$$

And for $\mathrm{G}-210$, it started from the First Order Gravity Station at the Fukui Local Meteorological Observatory, and its gravity value was listed in JGSN 7511) as

$$
g=979838.10(\mathrm{mgal}) .
$$

The observation was closed everyday at a bench mark near the observation lines. The whole series was terminated at the starting point and the observation was closed. The Normal Gravity was calculated using the formula by the Geodetic Reference System $1967^{12)}$:

$$
r=979031.85\left(1+0.005278895 \sin ^{2} \psi+0.000023462 \sin ^{4} \psi\right)(\mathrm{mgal})
$$

where ψ is the geographical latitude. The atmospheric correction term (Atm) was calculated by the following equation,

$$
A t m=0.87-0.00965 \times 10^{-3} h(\mathrm{mgal}),
$$

where h is the height of the observation point in meters.
The vertical gradient of gravity was assumed to be $0.3086 \mathrm{mgal} / \mathrm{m}$, and the Bouguer correction was made by assuming $2.67 \mathrm{~g} / \mathrm{cm}^{3}$ for the mean density. The complete Bouguer anomaly was carried out by a computer program developed in

Kanazawa University (Kubo, $1980^{13)}$ and Kono \& Kubo, 1983^{14}), which basically referred to Hagiwara (1967) ${ }^{15}$. Thus the complete Bouguer anomaly is represented by

$$
\Delta g_{0}^{\prime \prime}=g-r+A t m+0.3086 h-2 \pi G \rho h+T r,
$$

where G, ρ and $T r$ denote the Gravitational constant, assumed density for the Bouguer correction and the terrain correction term, respectively. The gravity values measured by the two gravimeters at the same points showed 0.1 mgal or less difference, which might be caused from the differences of the scale values. But we neglected this since the differences were less than the accuracy of terrain correction terms.

3. Results and Discussions

In Fig. 2, the east-west profiles of the Bouguer Anomaly for K and X-O lines

Fig. 2. The Bouguer anomalies along K line and X-O lines with topographic profile along K line. A fault should exist beneath the fissure zone rather than at the east end of the plain.
are plotted. The horizontal axis is the distance from $136^{\circ} \mathrm{E}$. The topographic cross section along K line is also shown in Fig. 2. A common pattern can be seen in the two profiles; in the western half, the values of the Bouguer anomaly are positive, slightly decreasing towards the east and abruptly descending to negative values at a ratio of 1.6 to $1.9 \mathrm{mgal} / \mathrm{km}$ in the eastern part. These patterns can be explained by the undulation of the Moho or Conrad discontinuity or of the upper boundary of the granitic layer, as is mentioned by Furuse \& Kono (1982) ${ }^{16)}$. A trough of the Bouguer anomaly can be seen in the western half of the K and X -O profiles, with a magnitude of several mgals. The minimum value in the trough are observed in the midst of the Fukui plain, where Tertiary bed rocks are thickly covered by alluvial, diluvial and Tertiary sediments. The maximum thickness of the alluvium, however, is estimated to be about 30 m , which brings about only an 0.5 mgal change to the Bouguer anomaly, so the main part of the trough is due to deeper structures. The ascending Bouguer anomaly, which is seen between 17 to 27 km in the eastern part of the trough along K line, suggests the existence of a fault. This fault should be

Fig. 3. a) Plots of the observed Bouguer anomalies along F line with synthetic ones calculated on the underground structure shown in b).
b) A possible underground structure as a two-dimensional solution for the observed Bouguer anomalies. Beneath the fissure zone there exists a fault with a vertical offset of 200 m . Although the dashed line is a possible structure (other structures are also possible), some abrupt change at the boundary between the basement rock and sediment is needed to explain the observed data for any one of the solutions.
located at a distance of 22 or 23 km , rather than at 27 or 28 km where the active fault of Matsuoka lies.

Our second observation in 1982 was intended to find a more precise location of the fault and to estimate its vertical offset. Forty observation points were chosen and they formed F line at an average interval of 200 m , about 4 km north to the K line. This line lies mainly in the Fukui plain, and the difference of heights between F1 and F35 which are surrounded by rice fields is within 5 m . The Bouguer anomaly is shown in Fig. 3(a), in which we can find a larger gradient at the distance range of 22 to 23 km than in the plots of K line. This must be attributed to a shallow structure like the boundary shape of sediments, which could not be revealed without observations along F line. A possible underground structure is shown in Fig. 3(b), and the synthetic Bouguer anomaly curve is presented in the upper figure, calculated by a two-dimensional method after Talwani et al. (1959) ${ }^{17 \text { 7 }}$. The model structure is derived as follows. A ramp shape structure associated with the granitic layer was taken to explain the increase of the Bouguer anomaly towards the east. The high gradient is supposed to be due to a fault which appeared as a step in the Tertiary bed rocks. The shallow sediments are assumed to consist of one layer with a density of $2.0 \mathrm{~g} / \mathrm{cm}^{3}$, although they consist of the alluvial, diluvial and Tertiary deposits. This treatment is justified because the effect of thickness of the alluvium to the gravity field was very small. Furthermore the boundary between the diluvial and Tertiary sediments has not been clearly shown by boring data. The depth to the upper surface of the granitic layer was fixed at 3 to 4 km , the values of which are often used in the hypocenter determination of microearthquakes in and around the present region. But this boundary can be shifted vertically without yielding significant modifications on the calculated gravity. Thus, we assumed a three-layer model with densities of 2.0, 2.4 and 2.67 after Furuse \& Kono (1982) ${ }^{16)}$, and looked for a suitable model by trial and error. A solution was found as is shown by the solid lines in Fig. $\mathbf{3}(\mathbf{b})$, by which the calculated Bouguer anomaly agrees well with observed data.

The solution, however, is not unique as is often the case in underground structure analysis. For example, the step in the basement rock and sediments-that is the fault we are now seeking for-can be replaced by a slope as is drawn by the dashed line in Fig. 3. This replacement merely requires adding 0.3 mgal to the synthetic curves near the fault and smaller values elsewhere. The vertical offset was obtained as 200 m on the above assumption of densities, but it can be reduced to 100 m when the density assumptions are changed within possible ranges.

Another possible case is that the surface of the granitic layer is perfectly flat, and that the Bouguer anomaly is fully caused by the upper boundary shape of the basement rock. Then the resultant offset would be greater than in the case shown in the figure. We have, so far, not taken into account the general tendency of 0.5 to $1.0 \mathrm{mgal} / \mathrm{km}$ decreasing towards the east, which may be due to the Conrad or Moho discontinuity. The correction for this tendency, however, can be explained by
increasing the amount of offset. After all, the model proposed here is a typical solution and it states that a fault with 200 m offset exists beneath the fissure zone that was found soon after the Fukui Earthquake.

The fact has not yet been considered that the gradient in the problem is highest in F line and is smaller in K or X-O lines. This is left for further studies.

4. Conclusions

A gravity survey was carried out in and around the Fukui plain, and the Bouguer anomalies were calculated to complete the gravity map over the northern part of central Japan. A fault was revealed by analyzing the anomalies, which may have been formed by a series of Fukui Earthquakes. The accumulated vertical displacement of this fault is estimated to be 200 m with an ambiguity of factor 2 . We may evaluate the recurrence interval of the earthquakes by the following assumptions:
a) The earthquake sequence started within a million year span of time, and they have occurred repeatedly with equal intervals since then.
b) Each event was generated from the present fault with the same vertical dislocation ($\sim 1 \mathrm{~m}$).
c) Only the earthquakes assumed here have attributed to the vertical displacement accumulation of this fault.

A simple calculation leads to the conclusion that the recurrence interval of the Fukui Earthquakes associated with the present fault is 5000 years. We must, however, be very careful when using this value since it is a rough estimation derived only from the fault presently under discussion.

Acknowledgements

We thank the staff of the Earthquake Research Institute, University of Tokyo, who kindly allowed us to use their gravimeter. We also thank the graduate students at the time of this investigation, N. Furuse and M. Sunami for helpful suggestions and assistances in data processing. Thanks are also due to S . Kishi, a student of Kanazawa University at the time for cooperation in observation. We are thankful to N. Hurukawa of Kyoto University and other members of the Group for Surveying the Fukui Earthquake Fault for discussions and encouragements.

Computations were carried out at the Data Processing Center of Kanazawa University (FACOM M-170), and also at the Computer Center of Shizuoka University (HITAC 8250).

Table 1. Continued.

Loca	ation	Latitude	LONGITUDE	${ }_{\text {I }}^{\text {(M) }}$ (----GR	Ity---	---gra	FREE-AIP			r bouguer	R EARTH				te	
wo.)	(name)	(DEG.)	(DEG.)		observ	normal	OB-NOR	free-ait	buguer	free-air	r bouguer	$\begin{aligned} & \text { R EARTH } \\ & \text { TIDE } \end{aligned}$		MOS	Y	M D H M	$\begin{gathered} \text { FRC } \\ (=10) \end{gathered}$
21	$\begin{aligned} & 0-15 \\ & \text { (SAKA) } \end{aligned}$	$\begin{aligned} & 35.9965 \\ & \text { TERA } \end{aligned}$	136.3745	84.90	$\begin{aligned} & 979000 . \\ & 802.356 \end{aligned}$	979000. 818.036	-15.680	11.382	7.188	26.200	-9.505	0.134	310	. 86		.10.12.49.	0
22	16	35.9977	136.3800	88.90	799.675	818.139	-18.4.44	9.832	5.549	27.435	-9.952	0.127	5.669	. 861	80	8.10.13. 1.	0
23	0-17	36.0010	136.3840	96.30	797.370	818.423	-21.053	9.526	5.290	29.718	10.781	0.122	6.564	81	B0.	o.	0
24	$\begin{aligned} & \text { O-18 } \\ & \text { IYAKUSH } \end{aligned}$	$\begin{gathered} 36.0025 \\ \text { H1 STH.) } \end{gathered}$	136.3870	94.10	796	818.	-22.122	7.778	3.73	29.039	-10.535	0.116	6.490	861	80.	3.10.13.19.	0
25	0-19	36.0055	136.3915	100.50	795.510	818.809	-23.299	8.575	4.113	31.014	-11.251	0.108	. 78	. 860	80.	8.10.13.30.	0
26	--20	36.0052	136.3975	105.60	794.058	818.78	-24.726	8.722	2.425	32.588	-11.822	. 101	5.515	860	80.	10.13.40.	0
27	0-21	36.0028	136.4023	108.50	792.946	818.577	-25.631	. 712	49	33.483	-12.147	0.094	. 93	860	80.	10.13.48.	0
28	0-22	35.9985	136.4088	117.10	790.166	818.208	-28.042	8.954	0.61	36.137	-13.109	0.087	4.7	. 859	80.	.10.13.57.	0
29	0-23	35.9975	136.4168	122.30	787.996	818.	-30.126	8.47	-1.193	37.742	-13.692	0.080	4.	858		10.14. 5.	0
30	0-24	35.9967	136.4217	129.40	784.531	818.053	-33.522	7.268	-3.231	39.933	-14.486	0.072	3.98	. 858	80.	15.	0
31	0-25	35.9957	136.4277	136.50	782.569	817.967	-35.398	7.583	-3.907	42.126	-15.281	0.063	3.79	. 857	80.	8.10.14.24.	0
32	0-26	35.9942	136.4350	146.90	780.628	817.838	-37.210	8.979	-3.994	45.333	-16.445	0.054	3.472	85		34.	0
33	0-27	35.9957	136.4405	157.00	778.988	817.967	-38.979	10.326	-3.811	48.450	-17.576	0.048	. 43	. 855		41.	0
36	0-2.	35.9982	136.4485	182.50	773.780	818.182	-46.402	12.770	-3.663	56.319	-20.431	0.038	3.99	85	80.	52.	0
35	$\begin{aligned} & 0-29 \\ & \text { (R1SB } \end{aligned}$	35.9973 TUNJEL)	136.4540	199.60	768.602	818.105	-69.503	12.945	-6.073	61.59	-22.345	0.03	3.328	851		10.15. 0.	0
36	$\begin{aligned} & x-01 \\ & \text { (BM5246 } \end{aligned}$	$\text { 6) } 36.0768$	136.4670	100.10	797.9148	824.942	-27.028	4.724	-2.826	30.891	-11.206	-0.058	3.65	860		10.16	0
37	K-02 (BMS247	$\text { 7) } 36.0743$	136.4495	90.60	800.935	824.726	-23.791	5.029	-1.191	27.959	-10.143	-0.066	3.92	861		10.17. 2.	0
38	$\begin{aligned} & \text { K-O3 } \\ & \text { (BMSZSO) } \end{aligned}$	$0^{36.0797}$	136.3855	60.50	815.8218	825.191	-9.370	10.165	7.077	18.670	-6.773	-0.080	3.68	864		.10.17.34.	\bigcirc
39	$\begin{gathered} \text { k-O4 } \\ \text { BMSOSS } \end{gathered}$	$1)^{36.0850}$	136.3658	52.20	822.659	825.647	-2.988	13.986	11.428	16.109	-5.844	-0.085	3.28	. 865		10.17.52.	\bigcirc
40	K-05	36.0853	136.3585	48.40	824.0898	825.673	-1.584	14.218	12.381	14.936	-5.418-	-0.088	3.582	. 865	80.	8.10.18.	0

Table 1. Continued.

LOCA	ION	Latitude	LONGITUDE	HEIGHT	----Gra	VITY---	---GRAV	TY	ALY-----		----COR	RECTIONS				date	
(NO 0.$)$	(NAME)	(DEG.)	(DEG.)	(M)	observe	NORMAL	OB-NOR	free-air	bouguer	free-AIR	BOUGUE	R EARTH TIDE	TERRAIN	ATMOS	r	M D H M	$\begin{aligned} & F R C \\ & (* 10) \end{aligned}$
61	K-06	36.0867	136.3500	48.40	$\begin{aligned} & 979000 \\ & 826.294 \end{aligned}$	$\begin{aligned} & 979000 . \\ & 825.793 \end{aligned}$	0.501	16.303	14.302	14.936	-5.418	-0.089	3.418	. 865	80.	0.10.18.12.	0
48	$\mathrm{K}-07$ (B14525	36.0868	136.3442	54.90	826.456	825.802	0.654	18.461	15.286	16.942	-6.146	-0.090	2.971	. 865	80.	8.10.18.22.	0
43	$\begin{aligned} & \text { K-08 } \\ & \text { 〈BMSŻS } \end{aligned}$	36.0890	136.3393	49.30	828.683	825.991	$2.69{ }^{\circ}$	18.771	15.794	15.214	-5.519	-0.090	2.542	. 865	80.	.10.13.33.	0
44	K-09	36.0918	136.3338	45.80	830.881	826.232	4.649	19.648	16.692	14.134	-5.127	-0.090	2.171	. 866	80.	.10.18.44.	0
45	K-10	36.0957	136.3262	42.90	832.813	826.568	6.245	20.350	17.442	13.239	-4.803	-0.086	1.895	. 866	80.	8.10.19.11.	0
66	Fkes	36.0525	136.2253	9.71	838.162	822.851	15.311	19.177	18.529	2.997	-1.087	0.071	0.439	. 869	B0.	.11. 9.39.	0
47	K-10	36.0957	136.3262	42.90	832.803	826.568	6.235	20.360	17.432	13.239	-4,803	0.141	1.895	. 866	80.	.11.11.39.	0
48	$k-11$ (NARUKA	$A^{36.1008}$	136.3308	46.20	831.814	827.007	4.807	19.930	17.629	14.257	-5.172	0.143	2.871	. 866	B0.	B.11.12.24.	0
49	k-12	36.1037	136.3262	39.00	835.395	827.256	8.139	21.040	19.327	12.035	-6.366	0.142	2.653	. 866	80.	.11.12.35.	0
50	K-13	36.1063	136.3175	32.80	837.072	827. 308	9.764	20.753	19.021	10.122	-3.672	0.140	1.940	. 867	80.	8.11.12.44.	0
51	K-14	36.1067	136.3120	27.60	838.913	827.515	11.398	20.783	19.394	8.517	-3.090	0.138	1.701	. 867	80.	3.11.12.51.	0
52	K-15	36.1068	136.3085	26.00	840.303	827.523	12.780	21.671	20.271	8.024	-2.911	0.131	1.511	. 867	80.	8.11.13.9.	0
53	K-96	36.1077	136.3040	26.30	841.384	827.600	13.784	22.767	21.139	8.116	-2.944	0.127	1.316	. 867	80.	.11.13.19.	0
54	K-17	36.1082	136.3000	24.30	840.997	827.644	13.353	21.720	20.186	7.499	-2.720	0.120	1.186	. 868	80.	3.11.13.32.	0
55	K-18	36.1090	136.2967	22.00	840.913	827.712	13.201	20.858	19.443	6.789	-2,463	0.116	1.048	. 868	80.	8.11.13.40.	0
56	K-19	36.1110	136.2892	20.90	841.309	827.885	13.426	20.742	19.335	6.450	-2.340	0.110	0.933	. 868	80.	8.11.13.49.	0
57	к-20	36.1177	136.2878	20.50	842.406	828.461	13.945	21.139	19.790	6.326	-2.295	0.102	0.946	. 868	80.	8.11.14. 0.	0
58	K-? 1	36.1182	136.2833	18.70	842.080	828.504	13.576	20.215	18.977	5.771	-2.093	0.095	0.856	. 868	80.	B.11.14.11.	0
50	K-2?	36.1197	136.2778	16.50	842.702	828.633	14.069	20.029	18.951	5.092	-1.847	0.081	0.769	. 868	B0.	8.11 .14 .28.	0
60	k-23	36.1185	136.2727	15.608	843.141	828.530	14.611	20.294	19.265	4.814	-1.766	0.073	0.698	. 868	80.	R.11.14.38.	0

Table 1. Continued.

Lo	Ation	larttude	longrtude	height	T --.-grav	avitr-.-	---Gra	隹								oate	
(NO.)	(Name)	(0EG.)	(DEG.)	(M)) observe	normal	OB-NOR	frem-air	bouguer	free-AI	r bouguer	$\begin{aligned} & \text { ER EARTH } \\ & T I D E \end{aligned}$	terrain	s	r	M D H M	$\begin{gathered} \text { FRC } \\ (\times 10) \end{gathered}$
01	k-24	36.1172	136.2690	13.90	$\begin{aligned} & 979000 \\ & 843.664 \end{aligned}$	979000. 828.418	15.246	20.406	19.501	4.290	-1.556	0.066	0.653	. 869		14	0
62	k-2.5	36.1148	136.2635	13.50	844.318	828.212	16.106	21.141	20.225	4.166	-1.511	0.058	0.595	. 86		11.14.56.	0
63	k-26	36.1230	156.2580	11.80	844.370	828.057	16.313	20.824	20.052	3.641	-1.321	0.011	0.549	. 869		49.	0
64	K-27	36.1137	136.2510	10.00	844.106	828.117	15.989	19.944	19.326	3.086	-1.120	0.003	0.502	. 869		57.	0
65	K-28	36.1152	136.2465	10.30	843.638	828.246	15.192	19.239	18.557	3.179	-1.153	-0.004	0.471	. 869		11.16. 5.	0
66	$x-29$	36.1132	136.2412	9.10	843.157	828.074	15.083	18.761	18.190	2.808	-1.019	-0.017	0.648	. 869	80.	2.11.16.20.	0
67	$k-30$	36.1120	136.2367	8.80	842.654	827.970	16.684	18.268	17.708	2.716	-0.985	-0.022	0.425	. 869	80.	.14.16.27.	0
68	k-31	36.1110	136.2335	8.50	842.469	827.885	14.586	18.077	17.537	2.623	-0.952	-0.026	0.412	. 869	80.	8.11.16.32.	0
69	$\begin{aligned} & \text { K-32 } \\ & \text { BMOOQ } \end{aligned}$	$\begin{gathered} 36 \cdot 1105 \end{gathered}$	136.2318	8.30	842.374	827.842	14.532	17.963	17.441	2.561	-0.929	-0.031	0.407	. 869	B0.	3.11.16.38.	0
70	$\begin{aligned} & \text { K-33 } \\ & (B 1900) \end{aligned}$	${ }^{36.1085}$	136.2308	8.40	842.123	827.669	14.454	17.915	17.379	2.592	-0.940	-0.038	0.404	. 869	80.	11.16.47.	0
71	k-34	36.1120	136.2223	7.00	841.925	827.970	13.955	16.984	16.576	2.160	-0.784	-0.052	0.376	. 869	80.	.11.17. 8.	0
72	k-35	36.1148	136.2183	6.10	841.874	828.212	13.662	16.414	16.095	1.882	-0.683	-0.080	0.364	. 889	во.	9.19.17.24.	0
73	K-36	36.1153	136.2130	6.50	841.525	828.255	13.270	16.146	15.769	2.006	-0.728	-0.064	0.351	. 859	во.	9.11.17.29.	0
74	K-37	36.1137	136.2092	5.90	841.119	828.117	13.002	15.692	15.383	1.821	-0.661	-0.070	0.351	. 869	30.	.11.17.40.	0
75	K-38	36.1133	136.2053	5.80	840.773	828.082	12.691	15.350	15.049	1.790	-0.649	-0.074	0.348	. 869	80.	.11.17.49.	0
76	K-39	36.1145	136.2003	5.30	840.500	828.186	12.314	14.819	14.573	1.636	-0.593	-0.077	0.347	. 869	80.	2.11.17.57.	0
77	K-40	36.1152	136.1967	6.50	840.526	828.246	12.280	14.538	14.386	1.389	-0.504	-0.080	0.352	. 870		9.14.19. 4.	0
78	K-4t	36.1158	136.1912	4.30	840.968	828.298	12.670	14.867	14.750	1.327	-0.681	-0.082	0.364	. 870		\$.11.18.11.	0
79	k-42	36.11651	136.1883	4.30	841.8718	828.358	13.513	15.710	15.612	1.327	-0.481	-0.084	0.384	. 870	80.	8.11.19.19.	0
80	$k-43$	36.11821	136.1808	4.908	843.3628	828.504	14.858	17.239	17.118	1.512	-0.549	-0.086	0.427	. 870	80.	9.11.18.?7.	0

Table 1. Continued.

LOC	ation	LATITUDE	longitude	height	- ----gray	avity---	---Gra	PREEALP	halr-----		-	促				oate	
(NO O)	(name)	(DEG.)	(DEG.)	(M)	observe	normal	OB-NOR	frem-atr	bouguer	free-air	R bouguer	$\begin{aligned} & \text { ER EARTH } \\ & \text { TIDE } \end{aligned}$	Errain	atmos	Y	0 H	$\begin{gathered} \text { FRC } \\ (\times 10) \end{gathered}$
81	K-44	36.1195	136.1772	5.60	979000. 844.016	979000. 828.616	15.400	17.998	17.847	1.728	-0.627	-0.087	0.476	. 869	90.	9.11.18.35.	0
82	K-44	36.1222	136.1692	7.00	846.741	828.849	17.892	20.922	20.958	2.160	-0.784	0.130	0.820	. 869		.12.12.23.	0
83	k-45	36.1322	136.1613	5.10	847.784	829.710	18.074	20.518	20.410	1.574	-0.571	0.131	0.463	. 870	я0.	12.12.32.	0
84	K-4	36.1372	136.1552	4.70	848.562	830.140	18.422	20.762	20.629	1.450	-0.526	0.131	0.413	. 870	so.	.12.12.42.	0
85	K-47	36.1362	136.1463	8.10	848.780	830.056	18.726	22.095	21.651	2.500	-0.907	0.130	0.463	. 869	80	52.	0
86	K-4B	36.1383	136.1298	11.90	847.574	830.235	17.339	21.881	21.090	3.672	-1.332	0.129	0.562	. 869		. 4.	0
87	k-50	36.1368	136.1175	8.60	849.489	830.105	19.384	22.845	23.285	2.592	-0.940	0.127	1.380	. 869	80.	.12.13.15.	0
88	k-51	36.1613	136.1095	38.70	842.627	830.693	12.134	24.943	21.081	11.963	-4.332	0.124	0.470	. 866	80.	12.13.25.	0
89	K-52	36.1430	136.0977	7.60	848.059	830.639	17.420	20.634	20.260	2.365	-0.851	0.120	0.476	. 869	so.	12.13.37.	0
90	$\mathrm{K}-53$ (0KMIC	$\begin{gathered} 36.1393 \\ H_{1} 1_{\text {ERR. }} \end{gathered}$	136.0895	6.30	850.006	830.321	19.683	22.497	22.337	1.964	-0.705	0.116	0.545	. 869	80.	.12.13.47.	\bigcirc
91	$\begin{aligned} & \text { c-01 } \\ & \text { BMS25. } \end{aligned}$	$\begin{aligned} & 36.0935 \\ & 54 \end{aligned}$	136.3082	43.10	835.050	826.379	8.671	22.838	19.412	13.301	-4.825	0.051	1.39	. 866	80.	.12.15.23.	0
92	E-02	36.0790	136.3202	67.80	825.110	825.131	-0.021	21.706	16.403	20.92	-7.590	0.038	22	. 863		39	0
93	E-03	36.0650	136.3325	106.00	815.616	823.926	-8.510	25.061,	16.419	32.712	-11.867	0.031	3.22	. 860		.12.15.47.	0
94	E-04	36.0578	136.3503	150.00	802.476	823.307	-20.831	26.315	14.843	66.290	-16.793	0.023	5.321	. 856		.12.15.57.	0
95	E-05 IEIHEI	36.0520	136.3573	186.00	792.874	822.808	-29.936	28.318	13.656	57.400	-20.823	0.015	6.159	. 852		.12.16. 6.	0
96	$\begin{aligned} & \text { E-06 } \\ & \text { iUSAKA } \end{aligned}$	$\begin{aligned} & 36.0473 \\ & \text { THMMEL } \end{aligned}$	136.3477	276.30	777.762	822.404	-46.662	41.468	13.101	85.266	-30.932	0.002	2.58	. 843		8.12.16.21.	0
97	E-07	36.0352	136.3350	119.00	805.683	821.363	-15.680	21.902	16.180	36.723	-13.322	0.009	7.600	. 859	s0.	.12.16.34.	0
98	$\begin{aligned} & \text { F-08 } \\ & \text { itsurun } \end{aligned}$	35.9817 14 BK .7	136.3665	104.90	799.547	816.784	-17.217	16.015	9.450	32.372 -	-11.764	-0.025	5.178	. 860		3.12.16.55.	0
99	「.-0?	35.9722	136.3742	112.80	794.225	815.947	-21.722	13.947	8.396	36.810 -	-12.628	-0.031	7.077	. 859		3.12.17. 3.	0
100	F-1]	35.8597	136.3703	123.70	789.003	814.873	-25.870	13.162	6.162	38.176-	-13.848	-0.039	6.848	. 858		3.12.17.14.	0

Table 1. Continued.

	ation (NAME)	latitude (DEG.)	longitude	height	----grav	vity-	--Grav	Ity anoma	ALY---.-		----CORA	Rections					
							OB	ReE-AIR	BOUGUER	free-ali	r souguer	$\begin{aligned} & \text { EARTH } \\ & \text { TIDE } \end{aligned}$					(10)
101	E-11	35.9485	136.3602	137.709	979000. 785.875	979000. 813.911	-28.036	15.315	5.186	62.496	-15.416	-0.046	5.286	. 857		.12.17.22	0
102	E-12	35.9418	136.3518	199.50	771.770	813.335	-41.565	20.851	6.262	61.566	-22.336	-0.053	5.745	. 851	80.	17.36.	0
103	E-13	35.9602	136.3628	155.50	781.296	813.198	-31.902	16.960	3.467	47.987	-17.408	-0.067	3.935	. 855		12.18. 2.	0
104	$\begin{aligned} & \text { E-14 } \\ & \text { SHIRAW } \end{aligned}$	35.9305 WA BR.)	136.3662	162.30	777.020	812.36	-35.344	15.596	3.550	50.086	-18.170	-0.070	6.124	. 85	80.	12.18. 9.	0
105	E-15	35.9168	136.3567	195.90	768.830	811.188	-62.358	18.968	2.116	60.455	-21.931	-0.074	. 099	. 851	30.	12.18.19.	0
106	E-16	35.9128	136.3327	263.00	761.197	810.845	-69.648	26.189	4.440	74.990	-27.204	-0.078	.455	. 847	80.	.12.18.30.	0
7	E-17	35.9330	136.3038	78.00	799.995	012.579	-12.584	12.349	8.144	24.071	-8.732	-0.082	. 527	. 862	80.	12.18.48	\bigcirc
08	E-18	35.9327	136.2865	52.30	807.896	812.554	-4.658	12.347	10.689	16.140	-5.855	-0.084	. 197	86	80.	8.12.18.56.	0
109	E-19	35.9313	136.2673	32.20	815.934	812.433	3.501	14.304	12.718	9.937	-3.605	0.028	. 018	. 867	80.	10	0
110	$\begin{aligned} & \mathrm{E}-2 \mathrm{OO} \\ & \text { (III } \mathrm{EM} 32 \end{aligned}$	$\begin{gathered} 35,9327 \\ 267)^{2} \end{gathered}$	136.2503	21.708	319.590	812.554	7.036	14.601	13.404	6.697	-2.429	. 0	233	. 868	80.	13.10.30.	\bigcirc
111	E-21	35.9433	136.2323	15.10	822.445	813.464	8.981	14.509	15.018	4.660	-1.690	0.059	2.199	. 869	80.	8.13.10.49	0
112	S-07	35.9453	136.1680	18.30	817.195	813.636	3.559	10.075	8.479	5.647	-2.049	0.074	0.453	. 868	80.	8.13.11.12.	0
113	s-08	35.9450	136.1412	19.50	817.036	813.610	3.426	10.312	8.955	6.018	-2.183	0.083	0.826	. 868	80.	.13.11.27	0
14	s-09	35.9695	136.1408	12.408	824.186	815.715	8.471	13.166	12.239	3.827	-1.388	0.094	0.461	. 869	80.	.13.11.48.	0
5	S-10	35.9700	136.1617	13.00	. 2	5.75	7.48	12.361	11.323	4.01	-1.45	0.10	0.41	. 869	.	8.13.12.2	0

Table 1. Continued.

Table 1. Continued.

LOC	ION	Latitud	LONGItud	ght	----Gr	--	---	y ano	ALY-----			Ctions				dit		
(NO.)	(NAME)	(DEG.)	(DEG.)	(M)	observe	normal	08-nor	free-air	bouguer	frem-air	bouguer	$\begin{aligned} & \text { RARTH } \\ & \text { TIDE } \end{aligned}$	Errain	S		$M \mathrm{O}$	M	$\begin{aligned} & =R C \\ & =10) \end{aligned}$
200	F20	36.15	13	. 60	979000.	979000. 831.593	16	19	18	. 345	-0.85	. 0						
201	F21	36.1516	136.2338	5.40	845.895	831.378	24.517	17.053	16.838	1.606	-0.605	0.071	0.389	. 869		7,12.1		C2 0
202	F2	36.1522	136.2302	5.30	845.724	831.432	14.293	16.798	16.578	1.636	-0.593	0.068	0.373	. 869		t2	6.42	D2 0
203	F2	36.1523	136.2264	5.50	845.076	831.463	13.633	16.200	15.937	1.697	-0.616	0.066	0.353	3.869		. 12	. 49	020
204	F2	36.1528	136.2237	5.10	847.971	831.48	16.489	18.932	18.705	1.574	-0.571	0.063	0.366	6.870	82.	7.12.16	6.58	D2 2
205	F25	36.1525	136.2199	70	844.264	831.455	12.809	15.129	14.932	1.450	-0.526	0.059	0.329	. 870		7.12.17	. 8	D2
206	F26	36.1526	136.2157	4.50	843.855	831.469	12.387	14.645	14.457	1.389	-0.504	0.056	0.316	. 870	82.	7.12.17	. 16	02
207	F2	36.1530	136.2099	4.60	843.590	831.505	12.093	14.382	14.166	1.420	-0.515	0.051	0.298	. 870		7.1	. 2	D2 0
208	F28	36.1473	136.2560	8.80	849.610	831.012	18.598	22.183	21.743	2.716	-0.985	0.042	0.5	. 869		7.12.	. 48	D2 0
209	F29	36.1665	136.2587	7.80	849.048	830.937	18.1	21.326	21.048	.345	-0.851	0.037	0.5	. 869		7.12	. 5	020
210	F30	36.1679	136.2588	7.70	849.042	831.084	17.97	21.223	20.935	2.376	-0.882	0.032	0.574	869				20
211	F31	36.1491	136.2610	7.80	849.674	31.168	18.50	$21.78{ }^{2}$	21.511	2.407	-0.873	0.027	0.602	869		7.1	. 17	c2
212	F32	36.1496	136.2632	8.40	850.395	831.211	19.186	22.645	22.331	2.592	-0.940	0.022	0.626	. 869		7.12.18		C2 0
213	F33	36.1496	136.2665	8.40	850.293	831.189	19.104	22.565	22.299	2.592	-0.940	0.017	0.6	. 869		7.12.1		c2 0
214	F34	36.1495	136.2713	8.50	850.246	831.197	19.048	22.541	22.337	2.623	-0.952	0.013	0.748	. 869		7.12.18		c2 0
215	F35	36.1495	136.2754	8.80	850.206	831.200	19.006	22.590	22.439	2.716	-0.985	0.009	0.834	. 869		. 1		$\mathrm{C} 2^{0}$
216	F36	36.1484	136.2806	10.30	850.389	831.108	19.281	23.329	23.143	3.179	-1.153	0.004	0.968	. 869		7.12.19	.	020
217	F37	36.1487	136.2825	14.108	849.871	831.127	18.743	23.963	23.396	4.351	-1.578	-0.001	1.011	. 869	82.	7.12.19	- 8	C2
218	838	36.1491	136.2866	25.908	847.107	831.162	15.946	24.806	23.041	7.993	-2.900 -	-0.004	1.135	. 868	82.	7.12 .1	9.14	C2
180	F39	30.2334	136.2695	11.50	846.569	829.810	16.759	21.177	20.577	3.549	-1.287 -	-0.022	0.888	. 869	82.	7.1	9.29	C_{1}

References

1) Tsuya, H. (edited): The Fukui Earthquake of June 28, 1948, The Special Committee for the Study of the Fukui Earthquake, Tokyo, 1950, pp. 1-197.
2) Usami, T.: Nihon Higai Zisin Soran, Todai Shuppan Kai, 1975, pp. 233-239. (in Japanese)
3) Kaminuma, K., T. Iwata, I. Kayano and M. Ohtake: Summary of Scientific Data of Major Earthquakes in Japan 1872-1972, Earthquake Research Institute, Tokyo University, 1973, pp. 88-89.
4) Kanamori, H.: Mode of Strain Release associated with Major Earthquakes in Japan, Ann. Rev. Earth Planet. Sci., 1, 1973, pp. 213-239.
5) Matsuda, T.: Magnitude and Recurrence Interval of Earthquakes from a Fault, Zisin, Ser. 2, Vol. 28, 1975, pp. 269-283. (in Japanese with English abstract and captions)
6) Disaster Prevention Research Institute, Kyoto University; Trenching Excavation at the Atotsugawa Fault, Central Japan, Report of the Coordinating Committee for Earthquake Prediction, Vol. 30, 1983, pp. 376-381. (in Japanese)
7) Kono, Y., T. Hibi, M. Kubo, O. Michigami, K. Shibuya, M. Sunami, K. Suzuki and N. Furuse: Gravity anomaly over the Northern part of the Central Japan (1), Science Reports of Kanazawa University, Vol. 27, No. 1, 1982, pp. 71-83.
8) Kono, Y., T. Hibi, M. Kubo, O. Michigami, K. Shibuya, M. Sunami, K. Suzuki and N. Furuse: Gravity anomaly over the Northern Part of the Central Japan (2), Science Reports of Kanazawa University, Vol. 27, No. 2, 1982, pp. 117-146.
9) Kono, Y., M. Sunami and M. Fujii: Relationship between Gravity Anomaly and Earthquake Hazard in the Fukui Plain, Central Japan, Zisin, Ser. 2, Vol. 34, 1981, pp. 377-383. (in Japanese with English abstract and captions)
10) The Research Group for Active Faults: Active Faults in Japan, University of Tokyo Press, 1980, pp. 204-206.
11) Geographical Survey Institute: Establishment of the Japan Gravity Standardization Net 1975, Journal of the Geodetic Society of Japan, Vol. 22, No. 2, 1976, pp. 65-76. (in Japanese with English abstract and captions)
12) International Association of Geodesy: Geodetic Reference System 1967, Bulletin Géodesique, special publication, No. 3, 1971, pp. 1-116.
13) Kubo, M.: The Program for Gravity Terrain Correction using Mean Heights Data in Rectangular Mesh, Master Thesis of Kanazawa University, 1980, pp. 1-114. (in Japanese with English abstract)
14) Kono, Y. and M. Kubo: Calculation of Terrain Correction Term by Using Meshed Mean Height Data, Journal of the Geodeitc Society of Japan, Vol. 29, No. 2, 1983, pp. 101-112. (in Japanese with English abstract and captions)
15) Hagiwara, Y.: Analysis of Gravity Values in Japan, Bulletin of the Earthquake Research Institute, Vol. 45, 1967, pp. 1091-1228.
16) Furuse, N. and Y. Kono: Crustal Structure Derived from Detailed Gravity Anomaly in the Northern Part of the Central Japan, Zisin, Ser. 2, Vol. 35, 1982, pp. 547-556. (in Japanese with English abstract and captions)
17) Talwani, M., J. L. Worzel, and M. Landisman: Rapid Gravity Computations for Two-Dimensional Bodies with Application to the Mendocino Submarine Fracture Zone, Journal of Geophysical Research, Vol. 64, No. 1, 1959, pp. 49-59.
